1. Technical Field
This disclosure generally relates to data services, and to automated form generation and completion.
2. Description of the Related Art
Insurance agents (e.g., general agents) often compile a repository of insurance endorsement forms, organize that collection and maintain the format and version of the forms over time separately for various different insurance carriers. These processes consume a high number of hours of working time and, due to the fact that many of the forms have similar appearances and file names, such processes can be prone to user error. The insurance carrier delegates which forms belong on a policy and applies rules for determining when those forms are mandatory or optional.
Some existing insurance policy issuance utilities require that the general agent maintain insurance policy document templates (either in electronic or paper form) to which the user (e.g., general agent) must attach the proper policy jackets and include the proper state specific insurance policy stamps. Typically, a policy is provided in the form of a policy jacket including one or more paper documents. The time spent on this insurance policy form maintenance and generation in the process of issuing insurance policies can add up to hundreds of hours wasted each year, reducing the number of policies an individual insurance agent can process.
A computer-implemented method may be summarized as including receiving a first form in a first format, wherein the first form is an electronic form that is electronically fillable; electronically converting the first form to a second format to generate a second form in the second format, wherein the second form is an electronic form that is not electronically fillable; in response to receiving a client request, electronically communicating the second form to be displayed within a user interface of a client associated with the client request instead of electronically communicating the first form in the first format to be displayed within the user interface, wherein the second form as displayed within the user interface is substantially visually indistinguishable from the first form were the first form to be displayed within the user interface, and wherein the second format is a format such that an image file in the second format is able to have other images visually placed over an image stored in the image file in the second format within the user interface in a manner that data indicating a position of the other images relative to the image stored in the image file in the second format on which the other images are placed is able to be captured and stored using functionality of the client or a service accessed by the client; receiving data indicating a position of an overlay image overlaid on the second form, wherein the overlay image is stored in an electronic file with the overlay image ultimately to be overlaid on an image stored by an electronically fillable form; and generating a third form in the first format, wherein the third form is an electronic form that is electronically fillable, the generating including incorporating the overlay image on an image stored by the third form at a location on the image stored by the third form corresponding to the data indicating the position of the overlay image on the second form. The first format may be a format such that an image file in the first format is not able to have other images visually placed over an image stored in the image file in the first format within the user interface in such said manner relative to the image stored in the image file in the first format. The first format may be portable document format and the second format is Joint Picture Expert Group format.
The method may further include at least partially electronically filling the first form before electronically converting the first form. The first, second and third forms may be insurance policy forms.
The method may further include receiving insurance policy form data; and automatically determining a list of insurance policy forms based on the insurance policy form data, wherein the first form is one of the insurance policy forms on the determined list.
The method wherein the first form, the second form and the third form may be insurance policy forms may further include electronically attaching the third form to an insurance policy; and electronically communicating an access mechanism to the insurance policy to a user for insurance policy verification by the user. The overlay image may be an image of a state specific stamp for placement on insurance policy forms.
The method may further include receiving a plurality of files storing overlay images; and in response to receiving the client request, electronically communicating the plurality of files storing overlay images. the overlay images to be displayed within the user interface.
A system may be summarized as including a computer processor; and a non-transitory memory communicatively coupled to the computer processor having computer-executable instructions stored thereon that when executed by the computer processor cause the computer processor to: receive a first form in a first format, wherein the first form is an electronic form that is electronically fillable; electronically convert the first form to a second format to generate a second form in the second format, wherein the second form is an electronic form that is not electronically fillable; in response to receiving a client request, electronically communicate the second form to be displayed within a user interface of a client associated with the client request instead of electronically communicating the first form in the first format to be displayed within the user interface; receive data indicating a position of an overlay image overlaid on the second form, wherein the overlay image is stored in an electronic file with the overlay image ultimately to be overlaid on an image stored by an electronically fillable form; and generate a third form in the first format, wherein the third form is an electronic form that is electronically fillable, by incorporating the overlay image on an image stored by the third form at a location on the image stored by the third form corresponding to the data indicating the position of the overlay image on the second form. The second form as displayed within the user interface may be substantially visually indistinguishable from the first form were the first form to be displayed within the user interface. The second format may be a format such that an image file in the second format may be able to have other images visually placed over an image stored in the image file in the second format within the user interface in such a manner that data indicating a position of the other images relative to the image stored in the image file in the second format on which the other images are placed may be able to be captured and stored using functionality of the client or a service being accessed by the client. The first, second and third forms may be insurance policy forms.
