1. Field of the Invention
In some embodiments this invention relates to implantable medical devices, their manufacture, and methods of use. Some embodiments are directed to delivery systems, such as catheter systems of all types, which are utilized in the delivery of such devices.
2. Description of the Related Art
A stent is a medical device introduced to a body lumen and is well known in the art. Typically, a stent is implanted in a blood vessel at the site of a stenosis or aneurysm endoluminally, i.e. by so-called “minimally invasive techniques” in which the stent in a radially reduced configuration, optionally restrained in a radially compressed configuration by a sheath and/or catheter, is delivered by a stent delivery system or “introducer” to the site where it is required. The introducer may enter the body from an access location outside the body, such as through the patient's skin, or by a “cut down” technique in which the entry blood vessel is exposed by minor surgical means.
Stents, grafts, stent-grafts, vena cava filters, expandable frameworks, and similar implantable medical devices, collectively referred to hereinafter as stents, are radially expandable endoprostheses which are typically intravascular implants capable of being implanted transluminally and enlarged radially after being introduced percutaneously. Stents may be implanted in a variety of body lumens or vessels such as within the vascular system, urinary tracts, bile ducts, fallopian tubes, coronary vessels, secondary vessels, etc. Stents may be used to reinforce body vessels and to prevent restenosis following angioplasty in the vascular system. They may be self-expanding, expanded by an internal radial force, such as when mounted on a balloon, or a combination of self-expanding and balloon expandable (hybrid expandable).
Stents may be created by methods including cutting or etching a design from a tubular stock, from a flat sheet which is cut or etched and which is subsequently rolled or from one or more interwoven wires or braids.
Within the vasculature, it is not uncommon for stenoses to form at a vessel bifurcation. A bifurcation is an area of the vasculature or other portion of the body where a first (or parent) vessel is bifurcated into two or more branch vessels. Where a stenotic lesion or lesions form at such a bifurcation, the lesion(s) can affect only one of the vessels (i.e., either of the branch vessels or the parent vessel) two of the vessels, or all three vessels. Many prior art stents however are not wholly satisfactory for use where the site of desired application of the stent is juxtaposed or extends across a bifurcation in an artery or vein such, for example, as the bifurcation in the mammalian aortic artery into the common iliac arteries.
There remains a need for stents with innovative designs which combine excellent scaffolding support, compression resistance and side branch access.
The art referred to and/or described above is not intended to constitute an admission that any patent, publication or other information referred to herein is “prior art” with respect to this invention. In addition, this section should not be construed to mean that a search has been made or that no other pertinent information as defined in 37 C.F.R. §1.56(a) exists.
All U.S. patents and applications and all other published documents mentioned anywhere in this application are incorporated herein by reference in their entirety.
Without limiting the scope of the invention a brief summary of some of the claimed embodiments of the invention is set forth below. Additional details of the summarized embodiments of the invention and/or additional embodiments of the invention may be found in the Detailed Description of the Invention below.
A brief abstract of the technical disclosure in the specification is provided as well only for the purposes of complying with 37 C.F.R. 1.72. The abstract is not intended to be used for interpreting the scope of the claims.
In at least one embodiment, the invention is directed to a medical device comprising a first stent and a second stent, wherein at least a portion of the second stent is oriented within the first stent. The first and second stents are coaxially aligned and either the first stent or the second stent includes an outwardly deployable side branch structure. In some embodiments, the first stent and the second stent may be connected by at least one connection.
In at least one other embodiment, a medical device comprises a first stent and a second stent. The first stent comprises a plurality of interconnected struts, the struts defining a plurality of cells including a side branch opening. The side branch opening comprises a cell having a different shape than other cells of the stent. The second stent comprises a plurality of interconnected struts, the struts defining a plurality of cells and a side branch structure having an outwardly deployable petal. At least a portion of the second stent is disposed within the first stent.
In further embodiments, the invention is directed to an assembly comprising a delivery catheter and a medical device comprising a first stent and a second stent, wherein at least a portion of the second stent is coaxially oriented within the first stent. The medical device further comprises an outwardly deployable side branch structure. The medical device is oriented about a distal portion of the catheter.
In further embodiments, the invention is directed to a method of stenting a vessel comprising providing a delivery catheter having an expandable medical device oriented about a distal end. The medical device comprises a first stent and a second stent, at least a portion of the second stent oriented within the first stent and coaxially aligned with the first stent. The medical device further comprises an outwardly deployable side branch structure. The method further comprises delivering the medical device to a deployment location in a bodily vessel, and expanding the medical device.
These and other embodiments which characterize the invention are pointed out with particularity in the claims annexed hereto and forming a part hereof. However, for further understanding of the invention, its advantages and objectives obtained by its use, reference should be made to the drawings which form a further part hereof and the accompanying descriptive matter, in which there is illustrated and described a embodiments of the invention.
A detailed description of the invention is hereafter described with specific reference being made to the drawings.
a shows an embodiment of stent structure suitable for use in a medical device.
b shows another embodiment of stent structure suitable for use in a medical device.
c shows a flat pattern for an embodiment of a medical device comprising the stent structures of
d shows a portion of a medical device after expansion.
e shows another flat pattern for an embodiment of a medical device comprising the stent structures of
a shows another embodiment of stent structure suitable for use in a medical device.
b shows another embodiment of stent structure suitable for use in a medical device.
c shows a portion of an embodiment of a medical device comprising the stent structures of
d shows a portion of another embodiment of a medical device comprising the stent structures of
While this invention may be embodied in many different forms, there are described in detail herein specific embodiments of the invention. This description is an exemplification of the principles of the invention and is not intended to limit the invention to the particular embodiments illustrated.
For the purposes of this disclosure, like reference numerals in the figures shall refer to like features unless otherwise indicated.
