This invention relates generally to overhead support components.
Many items are designed and configured to be installed in a suspended state. As used herein, the expression “suspended state” will be understood to refer to being hung from above by a flexible link (such as a rope, string, wire, chain, or the like) as versus a rigid link (such as a beam, pipe, rod, or the like). As one useful example in these regards, some signs include openings (for example, through the uppermost corners of the sign) to receive a flexible link that is, in turn, secured to a ceiling or other overhead component. In many cases such items are suspended via two or more flexible links, with one flexible link being located near or at one side edge of the item and another flexible link being located near or at an opposing side edge of the item.
When the item being suspended has a ratio of its length to its height that is relatively large (and particularly as the depth of the item becomes more shallow), it becomes increasingly possible that the item will bow when flexibly suspended. For example, the item can bow outwardly and downwardly in its middle section. Additional flexible links are sometimes used to attempt to ameliorate this phenomenon with varying degrees of success and varying levels of difficulty as regards installing and adjusting such additional flexible links.
Complicating the foregoing is a wish to sometimes adjust the pitch of the item in its suspended state. For example, when the item comprises a sign it may be useful to pitch the item downwardly somewhat in order to facilitate observing the sign's content. Typical items designed for installation in a suspended state, however, tend to assume a one-size-fits-all solution that essentially ignores such a need.
The above needs are at least partially met through provision of the overhead support apparatus described in the following detailed description, particularly when studied in conjunction with the drawings, wherein:
Elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions and/or relative positioning of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of various embodiments of the present invention. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are often not depicted in order to facilitate a less obstructed view of these various embodiments of the present invention. Certain actions and/or steps may be described or depicted in a particular order of occurrence while those skilled in the art will understand that such specificity with respect to sequence is not actually required. The terms and expressions used herein have the ordinary technical meaning as is accorded to such terms and expressions by persons skilled in the technical field as set forth above except where different specific meanings have otherwise been set forth herein.
Generally speaking, pursuant to these various embodiments, a support component can comprise a tab configured to be coupled to a bar (as comprises a part of an item to be suspended), the tab including a plurality of captivation points disposed therethrough (or otherwise formed therein) that are each configured to receive an overhead support interface (such as a corresponding flexible link) to thereby permit at least one of these captivation points to provide overhead support to the bar. By one approach the plurality of captivation points are laterally offset from one another to thereby facilitate selecting a particular pitch orientation for the bar.
These teachings will accommodate a variety of differently-formed captivation points. By one approach, for example, at least some of the captivation points can comprise holes formed through the tab. By another approach, in combination with the foregoing or in lieu thereof, at least some of the captivation points can comprise notches formed in the tab.
By one approach the tab has a non-circular hole disposed therethrough sized and configured to receive the bar to thereby couple the tab to the bar. This non-circular hole can include a surface that is configured to key with respect to a corresponding bar surface to thereby prevent the bar from rotating about a longitudinal axis. These teachings are highly flexible in these regards and will accommodate a wide variety of variations in these regards including bars having a rectangular cross section, a triangular cross section, a hexagonal cross section, an oval cross section, and any of a variety of other symmetrical or nonsymmetrical cross sections.
By one approach the aforementioned plurality of captivation points can comprise a plurality of rows of a plurality of such captivation points. For example, the tab can include a first row of a first plurality of captivation points and a second row of a second plurality of captivation points. In such a case, if desired, the first plurality of captivation points can be laterally offset with respect to the captivation points of the second plurality of captivation points to thereby provide an increased number of pitch adjustment opportunities.
So configured, one or more such support components can be employed with, for example, a sign comprised of a plurality of physically-discrete sign components that are serially attached to one another. In particular, such a support component can be disposed and coupled between two such physically-discrete sign components that are adjacent to one another. So disposed, an overhead support interface (such as a hook that connects to a flexible link that hangs from an overhead location such as a ceiling) can be coupled to a selected one of the aforementioned captivation points to thereby provide supplemental overhead support to the sign and, as desired, to facilitate selecting a particular pitch orientation for the sign.
Such a support component can be readily employed at a time of installation to accommodate any of a variety of installation challenges and/or requirements. These teachings are highly flexible in practice and will accommodate use with items to be suspended having any of a variety of shapes and sizes. Such a support component can be economically manufactured and is relatively intuitive to successfully utilize.
These and other benefits may become clearer upon making a thorough review and study of the following detailed description. Referring now to the drawings, and in particular to
This tab 101 can be comprised of any suitable material such as plastic, metal, or even wood. Generally speaking the tab 101 is substantially resilient though a small amount of flexibility may be useful in some application settings. Depending upon the weight of the item to be suspended and the support provided by other support elements, even a material such as cardboard (or other relatively stiff paper stock) can serve in these regards.
The size of the tab 101 can vary with respect to the needs and/or opportunities that tend to characterize a given application setting. For example, the larger the bar of the item to be suspended, typically the larger the tab 101 and vice versa.
This tab 101 is configured to be coupled to a bar (not shown in this illustration). Generally speaking, this accommodation comprises, at least in part, a non-circular hole 102 disposed through the tab 101. This non-circular hole 102 is configured to receive the aforementioned bar to thereby couple the tab 101 to the bar. Accordingly, in many cases it will be useful if the non-circular hole 102 substantially conformally corresponds to the external cross-sectional form factor of the bar. In this illustrative example, it is presumed that the bar has a rectangular external cross section and accordingly the non-circular hole 102 has a rectangular shape as well.