The computer-executable instructions, when executed by the computer processor, may further cause the computer processor to: receive insurance policy form data; and automatically determine a list of insurance policy forms based on the insurance policy form data, wherein the first form is one of the insurance policy forms on the determined list.
The computer-executable instructions, when executed by the computer processor, may further cause the computer processor to: electronically attach the third form to an insurance policy; and electronically communicate an access mechanism to the insurance policy to a user for insurance policy verification by the user. The first format may be portable document format. The second format may be Joint Picture Expert Group format.
A non-transitory computer readable storage medium, may have computer computer-executable instructions stored thereon that when executed by a computer processor may cause the computer processor to perform: receiving a selection of a first form from a plurality of forms in a first format, wherein the plurality of forms are electronic forms and are electronically fillable in the first format; displaying within a user interface of a client a second form in a second format, wherein the second form is the first form converted to an electronic form that is not electronically fillable in the second format; displaying at least one overlay image on the user interface, wherein the overlay image is stored in an electronic file with the overlay image ultimately to be overlaid on an image stored by an electronically fillable form, the at least one overlay image available to be visually placed over the second form within the user interface on which the second form is displayed; receiving an indication of a location corresponding to a location on the second form on which the overlay image was visually placed within the user interface; and electronically communicating the indication of the location to enable generation a third form in the first format incorporating the overlay image on an image stored by the third form at a location on the image stored by the third form corresponding to the indication of the location. The second form as displayed in the user interface may be substantially visually indistinguishable from the first form, were the first form to be displayed within the client. The first format may be portable document format and the second format may be Joint Picture Expert Group format.
A computer-implemented method may be summarized as including receiving a first electronic form of a first file type that is electronically fillable, the first electronic form including data and fields and a having a first format, the fields of the first electronic form electronically fillable; generating a second electronic form of a second file type that is not electronically fillable, the second electronic form replicating the data, the fields and the format of the first electronic form, the fields of the second electronic form not electronically fillable, the second file type such that when the second electronic form is displayed by an element of a user interface, an image represented by an image file is selectively visually representable by the element of the user interface overlying at least a portion of the second electronic form at a number of end user selectable positions; in response to receiving a client request, electronically communicating the second electronic form to be displayed by at least one element of a client user interface of a client associated with the client request instead of communicating the first electronic form; receiving via the client data indicative of user selected image and a user identified position for the image with respect to at least one element of the second electronic form; and generating a third electronic form of the first file type that is electronically fillable, the third electronic form replicating the data, the fields and the format of the first electronic form and including the user selected image at the user identified position, the fields of the first electronic form electronically fillable.
In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn are not intended to convey any information regarding the actual shape of the particular elements, and have been solely selected for ease of recognition in the drawings.
In the following description, certain specific details are set forth in order to provide a thorough understanding of various disclosed embodiments. However, one skilled in the relevant art will recognize that embodiments may be practiced without one or more of these specific details, or with other methods, components, materials, etc. In other instances, well-known structures associated with computing systems including client and server computing systems, as well as networks, including various types of telecommunications networks, have not been shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments.
Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as “comprises” and “comprising,” are to be construed in an open, inclusive sense, that is, as “including, but not limited to.”
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
The headings and Abstract of the Disclosure provided herein are for convenience only and do not interpret the scope or meaning of the embodiments.
The networked environment 100 may include one or more general agent (e.g., insurance agent) systems, such as general agent system 1 102, general agent system 2 104, and general agent system m 106; one or more insurance carrier systems, such as insurance carrier system x 108 and insurance carrier system y 110; and a policy (e.g., insurance policy) issuance server 112. General agent system 1 102, general agent system 2 104, general agent system m 106, insurance carrier system x 108, insurance carrier system y 110, and the policy issuance server 112 may all be communicatively coupled via a network 116. Alternatively, one or more of the systems or devices may be located on a single system and/or at a single physical location. Additional systems and devices may also be present, but are not illustrated for clarity of presentation.