The medical device 10 may comprise a first stent 40 and a second stent 60. At least a portion of the second stent 60 may be oriented within the first stent 40. The stents 40, 60 may be coaxially aligned about a common longitudinal axis 14. Thus, a central axis of the first stent 40 and a central axis of the second stent 60 may be collinear. Each stent may comprise any suitable stent framework pattern. In various embodiments, other suitable devices such as grafts, stent-grafts, etc., may be substituted for the traditional stent framework of a first stent 40 and/or a second stent 60.
In some embodiments, one of the stents 40, 60 may comprise a side branch opening, and one of the stents 40, 60 may comprise a side branch structure having outwardly deployable petals 64. As depicted in
The stents 40, 60 may include body portions 48, 68 which may each comprise a plurality of interconnected struts. Individually, the interconnected struts of either stent 40, 60 may provide a respective amount of vessel support. Areas of the medical device 10 where the individual strut patterns overlap 16, such as indicated by the shaded region in
Various embodiments of a medical device 10 may be arranged to provide overlap 16 and greater vessel support at a number of areas near a vessel 20 bifurcation, such as an area 21 adjacent to the ostium near the contralateral ostial wall, an area 23 adjacent to the ostium near the carina, an area 25 opposite the ostium and contralateral ostial wall, and an area 27 opposite the ostium and carina.
a shows an embodiment of a flat pattern for a stent 30 which may be suitable for use as either a first stent 40 or a second stent 60 in a medical device 10. The stent 30 may comprise a plurality of interconnected struts 32. Areas between the interconnected struts 32 may comprise cells 31.
The stent 30 may include a plurality of serpentine bands 34 which may extend about the circumference of the stent 30. Each serpentine band 34 may comprise a plurality of band struts 36 connected by alternating proximal turns 35 and distal turns 37. In some embodiments, the band struts 36 may be straight along their length. Adjacent serpentine bands 34 may be connected by connector struts 38.
The stent 30 may further comprise a side branch opening 42, which may comprise a side branch cell having a shape that is different from other cells 31 of the stent 30. In some embodiments, a side branch opening 42 may be symmetrical about its center 46.
b shows another embodiment of a flat pattern for a stent 30 which may be suitable for use as either a first stent 40 or a second stent 60 in a medical device 10. The stent 30 may comprise interconnected struts 32 arranged to form cells 31, serpentine bands 34 and connector struts 38, for example as described with respect to the stent 30 of
The stent 30 may further comprise a side branch structure 62 which may comprise a continuous strut member, or in some embodiments a plurality of strut members, which may extend in a generally serpentine fashion about the center 63 of the side branch structure 62. While “serpentine” may be used describe most embodiments, the term is not intended to limit the invention. The side branch structure 62 may have any suitable size, shape and configuration of struts.
In some embodiments, the side branch structure 62 may define a plurality of side branch petals 64 which may have any suitable shape and may each be oriented in any suitable direction. A cell 61 of the side branch structure 62 may be different than any other cell 31 of the stent 30.
Each petal 64 may comprise a plurality of struts 66 and at least one turn 67. A strut 66 may be straight along its length, and may be oriented in any suitable direction. A turn 67 may be oriented in any suitable direction and in some embodiments may be oriented toward the center 63 of the side branch cell 61. Petals 64 which are adjacent to one another about the side branch structure 62 may be connected to one another by a connecting portion 69.
c shows an embodiment of a flat pattern for a medical device 10 comprising a first stent 40 and a second stent 60. A person of ordinary skill in the art will recognize that the flat pattern may be rolled to form a cylindrical medical device 10, and that rolling the flat pattern in one direction may produce a medical device 10 wherein the first stent 40 comprises an outer stent, whereas rolling the flat pattern in the opposite direction may produce a medical device 10 wherein the first stent 40 comprises an inner stent.
As depicted, the flat pattern for the second stent 60 may be positioned over the flat pattern for the first stent 40. The second stent 60 may comprise a stent pattern as depicted in
In some embodiments, the first stent 40 may be connected to the second stent 60 by at least one and in some embodiments a plurality of connections 52. A connection 52 may be located on any suitable area of the medical device 10. A connection 52 may comprise any suitable connection between the stents 40, 60. In some embodiments, a connection 52 may comprise a welded, brazed or soldered connection, an adhesive connection, an encapsulated connection, a suture, ring, collar or band, rivets or pins, cooperative tabs and/or notches, friction pads, hook and loop fasteners, etc. In some embodiments, connections 52 may be insulated, wherein conductivity across the connection 52 is minimized, for example to enhance MRI compatibility.
Desirably, the orientation of the stent patterns 40, 60 and the locations of the connections 52 allow the medical device 10 to provide greater vessel support than either stent 40, 60 individually.
The serpentine bands 34a of the first stent 40 may be staggered or offset from the serpentine bands 34b of the second stent 60 in a direction about the circumference of the medical device 10. Thus, a proximal turn 35a of the first stent 40 may be aligned with a distal turn 37b of the second stent 60 in a longitudinal direction of the medical device 10.
Connections 52 between the stents 40, 60 may be located along band struts 36 of the serpentine bands 34. In some embodiments, the connections 52 may be located at the midpoint of a band strut 36.
Medical devices 10 may be delivered to a deployment site using any suitable stent delivery system. In some embodiments, the first stent 40 and the second stent 60 may be delivered and deployed while maintaining a coaxial orientation. In some embodiments, a first stent 40 and a second stent 60 may be delivered to the deployment site separately or independently of one another. For example, the first stent 40 may be delivered to the deployment site, properly oriented and expanded. The second stent 60 may then be delivered to the deployment site, oriented coaxially within the first stent 40 and expanded.
d shows a portion of a medical device according to
In some embodiments, it is desirable for portions of the stents 40, 60 to have similar expansion characteristics, such as change in diameter, change in length, etc. For example, the serpentine bands 34 of the stents 40, 60 are similarly shaped, and will experience a substantially equal amount of diameter increase and a substantially equal amount of size change along the length of the medical device during expansion.
