1. Technical Field
Embodiments of the subject matter disclosed herein generally relate to methods and systems and, more particularly, to mechanisms and techniques for compressing a fluid.
2. Discussion of the Background
During the past years, the demand for various chemical products has increased. One such example is the demand for polyethylene and polypropylene products, which are used, for example, in the plastics industry, the multiphase pipelines industry, etc. The manufacturing of these products has consequently also increased. One of the mechanical components used in a plant (reactor) for producing the polyethylene or polypropylene products is a centrifugal compressor.
Compressors are generally divided into positive displacement compressors and dynamic compressors. Positive displacement compressors include reciprocating and rotary compressors, which are not discussed herein. Dynamic compressors include, among others, centrifugal compressors, axial compressors and mixed-flow compressors.
An example of a centrifugal compressor is shown in
The overhung centrifugal compressor is widely used in the chemical and petrochemical industry. However, a disadvantage of this compressor is its large size for a given set of processing parameters, e.g., flow parameters. For example,
Another drawback of the centrifugal compressor is the fact that a, polytropic efficiency of the compressor decreases as the flow coefficient is increased beyond a certain point. Mixed flow compressors have been used for addressing the deficiencies of the centrifugal compressors as the flow coefficient become too large. However, these compressors are also reaching their limits in terms of efficiency and desirable weight and are presently suffering from the same problems as the centrifugal compressors. The mixed flow compressors are similar to the centrifugal compressors but the fluid is expelled at an angle with respect to a longitudinal axis of the compressors. In other words, the direction of the outgoing fluid is between directions A and B shown in
An axial compressor is illustrated in
The axial compressor achieves a better flow coefficient and a smaller size impeller (airfoils) than the centrifugal and/or mixed flow compressors, and thus, a smaller weight and size. However, the drawback with the existing axial compressors is the difficulty in maintaining the axial compressor if used under dirty process gas conditions, as found in the polyethylene/polypropylene industry, as the airfoils become clogged and opening up the axial compressor and cleaning its components become time consuming and expensive.
Accordingly, it would be desirable to provide compressors, and methods that avoid the afore-described problems and drawbacks.
According to one exemplary embodiment, there is an overhung axial compressor that includes a casing configured to be vertically split along a vertical axis for access to an inside of the casing and a removable cartridge. The removable cartridge is configured to fit inside the casing and to be detachably attached to the casing and includes a shaft disposed along a horizontal axis, which is substantially perpendicular to the vertical axis, the shaft being configured to rotate about the horizontal axis, a bearing system attached to the removable cartridge and configured to rotationally support a first end of the shaft, and plural blades disposed toward a second end of the shaft such that the second end is overhung inside the casing. The compressor also includes a guide vane mechanism configured to connect to the removable cartridge, the guide vane mechanism being configured to adjust a flow of a fluid to the plural blades.
According to another exemplary embodiment, there is a chemical reactor for handling a chemical substance. The chemical reactor includes a first pipe providing the chemical substance under pressure; a compressor having an inlet connected to the first pipe and configured to compress the chemical substance; and a second pipe connected to an outlet of the compressor and configured to receive the compressed chemical substance. The compressor includes a casing configured to be vertically split along a vertical axis for access to an inside of the casing, a removable cartridge configured to fit inside the casing and to be detachably attached to the casing, the removable cartridge including, a shaft disposed along a horizontal axis, which is substantially perpendicular to the vertical axis, the shaft being configured to rotate about the horizontal axis. The compressor also includes a bearing system attached to the removable cartridge and configured to rotationally support a first end of the shaft, and plural blades disposed toward a second end of the shaft such that the second end is overhung inside the casing. The compressor also includes a guide vane mechanism configured to connect to the removable cartridge, the guide vane mechanism being configured to adjust a flow of a fluid to the plural blades.