As will be exemplified in more detail below, these teachings will accommodate a wide variety of shapes for this hole 102. Generally speaking, the non-circular hole 102 has at least one internal surface that is configured to key with respect to a corresponding bar surface to thereby prevent the bar from rotating about a longitudinal axis. When, for example, the bar has a rectangular external cross section as is presumed in the present example, and the non-circular hole 102 comprises a corresponding rectangle that conforms rather closely to the size of the bar, the tab 101 and the bar interact in a way that prevents the bar from rotating about its longitudinal axis.
The support component 100 also includes a plurality of captivation points disposed through the tab 101. For the purposes of this initial example it will be presumed that the captivation points all comprise openings 103 that are disposed through the tab 101. As will be exemplified further below, however, the present teachings are not limited to only openings and it will therefore be understood that the use of openings is intended to serve only in an illustrative capacity.
Generally speaking, these openings 103 are configured to receive an overhead support interface (such as a flexible link that passes therethrough or a hook or latch that is attached to a flexible link) to thereby provide overhead support to the aforementioned bar. For the sake of clarity and simplicity these openings 103 are shown here as being circles. It will be understood, however, that these openings can have any of a variety of regular geometric shapes (such as squares, triangles, rectangles, and so forth) or irregular shapes. Also for the sake of clarity and simplicity these openings 103 are shown here as all having a same shape and size. In fact, the size and shape of each opening 103 can vary as may be desired.
By one approach, these openings 103 are laterally offset from one another (as versus being merely vertically stacked with respect to one another) to thereby facilitate a user selecting a particular pitch orientation for the bar (as described below in more detail).
By one approach, and as illustrated, this plurality of openings 103 can comprise a first row 104 of a first plurality of the openings 103 and a second row 105 of a second plurality of the openings 103. In such a case, and if desired, the openings 103 of the first row 104 can be laterally offset with respect to the openings 103 of the second row 105. Such a configuration can provide an increased number of pitch-selection opportunities within a given lateral space.
As referenced above, such a support component 100 is configured to be coupled to a bar of an item to be suspended from overhead. For the sake of an example a description of a particular such support component 100 as used in conjunction with a particular item to be suspended (in particular, a sign comprised of a plurality of physically-discrete sign components that are serially attached to one another) will now be provided. It will be understood, however, that this example is intended to serve in an illustrative capacity and that no limitations with respect to the scope of these teachings are intended by way of the specifics of this example.
In this example, each physically-discrete sign component 200 includes a bar 201 that is configured to couple to the corresponding bar of an adjacent physically-discrete sign component (not shown in this figure). This bar 201 has a generally rectangular external cross section. As shown in this figure the support component 100 can be slid into place by moving the support component 100 to receive bar 201 through the non-circular hole 102.
Referring now to
Referring now to
Referring now to
In this illustrative example the completed sign 500 includes end pieces 502 that have, at their corners, holes 503. The upper-corner holes 503, in turn, can have flexible links 504 (such as string, cable, wire, chain, or the like) secured thereto and that extend upwardly to an overhead point of connection (not shown) such as, for example, a ceiling. So configured, the completed sign 500 will hang as generally desired.
In this illustrative example, the completed sign 500 also includes two of the aforementioned support components 100 coupled as described above (each between two adjacent ones of the physically-discrete sign components 501). Additional flexible links 505 that are also secured at their distal ends (not shown) to an overhead point of connection (not shown) are connected via the aforementioned plurality of openings 103 using, for example, an overhead support interface such as hooks 506. So configured, these support components 100 provide further overhead support to the completed sign 500. In particular, and depending upon where the user locates the support component 100 or components, the support component(s) 100 can help to prevent the completed sign 500 from bowing outwardly while suspended from above.
These support components 100 can also serve, however, to adjust the pitch of the completed sign 500 (i.e., the angle by which at least a portion of the completed sign 500 tilts downwardly or upwardly).
As noted above, the non-circular hole 102 can assume any of a wide variety of shapes to accommodate a corresponding variety of similarly-shaped bars.
Furthermore, these teachings will accommodate a non-circular hole 102 that comprises, in part, a circular shape.
In the examples provided above, the non-circular hole 102 is completely enclosed by the tab 101. The present teachings will accommodate other approaches in these regards, however, too. For example, as illustrated in
These teachings will also accommodate forming the tab 101 of two or more pieces rather than as a single integral one-piece component if desired.
As noted above, the foregoing examples presumed the captivation points to be openings 103 and, in particular, individual physically-discrete holes. These teachings, however, will accommodate other kinds of captivation points. As a first example in these regards,
By way of further illustrating the flexibility of what may comprise a captivation point,
Just as the form and orientation of the captivation points 103 can vary as desired, and as the rod-receiving opening 102 can vary as well (as described above, for example, with respect to
Accordingly, it will be understood that notwithstanding the various specific details and examples provided herein, these teachings are highly flexible in practice and can be practiced in any number of ways to accommodate, for example, a wide variety of application settings.
Those skilled in the art will recognize that a wide variety of modifications, alterations, and combinations can be made with respect to the above described embodiments without departing from the spirit and scope of the invention, and that such modifications, alterations, and combinations are to be viewed as being within the ambit of the inventive concept.
This is a continuation of U.S. patent application Ser. No. 13/657,305, filed Oct. 22, 2012, entitled OVERHEAD SUPPORT APPARATUS, which is incorporated by reference in its entirety herein. This application is related to co-pending and co-owned patent application number PCT/US12/49970, entitled Apparatus Pertaining to Physically-Discrete Sign Components and filed Aug. 8, 2012, which is incorporated by reference in its entirety herein.
Number | Date | Country | |
---|---|---|---|
Parent | 13657305 | Oct 2012 | US |
Child | 14488559 | US |