Desirably, a line oriented in a radial direction of the medical device 10 in some locations may pass through a cell 31 of the second stent 60 and intersect a strut 32 of the first stent 40. In some other locations, a radial line may pass through a cell 31 of the first stent 40 and intersect a strut 32 of the second stent 60. In other locations, a radial line may pass through cells 31 of both stents 40, 60. In still other locations, a radial line may intersect struts 32 of both stents 40, 60.
e shows a flat pattern for a medical device 10 similar to
a shows another embodiment of a portion of a stent pattern comprising a plurality of interconnected struts 32 which may be suitable for use as a first stent 40. The pattern may further comprise longitudinal struts 74 and joining struts 76, which may meet at an intersection 80.
b shows another embodiment of a portion of a stent pattern comprising a plurality of interconnected struts 32 which may be suitable for use as a second stent 60. The pattern of the second stent 60 may comprise a mirror image of the pattern of the first stent 40 as depicted in
c shows a portion of an embodiment of a medical device 10 comprising the stent patterns 40, 60 of
Connections 52 between the stents 40, 60 may be placed in any suitable locations, such as where intersections 80a, 80b meet, and/or at locations where joining struts 76 cross.
d shows a portion of another embodiment of a medical device 10 comprising the stent patterns 40, 60 of
In some embodiments of a medical device comprising a first stent 40 and a second stent 60, the second stent 60 may comprise a partial stent or a plurality of struts connected to the first stent 40 in select locations to provide additional vessel support at select locations of the medical device 10.
Struts 32 of the second stent 60 may have any suitable size and shape. Struts 32 of the second stent 60 may be located in proximity to any portion of the first stent 40 and may provide addition vessel support in any suitable location. The embodiment of
In some embodiments, the wavelength, frequency and/or amplitude of a serpentine band 34 of either stent 40, 60 may change.
In some embodiments, any area of a medical device 10 may include areas where one stent 40, 60 has a greater strength than the other stent. In some embodiments, a first stent 40 may be stronger than a second stent 60 in some areas, and the second stent 60 may be stronger than the first stent 40 in other areas. In various embodiments, a stronger stent may have any suitable design to provide the greater strength, such as being made from a different material, having larger strut members, such as wider or thicker struts, etc. In some embodiments, a first stent 40 may comprise a plurality of interconnected struts designed primarily to provide a high amount of vessel support, while a second stent 60 may comprise a plurality of interconnected struts designed primarily to provide structural strength.
A second stent 60 may include a serpentine band 34b that connects in one or more locations to one serpentine band 34a of the first stent 40 and in one or more locations to another serpentine band 34a of the first stent 40.
A medical device 10 may include stents 40, 60 having any suitable strut design. Some stent designs which include stent side branch structure 62 (see
In some embodiments, both stents 40, 60 may include side branch structure 62, and the side branch structure of one stent desirably compliments the design of the side branch structure of the other stent to provide vessel support to areas such as the carina and contralateral ostial wall.
A first stent 40 and a second stent 60 may further include complimentary designs over at least a portion of the medical device 10. Some further examples of complimentary stent designs suitable for use as inner and outer connected stents are described in U.S. patent application Ser. No. 10/864,665, the entire disclosure of which is hereby incorporated herein in its entirety.
The main branch portion 72 may include a side branch structure 62 having outwardly deployable petals 64 and may comprise an embodiment of a medical device 10 as herein described, which may include a first stent 40 and a second stent 60 (see
The side branch portion 82 may comprise any suitable stent structure, for example comprising a plurality of interconnected struts. In some embodiments, a stent oriented in a side branch vessel 24 may include structure that extends into the main branch vessel 22, for example as disclosed in U.S. Pat. No. 6,896,699, the entire disclosure of which is hereby incorporated herein in its entirety.
Areas where structure of the main branch portion 72 and side branch portion 82 overlap 16 desirably provide increased vessel coverage and support. Thus, the overlap may provide increased support in areas such as the contralateral ostial wall 26 and areas near the carina 28.
Desirably, a line oriented in a radial direction of the side branch portion 82 in some locations of the overlap 16 may pass through a cell of the side branch portion 82 and intersect a strut of the main branch portion 72. In some other locations, a radial line may pass through a cell of the main branch portion 72 and intersect a strut of the side branch portion 82. In other locations, a radial line may pass through cells of both portions 72, 82. In still other locations, a radial line may intersect struts of both portions 72, 82.
In some embodiments, at least a portion of interconnected struts of the side branch portion 82 may be shaped similarly to a portion of interconnected struts of the main branch portion 72. In some embodiments, at least a portion of interconnected struts of the side branch portion 82 may comprise a mirror image of a portion of interconnected struts of the main branch portion 72.
The main branch portion 72 may be delivered to a deployment location and deployed, which may comprise increasing the diameter of the main branch portion 72, and may further comprise deploying the side branch structure 62 outwardly into a side branch vessel 24. The side branch portion 82 may be delivered to its deployment location relative to the main branch portion 72, and may be deployed, which may comprise increasing the diameter of the side branch portion 82. In some embodiments, deployment of the side branch portion 82 may further comprise orienting the side branch portion 82 such that struts of the side branch portion 82 mesh with struts of the main branch portion 72 to provide additional vessel coverage. In some embodiments, deployment of the side branch portion 82 may further comprise properly orienting any portion of the side branch portion 82 which extends into the main branch vessel 22.
The invention is also directed to delivery systems used in delivering a medical device 10 to a deployment location, and to methods of stenting a bifurcation using a medical device 10 as described herein.