According to still another exemplary embodiment, there is a method for making an overhung axial compressor. The method includes inserting a removable cartridge into a casing, which is configured to be vertically split along a vertical axis for access to an inside of the casing. The removable cartridge includes, a shaft disposed along a horizontal axis, which is substantially perpendicular to the vertical axis, the shaft being configured to rotate about the horizontal axis, a bearing system attached to the removable cartridge and configured to rotationally support a first end of the shaft, and plural blades disposed toward a second end of the shaft such that the second end is overhung inside the casing. The method also includes connecting a guide vane mechanism to the removable cartridge, the guide vane mechanism being configured to adjust a flow of a fluid to the plural blades.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate one or more embodiments and, together with the description, explain these embodiments. In the drawings:
The following description of the exemplary embodiments refers to the accompanying drawings. The same reference numbers in different drawings identify the same or similar elements. The following detailed description does not limit the invention. Instead, the scope of the invention is defined by the appended claims. The following embodiments are discussed, for simplicity, with regard to the terminology and structure of a radial inlet and an axial outlet overhung axial compressor. However, the embodiments to be discussed next are not limited to these systems, but may be applied to other systems, as for example an overhung axial compressor having an axial inlet and a radial outlet.
Reference throughout the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with an embodiment is included in at least one embodiment of the subject matter disclosed. Thus, the appearance of the phrases “in one embodiment” or “in an embodiment” in various places throughout the specification is not necessarily referring to the same embodiment. Further, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
According to an exemplary embodiment, an overhung axial compressor that has a vertical split casing is used for achieving a smaller weight and size for a desired high flow coefficient (greater than approximately 0.2) and low polytropic head applications.
According to an exemplary embodiment shown in
According to another exemplary embodiment,
It is noted that a traditional horizontally split axial compressor is difficult to maintain and service due to numerous pocket areas that are inherent in its design. The novel overhung, vertically split, axial compressor discussed with regard to
Further, the novel overhung axial compressor, according to one or more exemplary embodiments, provides a radial inlet/axial discharge for simplified reactor piping connection, as the novel compressor needs to be connected to various pipes of a reactor. Furthermore, the modular assembly of the cartridge to the casing of the compressor eliminates the need for pipe removal that is present in the conventional compressors.
As this novel overhung axial compressor may be used in a chemical reactor for providing the required chemical components at a certain pressure, various chemical compounds may be circulated through the compressor, as for example, ethylene oxide, ethylene glycol, natural gas, C3 splitter, polyethylene, polypropylene, etc. In an exemplary embodiment, one or more novel overhung axial compressors may be used for the desired fluid and/or the cycle gas compression process. The novel overhung axial compressor, due to its design, achieves a relatively small head rise. However, the cycle gas compression process in a chemical reactor requires high input pressures and low pressure rise compressors. Because of the input high pressure, the novel compressor is configured to have a high pressure casing to handle the high inlet and discharge pressures.
According to an exemplary embodiment, illustrated in
A method for making the overhung axial compressor 58 is now discussed with regard to
Optionally, the method may include a step of fixing the guide vane mechanism to the casing when the removable cartridge is inserted into the casing (i.e., the guide vane mechanism may not be part of the removable cartridge) or a step of fixing the guide vane mechanism to the removable cartridge when the removable cartridge is inserted into the casing (i.e., the guide vane mechanism is part of the removable cartridge). Further, the method may include connecting the removable cartridge to the casing with a shear ring interface, which is the only connection between the removable cartridge and the casing and/or attaching a buffering system to the casing, the buffering system being configured to receive an outgoing fluid from the removable cartridge.
The disclosed exemplary embodiments provide an overhung axial compressor, a chemical reactor, and a method for compressing a fluid. It should be understood that this description is not intended to limit the invention. On the contrary, the exemplary embodiments are intended to cover alternatives, modifications and equivalents, which are included in the spirit and scope of the invention as defined by the appended claims. Further, in the detailed description of the exemplary embodiments, numerous specific details are set forth in order to provide a comprehensive understanding of the claimed invention. However, one skilled in the art would understand that various embodiments may be practiced without such specific details.
Although the features and elements of the present exemplary embodiments are described in the embodiments in particular combinations, each feature or element can be used alone without the other features and elements of the embodiments or in various combinations with or without other features and elements disclosed herein.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other example are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements within the literal languages of the claims.
Number | Date | Country | Kind |
---|---|---|---|
CO2009A000037 | Sep 2009 | IT | national |