A general agent system, e.g., general agent system 102, may include an agency information management (AIM) database 124 that stores insurance customer or property data included, or that may be included, on an insurance policy. Other insurance policy information may also be stored on the AIM database 124. One or more AIM clients, such as AIM client 1 118, AIM client 2 120 and AIM client n 122, may be communicatively connected to the AIM database 124 such that the insurance customer data or property data can be collected and stored in the AIM database 124 and subsequently accessed, modified or deleted via the one or more AIM clients 118, 120, 122. For example, in some cases a server installation of the AIM database is shared to the AIM clients 118, 120, 122. This may be implemented using Citrix® networking software provided by Citrix Systems, Inc. located in Fort Lauderdale, Fla. However, other networking software may instead or also be used. The AIM clients 118, 120, 122 retrieve raw policy data from the AIM database 124 and convert that data into a standardized format such as Association for Cooperative Operations Research and Development Extensible Markup Language (ACORD XML). That XML is sent to the policy issuance server 112 over network 116. However, the raw data may be converted into other standardized formats including other declarative programming language formats, among others.
The policy issuance server 112 may provide the general agent systems 102, 104, 106 the ability to process and issue insurance policies and policy endorsements using a policy issuance Web service of the policy issuance server 112. The policy issuance and policy endorsement process may include customized automated compiling, completion, validation and/or verification, and generation of various policy forms and forms packages originating from or provided by the one or more insurance carriers 108, 110. This policy issuance and policy endorsement process may be performed using insurance customer or property data information gathered by the one or more general agent systems 102, 104, 106 and/or provided by the one or more general agent systems 102, 104, 106 to the policy issuance server 112. For example, general agent system 1 102 may electronically collect data from an insurance customer and provide such data to the policy issuance server 112 in a specified format. The policy issuance server 112 will then compile that data and automatically complete the applicable insurance policy forms for the particular insurance carrier (e.g., insurance carrier 110) based on form templates generated by the policy issuance server 112, insurance carrier 110 and/or the general agent system 102. The policy issuance server 112 may then communicate the completed insurance policy package back to the general agent system 102 for further verification and/or validation before ultimately issuing the policy. Also, the policy issuance server 112 may provide the ability for the user at the general agent system 102 to customize the forms including electronically placing and overlaying state specific stamps or other images on the applicable forms to be attached to the policy.
The network 116 may be any computer network, telecommunications network or combination of telecommunications and computer networks that enables communication between the various systems and entities connected to the network 116 shown in
The network 116 may comprise connections to the general agent system 1 102, general agent system 2 104, general agent system m 106, insurance carrier system x 108, insurance carrier system y 110, and the policy issuance server 112 such that the policy issuance server 112 may provide the general agent systems 102, 104, 106 the ability to process and issue insurance policies and policy endorsements using the policy issuance Web service of the policy issuance server 112, and may itself represent multiple interconnected networks. For instance wired and wireless enterprise-wide computer networks, intranets, extranets, and/or the Internet may be included in or comprise a part of network 116. Embodiments may include various types of communication networks including other telecommunications networks, cellular networks, and other mobile networks. There may be any variety of computers, switching devices, routers, bridges, firewalls, edge devices, multiplexers, phone lines, cables, telecommunications equipment and other devices within network 116 and/or in the communications paths between the systems and entities of
In accordance with an aspect of the disclosure, the systems and/or systems shown in
These client and server systems may be communicatively coupled to one another via transmission control protocol/internet protocol (TCP/IP) connection(s) for high-capacity communication. The “client” is a member of a class or group that uses the services of another class or group to which it is not related. In computing, a client is a process, i.e., roughly a set of instructions or tasks, executed by hardware that requests a service provided by another program. Generally, the client process utilizes the requested service without having to “know” any working details about the other program or the service itself. In a client/server architecture, particularly a networked system, a client is usually a computer or device that accesses shared network resources provided by another computer or device, e.g., a server. Any system in
Although the physical environment of the network 116 may have connected devices such as computers, the physical environment may alternatively have or be described as comprising various digital devices such as personal digital assistants (PDAs), televisions, MP3 players, etc., software objects such as interfaces, Component Object Model (COM) objects and the like.
There are a variety of systems, components, and network configurations that may also support distributed computing environments within the network 116. For example, computing systems may be connected together within the network 116 by wired or wireless systems, by local networks or by widely distributed networks. Currently, many networks are coupled to the Internet, which provides an infrastructure for widely distributed computing and encompasses many different networks. Any such infrastructures, whether coupled to the Internet or not, may be used in conjunction with, be connected to, or comprise part of the network 116.