The inventive medical devices may be made from any suitable biocompatible materials including one or more polymers, one or more metals or combinations of polymer(s) and metal(s). Examples of suitable materials include biodegradable/bioabsorbable materials that are also biocompatible. The term biodegradable is intended to mean that a material will undergo breakdown or decomposition into harmless compounds as part of a normal biological process. Suitable biodegradable materials include polylactic acid, polyglycolic acid (PGA), collagen or other connective proteins or natural materials, polycaprolactone, hylauric acid, adhesive proteins, co-polymers of these materials as well as composites and combinations thereof and combinations of other biodegradable polymers. Other polymers that may be used include polyester and polycarbonate copolymers. Examples of suitable metals include, but are not limited to, stainless steel, titanium, tantalum, platinum, tungsten, gold and alloys of any of the above-mentioned metals. Examples of suitable alloys include platinum-iridium alloys, cobalt-chromium alloys including Elgiloy and Phynox, MP35N alloy and nickel-titanium alloys, for example, Nitinol. Further materials may include MRI compatible materials such as niobium-zinc.
The inventive medical devices may be made of shape memory materials such as superelastic Nitinol or spring steel, or may be made of materials which are plastically deformable. In the case of shape memory materials, the stent may be provided with a memorized shape and then deformed to a reduced diameter shape. The stent may restore itself to its memorized shape upon being heated to a transition temperature and having any restraints removed therefrom.
The inventive medical devices may be created by methods including cutting or etching a design from a tubular stock, from a flat sheet which is cut or etched and which is subsequently rolled or from one or more interwoven wires or braids. Any other suitable technique which is known in the art or which is subsequently developed may also be used to manufacture the inventive stents disclosed herein.
In some embodiments the medical device, the delivery system or other portion of the assembly may include one or more areas, bands, coatings, members, etc. that is (are) detectable by imaging modalities such as X-Ray, MRI, ultrasound, etc. In some embodiments, the entire stent may be MRI compatible. In some embodiments at least a portion of the stent and/or adjacent assembly is at least partially radiopaque.
In some embodiments the at least a portion of the medical device is configured to include one or more mechanisms for the delivery of a therapeutic agent. Often the agent will be in the form of a coating or other layer (or layers) of material placed on a surface region of the stent, which is adapted to be released at the site of the stent's implantation or areas adjacent thereto.
A therapeutic agent may be a drug or other pharmaceutical product such as non-genetic agents, genetic agents, cellular material, etc. Some examples of suitable non-genetic therapeutic agents include but are not limited to: anti-thrombogenic agents such as heparin, heparin derivatives, vascular cell growth promoters, growth factor inhibitors, Paclitaxel, etc. Where an agent includes a genetic therapeutic agent, such a genetic agent may include but is not limited to: DNA, RNA and their respective derivatives and/or components; hedgehog proteins, etc. Where a therapeutic agent includes cellular material, the cellular material may include but is not limited to: cells of human origin and/or non-human origin as well as their respective components and/or derivatives thereof. Where the therapeutic agent includes a polymer agent, the polymer agent may be a polystyrene-polyisobutylene-polystyrene triblock copolymer (SIBS) polyethylene oxide, silicone rubber and/or any other suitable substrate.
The above disclosure is intended to be illustrative and not exhaustive. This description will suggest many variations and alternatives to one of ordinary skill in this art. The various elements shown in the individual figures and described above may be combined or modified for combination as desired. All these alternatives and variations are intended to be included within the scope of the claims where the term “comprising” means “including, but not limited to”.
Further, the particular features presented in the dependent claims can be combined with each other in other manners within the scope of the invention such that the invention should be recognized as also specifically directed to other embodiments having any other possible combination of the features of the dependent claims. For instance, for purposes of claim publication, any dependent claim which follows should be taken as alternatively written in a multiple dependent form from all prior claims which possess all antecedents referenced in such dependent claim if such multiple dependent format is an accepted format within the jurisdiction (e.g. each claim depending directly from claim 1 should be alternatively taken as depending from all previous claims). In jurisdictions where multiple dependent claim formats are restricted, the following dependent claims should each be also taken as alternatively written in each singly dependent claim format which creates a dependency from a prior antecedent-possessing claim other than the specific claim listed in such dependent claim below.
This completes the description of the invention. Those skilled in the art may recognize other equivalents to the specific embodiment described herein which equivalents are intended to be encompassed by the claims attached hereto.
Number | Name | Date | Kind |
---|---|---|---|
4309994 | Grunwald | Jan 1982 | A |
4580568 | Gianturco | Apr 1986 | A |
4744366 | Jang | May 1988 | A |
4769005 | Ginsburg et al. | Sep 1988 | A |
4774949 | Fogarty | Oct 1988 | A |
4799479 | Spears | Jan 1989 | A |
4896670 | Crittenden | Jan 1990 | A |
4905667 | Foerster et al. | Mar 1990 | A |
4994071 | MacGregor | Feb 1991 | A |
5059166 | Fischell et al. | Oct 1991 | A |
5064435 | Porter | Nov 1991 | A |
5160342 | Reger et al. | Nov 1992 | A |
5342387 | Summers | Aug 1994 | A |
5383892 | Cardon et al. | Jan 1995 | A |
5387235 | Chuter | Feb 1995 | A |
5443511 | Ogawa et al. | Aug 1995 | A |
5449373 | Pinchasik et al. | Sep 1995 | A |
5456712 | Maginot | Oct 1995 | A |
5476471 | Shifrin et al. | Dec 1995 | A |
5487730 | Marcadis et al. | Jan 1996 | A |
5591228 | Edoga | Jan 1997 | A |
5607444 | Lam | Mar 1997 | A |
5607445 | Summers | Mar 1997 | A |
5609605 | Marshall et al. | Mar 1997 | A |
5609627 | Goicoechea et al. | Mar 1997 | A |
5613980 | Chauhan | Mar 1997 | A |
5617878 | Taheri | Apr 1997 | A |
5618299 | Khosravi et al. | Apr 1997 | A |
5632762 | Myler | May 1997 | A |
5632763 | Glastra | May 1997 | A |
5632772 | Alcime et al. | May 1997 | A |
5636641 | Fariabi | Jun 1997 | A |
5645559 | Hachtman et al. | Jul 1997 | A |
5667523 | Bynon et al. | Sep 1997 | A |
5669924 | Shaknovich | Sep 1997 | A |
5669932 | Fischell et al. | Sep 1997 | A |
5676697 | McDonald | Oct 1997 | A |
5683450 | Goicoechea et al. | Nov 1997 | A |
5690670 | Davidson | Nov 1997 | A |
5693085 | Buirge et al. | Dec 1997 | A |
5697971 | Fischell et al. | Dec 1997 | A |
5707348 | Krogh | Jan 1998 | A |
5709713 | Evans et al. | Jan 1998 | A |
5718724 | Goicoechea et al. | Feb 1998 | A |
5720735 | Dorros | Feb 1998 | A |
5722984 | Fischell et al. | Mar 1998 | A |
5723004 | Dereume et al. | Mar 1998 | A |
5733303 | Israel et al. | Mar 1998 | A |
5741246 | Prescott | Apr 1998 | A |
5746765 | Kleshinski et al. | May 1998 | A |
5749825 | Fischell | May 1998 | A |
5749890 | Shaknovich | May 1998 | A |
5755734 | Richter et al. | May 1998 | A |
5755735 | Richter et al. | May 1998 | A |
5755770 | Ravenscroft | May 1998 | A |
5755771 | Penn et al. | May 1998 | A |
5755773 | Evans et al. | May 1998 | A |
5755778 | Kleshinski | May 1998 | A |
5782906 | Marshall et al. | Jul 1998 | A |
5800507 | Schwartz | Sep 1998 | A |
5800525 | Bachinski et al. | Sep 1998 | A |
5807398 | Shaknovich | Sep 1998 | A |
5807404 | Richter | Sep 1998 | A |
5820595 | Parodi | Oct 1998 | A |
5824036 | Lauterjung | Oct 1998 | A |
5824040 | Cox et al. | Oct 1998 | A |
5824046 | Smith et al. | Oct 1998 | A |
5824052 | Khosravi et al. | Oct 1998 | A |
5824054 | Khosravi et al. | Oct 1998 | A |
5827320 | Richter et al. | Oct 1998 | A |
5833593 | Liprie | Nov 1998 | A |
5833694 | Poncet | Nov 1998 | A |
5836896 | Rosenschein | Nov 1998 | A |
RE35988 | Winston et al. | Dec 1998 | E |
5843168 | Dang | Dec 1998 | A |
5851464 | Davila et al. | Dec 1998 | A |
5853419 | Imran | Dec 1998 | A |
5861168 | Cooke et al. | Jan 1999 | A |
5868777 | Lam | Feb 1999 | A |
5871437 | Alt | Feb 1999 | A |
5879381 | Moriuchi et al. | Mar 1999 | A |
5893887 | Jayaraman | Apr 1999 | A |
5906640 | Penn et al. | May 1999 | A |
5916264 | Von Oepen et al. | Jun 1999 | A |
5919126 | Armini | Jul 1999 | A |
5938682 | Hojeibane et al. | Aug 1999 | A |
5938697 | Killion et al. | Aug 1999 | A |
5941869 | Patterson et al. | Aug 1999 | A |
5957930 | Vrba | Sep 1999 | A |
5961548 | Shmulewitz | Oct 1999 | A |
5972017 | Berg et al. | Oct 1999 | A |
5972018 | Israel et al. | Oct 1999 | A |
5976181 | Whelan et al. | Nov 1999 | A |
5976182 | Cox | Nov 1999 | A |
5980565 | Jayaraman | Nov 1999 | A |
6007573 | Wallace et al. | Dec 1999 | A |
6010480 | Abele et al. | Jan 2000 | A |
6013054 | Jiun Yan | Jan 2000 | A |
6015433 | Roth | Jan 2000 | A |
6017324 | Tu et al. | Jan 2000 | A |
6017363 | Hojeibane | Jan 2000 | A |
6027519 | Stanford | Feb 2000 | A |
6030414 | Taheri | Feb 2000 | A |
6033433 | Ehr et al. | Mar 2000 | A |
6033434 | Borghi | Mar 2000 | A |
6033435 | Penn et al. | Mar 2000 | A |
6036725 | Avellanet | Mar 2000 | A |
6042597 | Kveen et al. | Mar 2000 | A |
6051020 | Goicoechea et al. | Apr 2000 | A |
6056775 | Borghi et al. | May 2000 | A |
6059810 | Brown et al. | May 2000 | A |
6059824 | Taheri | May 2000 | A |
6063111 | Hieshima | May 2000 | A |
6066167 | Lau et al. | May 2000 | A |
6068655 | Seguin et al. | May 2000 | A |
6074659 | Kunz et al. | Jun 2000 | A |
6077413 | Hafeli et al. | Jun 2000 | A |
6086611 | Duffy et al. | Jul 2000 | A |
6090136 | McDonald et al. | Jul 2000 | A |
6093203 | Uflacker | Jul 2000 | A |
6096073 | Webster et al. | Aug 2000 | A |
6099455 | Columbo et al. | Aug 2000 | A |
6099497 | Adams et al. | Aug 2000 | A |
6099559 | Nolting | Aug 2000 | A |
6113579 | Eidenschink et al. | Sep 2000 | A |
6113628 | Borghi | Sep 2000 | A |
6117117 | Mauch | Sep 2000 | A |
6117156 | Richter et al. | Sep 2000 | A |
6120522 | Vrba et al. | Sep 2000 | A |
6120535 | McDonald et al. | Sep 2000 | A |
6120847 | Yang et al. | Sep 2000 | A |
6123712 | Di Caprio et al. | Sep 2000 | A |
6123723 | Konya et al. | Sep 2000 | A |
6129658 | Delfino et al. | Oct 2000 | A |
6129738 | Lashinski et al. | Oct 2000 | A |
6131266 | Saunders | Oct 2000 | A |
6143002 | Vietmeier | Nov 2000 | A |
6159238 | Killion et al. | Dec 2000 | A |
6165195 | Wilson et al. | Dec 2000 | A |
6168621 | Vrba | Jan 2001 | B1 |
6183509 | Dibie | Feb 2001 | B1 |
6190403 | Fischell et al. | Feb 2001 | B1 |
6203568 | Lombardi et al. | Mar 2001 | B1 |
6210380 | Mauch | Apr 2001 | B1 |
6210429 | Vardi et al. | Apr 2001 | B1 |
6210433 | Larre | Apr 2001 | B1 |
6224609 | Ressemann et al. | May 2001 | B1 |
6231598 | Berry et al. | May 2001 | B1 |
6245100 | Davila et al. | Jun 2001 | B1 |
6253769 | LaFontaine et al. | Jul 2001 | B1 |
6254593 | Wilson | Jul 2001 | B1 |
6254628 | Wallace et al. | Jul 2001 | B1 |
6258115 | Dubrul | Jul 2001 | B1 |
6258116 | Hojeibane | Jul 2001 | B1 |
6258117 | Camrud et al. | Jul 2001 | B1 |
6261305 | Marotta et al. | Jul 2001 | B1 |
6261316 | Shaolian et al. | Jul 2001 | B1 |
6261319 | Kveen et al. | Jul 2001 | B1 |
6261320 | Tam et al. | Jul 2001 | B1 |
6264662 | Lauterjung | Jul 2001 | B1 |
6264682 | Wilson et al. | Jul 2001 | B1 |
6264686 | Rieu et al. | Jul 2001 | B1 |
6290673 | Shanley | Sep 2001 | B1 |
6290720 | Khosravi et al. | Sep 2001 | B1 |
6293968 | Taheri | Sep 2001 | B1 |
6302906 | Goicoechea et al. | Oct 2001 | B1 |
6312460 | Drasler et al. | Nov 2001 | B2 |
6312463 | Rourke et al. | Nov 2001 | B1 |
6325820 | Khosravi et al. | Dec 2001 | B1 |
6325821 | Gaschino et al. | Dec 2001 | B1 |
6325823 | Horzewski et al. | Dec 2001 | B1 |
6325825 | Kula et al. | Dec 2001 | B1 |
6325826 | Vardi et al. | Dec 2001 | B1 |
6331191 | Chobotov | Dec 2001 | B1 |
6334864 | Amplatz et al. | Jan 2002 | B1 |
6334870 | Ehr et al. | Jan 2002 | B1 |
6346089 | Dibie | Feb 2002 | B1 |
6355059 | Richter et al. | Mar 2002 | B1 |
6355060 | Lenker et al. | Mar 2002 | B1 |
6361544 | Wilson et al. | Mar 2002 | B1 |
6361555 | Wilson | Mar 2002 | B1 |
6383213 | Wilson et al. | May 2002 | B2 |
6395018 | Castaneda | May 2002 | B1 |
6428569 | Brown | Aug 2002 | B1 |
6436104 | Hojeibane | Aug 2002 | B2 |
6436134 | Richter et al. | Aug 2002 | B2 |
6443971 | Boylan et al. | Sep 2002 | B1 |
6451049 | Vallana et al. | Sep 2002 | B2 |
6478816 | Kveen et al. | Nov 2002 | B1 |
6485509 | Killion et al. | Nov 2002 | B2 |
6488703 | Kveen et al. | Dec 2002 | B1 |
6491619 | Trauthen et al. | Dec 2002 | B1 |
6506211 | Skubitz et al. | Jan 2003 | B1 |
6508836 | Wilson et al. | Jan 2003 | B2 |
6514228 | Hamilton et al. | Feb 2003 | B1 |
6517515 | Eidenschink | Feb 2003 | B1 |
6517558 | Gittings et al. | Feb 2003 | B2 |
6520988 | Colombo et al. | Feb 2003 | B1 |
6540779 | Richter et al. | Apr 2003 | B2 |
6562067 | Mathis | May 2003 | B2 |
6579309 | Loos et al. | Jun 2003 | B1 |
6579312 | Wilson et al. | Jun 2003 | B2 |
6582394 | Reiss et al. | Jun 2003 | B1 |
6596020 | Vardi et al. | Jul 2003 | B2 |
6599316 | Vardi et al. | Jul 2003 | B2 |
6623240 | Ertl et al. | Sep 2003 | B2 |
6645242 | Quinn | Nov 2003 | B1 |
6669723 | Killion et al. | Dec 2003 | B2 |
6676701 | Rourke et al. | Jan 2004 | B2 |
6689156 | Davidson et al. | Feb 2004 | B1 |
6692483 | Vardi et al. | Feb 2004 | B2 |
6695833 | Frantzen | Feb 2004 | B1 |
6695877 | Brucker et al. | Feb 2004 | B2 |
6706062 | Vardi et al. | Mar 2004 | B2 |
6712844 | Pacetti | Mar 2004 | B2 |
6749628 | Callol et al. | Jun 2004 | B1 |
6752825 | Eskuri | Jun 2004 | B2 |
6776793 | Brown et al. | Aug 2004 | B2 |
6811566 | Penn et al. | Nov 2004 | B1 |
6835203 | Vardi et al. | Dec 2004 | B1 |
6858038 | Heuser | Feb 2005 | B2 |
6884258 | Vardi et al. | Apr 2005 | B2 |
6896699 | Wilson et al. | May 2005 | B2 |
6932837 | Amplatz et al. | Aug 2005 | B2 |
6955687 | Richter et al. | Oct 2005 | B2 |
6955688 | Wilson et al. | Oct 2005 | B2 |
6962602 | Vardi et al. | Nov 2005 | B2 |
7018400 | Lashinski et al. | Mar 2006 | B2 |
7056323 | Mareiro et al. | Jun 2006 | B2 |
7060091 | Killion et al. | Jun 2006 | B2 |
20010003161 | Vardi et al. | Jun 2001 | A1 |
20010004706 | Hojeibane | Jun 2001 | A1 |
20010004707 | Dereurne et al. | Jun 2001 | A1 |
20010012927 | Mauch | Aug 2001 | A1 |
20010016766 | Vardi et al. | Aug 2001 | A1 |
20010016767 | Wilson et al. | Aug 2001 | A1 |
20010016768 | Wilson et al. | Aug 2001 | A1 |
20010025195 | Shaolian et al. | Sep 2001 | A1 |
20010027291 | Shanley | Oct 2001 | A1 |
20010027338 | Greenberg | Oct 2001 | A1 |
20010029396 | Wilson et al. | Oct 2001 | A1 |
20010037116 | Wilson et al. | Nov 2001 | A1 |
20010037138 | Wilson et al. | Nov 2001 | A1 |
20010039448 | Dibie | Nov 2001 | A1 |
20010044649 | Vallana et al. | Nov 2001 | A1 |
20010044650 | Simso et al. | Nov 2001 | A1 |
20010049552 | Richter et al. | Dec 2001 | A1 |
20010056297 | Hojeibane | Dec 2001 | A1 |
20020013618 | Marotta et al. | Jan 2002 | A1 |
20020013619 | Shanley | Jan 2002 | A1 |
20020022874 | Wilson | Feb 2002 | A1 |
20020026232 | Marotta et al. | Feb 2002 | A1 |
20020035392 | Wilson | Mar 2002 | A1 |
20020042650 | Vardi et al. | Apr 2002 | A1 |
20020052648 | McGuckin, Jr. et al. | May 2002 | A1 |
20020068969 | Shanley et al. | Jun 2002 | A1 |
20020072790 | McGuckin, Jr. et al. | Jun 2002 | A1 |
20020111675 | Wilson | Aug 2002 | A1 |
20020116046 | DeCaprio | Aug 2002 | A1 |
20020156516 | Vardi et al. | Oct 2002 | A1 |
20020156517 | Perouse | Oct 2002 | A1 |
20020165604 | Shanley | Nov 2002 | A1 |
20020173835 | Bourang et al. | Nov 2002 | A1 |
20020173840 | Brucker et al. | Nov 2002 | A1 |
20020183763 | Callol et al. | Dec 2002 | A1 |
20020193872 | Trout, III et al. | Dec 2002 | A1 |
20020193873 | Brucker et al. | Dec 2002 | A1 |
20030009209 | Hojeibane | Jan 2003 | A1 |
20030028233 | Vardi et al. | Feb 2003 | A1 |
20030050688 | Fischell et al. | Mar 2003 | A1 |
20030055378 | Wang et al. | Mar 2003 | A1 |
20030055483 | Gumm | Mar 2003 | A1 |
20030074047 | Richter | Apr 2003 | A1 |
20030093109 | Mauch | May 2003 | A1 |
20030097169 | Brucker | May 2003 | A1 |
20030114912 | Sequin et al. | Jun 2003 | A1 |
20030125791 | Sequin et al. | Jul 2003 | A1 |
20030125802 | Callol et al. | Jul 2003 | A1 |
20030135259 | Simso | Jul 2003 | A1 |
20030181923 | Vardi | Sep 2003 | A1 |
20030195606 | Davidson et al. | Oct 2003 | A1 |
20030204245 | Brightbill | Oct 2003 | A1 |
20040006381 | Sequin et al. | Jan 2004 | A1 |
20040015227 | Vardi et al. | Jan 2004 | A1 |
20040034403 | Schmitt | Feb 2004 | A1 |
20040044396 | Clerc et al. | Mar 2004 | A1 |
20040059406 | Cully et al. | Mar 2004 | A1 |
20040088007 | Eidenschink | May 2004 | A1 |
20040111142 | Rourke et al. | Jun 2004 | A1 |
20040117003 | Ouriel et al. | Jun 2004 | A1 |
20040133268 | Davidson et al. | Jul 2004 | A1 |
20040138732 | Suhr et al. | Jul 2004 | A1 |
20040138737 | Davidson et al. | Jul 2004 | A1 |
20040148006 | Davidson et al. | Jul 2004 | A1 |
20040172121 | Eidenschink et al. | Sep 2004 | A1 |
20040186560 | Alt | Sep 2004 | A1 |
20040225345 | Fischell et al. | Nov 2004 | A1 |
20040267352 | Davidson et al. | Dec 2004 | A1 |
20050004656 | Das | Jan 2005 | A1 |
20050010278 | Vardi et al. | Jan 2005 | A1 |
20050015108 | Williams et al. | Jan 2005 | A1 |
20050015135 | Shanley | Jan 2005 | A1 |
20050049674 | Berra et al. | Mar 2005 | A1 |
20050060027 | Khenansho et al. | Mar 2005 | A1 |
20050096726 | Sequin et al. | May 2005 | A1 |
20050102021 | Osborne | May 2005 | A1 |
20050102023 | Yadin et al. | May 2005 | A1 |
20050107863 | Brown | May 2005 | A1 |
20050119731 | Brucker et al. | Jun 2005 | A1 |
20050125076 | Ginn | Jun 2005 | A1 |
20050131526 | Wong | Jun 2005 | A1 |
20050149161 | Eidenschink et al. | Jul 2005 | A1 |
20050154442 | Eidenschink et al. | Jul 2005 | A1 |
20050154444 | Quadri | Jul 2005 | A1 |
20050183259 | Eidenschink et al. | Aug 2005 | A1 |
20050209673 | Shaked | Sep 2005 | A1 |
20050228483 | Kaplan et al. | Oct 2005 | A1 |
20050278017 | Gregorich | Dec 2005 | A1 |
20060036315 | Yadin et al. | Feb 2006 | A1 |
20060041303 | Israel | Feb 2006 | A1 |
20060079956 | Eigler et al. | Apr 2006 | A1 |
20060173528 | Feld et al. | Aug 2006 | A1 |
20070050016 | Gregorich et al. | Mar 2007 | A1 |
20070073376 | Krolik et al. | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
2220864 | Jul 1999 | CA |
9014845 | Feb 1991 | DE |
29701758 | Mar 1997 | DE |
29701883 | May 1997 | DE |
0479730 | Oct 1991 | EP |
0751752 | Jan 1997 | EP |
0783873 | Jul 1997 | EP |
0 878 173 | Nov 1997 | EP |
0804907 | Nov 1997 | EP |
0479557 | Jul 1998 | EP |
0 876 806 | Nov 1998 | EP |
0876805 | Nov 1998 | EP |
0880949 | Dec 1998 | EP |
0891751 | Jan 1999 | EP |
0895759 | Feb 1999 | EP |
0904745 | Mar 1999 | EP |
0937442 | Aug 1999 | EP |
0347023 | Dec 1999 | EP |
1031328 | Aug 2000 | EP |
1031329 | Aug 2000 | EP |
0883384 | Dec 2000 | EP |
0862392 | Aug 2001 | EP |
0808140 | Dec 2001 | EP |
0884028 | Feb 2002 | EP |
1190685 | Mar 2002 | EP |
0897700 | Jul 2002 | EP |
0684022 | Feb 2004 | EP |
1157674 | Jul 2005 | EP |
1031330 | Nov 2005 | EP |
1070513 | Jun 2006 | EP |
2678508 | Jan 1993 | FR |
2740346 | Oct 1995 | FR |
2756173 | Nov 1996 | FR |
2337002 | May 1998 | GB |
8806026 | Aug 1988 | WO |
9521592 | Aug 1995 | WO |
9531945 | Nov 1995 | WO |
9626696 | Sep 1996 | WO |
9629955 | Oct 1996 | WO |
9634580 | Nov 1996 | WO |
9641592 | Dec 1996 | WO |
9707752 | Mar 1997 | WO |
9715346 | May 1997 | WO |
9716217 | May 1997 | WO |
9726936 | Jul 1997 | WO |
9741803 | Nov 1997 | WO |
9745073 | Dec 1997 | WO |
9746174 | Dec 1997 | WO |
9819628 | May 1998 | WO |
9822045 | May 1998 | WO |
9832412 | Jul 1998 | WO |
9836709 | Aug 1998 | WO |
9837833 | Sep 1998 | WO |
9847447 | Oct 1998 | WO |
9848879 | Nov 1998 | WO |
9849964 | Nov 1998 | WO |
9853765 | Dec 1998 | WO |
9903426 | Jan 1999 | WO |
9904726 | Feb 1999 | WO |
9915103 | Apr 1999 | WO |
9915109 | Apr 1999 | WO |
9924104 | May 1999 | WO |
9930638 | Jun 1999 | WO |
9934749 | Jul 1999 | WO |
9936002 | Jul 1999 | WO |
9936015 | Jul 1999 | WO |
9944539 | Sep 1999 | WO |
9956661 | Nov 1999 | WO |
9965419 | Dec 1999 | WO |
0007523 | Feb 2000 | WO |
0010489 | Mar 2000 | WO |
0016719 | Mar 2000 | WO |
0027307 | May 2000 | WO |
0027463 | May 2000 | WO |
0028922 | May 2000 | WO |
0145594 | Jun 2000 | WO |
0044307 | Aug 2000 | WO |
0044309 | Aug 2000 | WO |
0047134 | Aug 2000 | WO |
0048531 | Aug 2000 | WO |
0049951 | Aug 2000 | WO |
0051523 | Sep 2000 | WO |
0053250 | Sep 2000 | WO |
0057813 | Oct 2000 | WO |
0067673 | Nov 2000 | WO |
0071054 | Nov 2000 | WO |
0071055 | Nov 2000 | WO |
0074595 | Dec 2000 | WO |
0100112 | Jan 2001 | WO |
0108600 | Feb 2001 | WO |
0121095 | Mar 2001 | WO |
0121109 | Mar 2001 | WO |
0121244 | Mar 2001 | WO |
0134064 | May 2001 | WO |
0135715 | May 2001 | WO |
0135863 | May 2001 | WO |
0139697 | Jun 2001 | WO |
0139699 | Jun 2001 | WO |
0141677 | Jun 2001 | WO |
0141829 | Jun 2001 | WO |
0143665 | Jun 2001 | WO |
0143809 | Jun 2001 | WO |
0145785 | Jun 2001 | WO |
0149342 | Jul 2001 | WO |
0154621 | Aug 2001 | WO |
0154622 | Aug 2001 | WO |
0158385 | Aug 2001 | WO |
0160284 | Aug 2001 | WO |
0170294 | Sep 2001 | WO |
0170299 | Sep 2001 | WO |
0174273 | Oct 2001 | WO |
0189409 | Nov 2001 | WO |
0200138 | Jan 2002 | WO |
0232347 | Apr 2002 | WO |
02053066 | Jul 2002 | WO |
02068012 | Sep 2002 | WO |
03007842 | Jan 2003 | WO |
03055414 | Jul 2003 | WO |
03063924 | Aug 2003 | WO |
2004021929 | Mar 2004 | WO |
2004026174 | Apr 2004 | WO |
2004026180 | Apr 2004 | WO |
2005009295 | Feb 2005 | WO |
2005014077 | Feb 2005 | WO |
2006028925 | Mar 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20070055362 A1 | Mar 2007 | US |