The computer system 200 is suitable for implementing systems, devices and methods for overlaying images in automated insurance policy form generation, according to one illustrated embodiment. The computer system 200 will at times be referred to in the singular herein, but this is not intended to limit the embodiments to a single device since in typical embodiments, there may be more than one computer system or devices involved. Unless described otherwise, the construction and operation of the various blocks shown in
The computer system 200 may include one or more processing units 212a, 212b (collectively 212), a system memory 214 and a system bus 216 that couples various system components including the system memory 214 to the processing units 212. The processing units 212 may be any logic processing unit, such as one or more central processing units (CPUs) 212a, digital signal processors (DSPs) 212b, application-specific integrated circuits (ASICs), programmable gate arrays such as field programmable gate arrays (FPGAs), etc. The system bus 216 can employ any known bus structures or architectures, including a memory bus with memory controller, a peripheral bus, and a local bus. The system memory 214 includes read-only memory (“ROM”) 218 and random access memory (“RAM”) 220. A basic input/output system (“BIOS”) 222, which can form part of the ROM 218, contains basic routines that help transfer information between elements within the computer system 200, such as during start-up.
The computer system 200 may include a hard disk drive 224 for reading from and writing to a hard disk 226, an optical disk drive 228 for reading from and writing to removable optical disks 232, and/or a magnetic disk drive 230 for reading from and writing to magnetic disks 234. The optical disk 232 can be a CD-ROM, while the magnetic disk 234 can be a magnetic floppy disk or diskette.
The hard disk drive 224, optical disk drive 228 and magnetic disk drive 230 may communicate with the processing unit 212 via the system bus 216. The hard disk drive 224, optical disk drive 228 and magnetic disk drive 230 may include interfaces or controllers (not shown) coupled between such drives and the system bus 216, as is known by those skilled in the relevant art. The drives 224, 228 and 230, and their associated computer-readable storage media 226, 232, 234, may provide nonvolatile and non-transitory storage of computer readable instructions, data structures, program modules and other data for the computer system 200. Although the depicted computer system 200 is illustrated employing a hard disk 224, optical disk 228 and magnetic disk 230, those skilled in the relevant art will appreciate that other types of computer-readable storage media that can store data accessible by a computer may be employed, such as magnetic cassettes, flash memory, digital video disks (“DVD”), Bernoulli cartridges, RAMs, ROMs, smart cards, etc. For example, computer-readable storage media may include, but is not limited to, random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory, compact disc ROM (CD-ROM), digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, solid state memory or any other medium which can be used to store the desired information and which may be accessed by processing unit 212a.
Program modules can be stored in the system memory 214, such as an operating system 236, one or more application programs 238, other programs or modules 240 and program data 242. Application programs 238 may include instructions that cause the processor(s) 212 to provide overlaying images in automated insurance policy form generation such as, for example, overlaying images in automated insurance policy form generation performed during the policy issuance service provided by the policy issuance server 112 based on data received by the general agent system 102 including indications of where on a form an image is to be placed. The generated forms are generally printable and include documents and printable images. Other program modules 240 may include instructions for handling security such as password or other access protection and communications encryption. The system memory 214 may also include communications programs, for example, a Web client or browser 244 for permitting the computer system 200 to access and exchange data with sources such as Web sites of the Internet, corporate intranets, extranets, or other networks and devices as described herein, as well as other server applications on server computing systems. The browser 244 in the depicted embodiment is markup language based, such as Hypertext Markup Language (HTML), Extensible Markup Language (XML) or Wireless Markup Language (WML), and operates with markup languages that use syntactically delimited characters added to the data of a document to represent the structure of the document. A number of Web clients or browsers are commercially available such as those from Mozilla, Google, and Microsoft of Redmond, Wash.
While shown in
An operator can enter commands and information into the computer system 200 through input devices such as a touch screen or keyboard 246 and/or a pointing device such as a mouse 248, and/or via a graphical user interface. Other input devices can include a microphone, joystick, game pad, tablet, scanner, etc. These and other input devices are connected to one or more of the processing units 212 through an interface 250 such as a serial port interface that couples to the system bus 216, although other interfaces such as a parallel port, a game port or a wireless interface or a universal serial bus (“USB”) can be used. A monitor 252 or other display device is coupled to the system bus 216 via a video interface 254, such as a video adapter. The computer system 200 can include other output devices, such as speakers, printers, etc.
The computer system 200 can operate in a networked environment using logical connections to one or more remote computers and/or devices as described above with reference to
Although not required, the embodiments will be described in the general context of computer-executable instructions, such as program application modules, objects, or macros stored on computer- or processor-readable storage media and executed by a computer or processor. Those skilled in the relevant art will appreciate that the illustrated embodiments as well as other embodiments can be practiced with other system configurations and/or other computing system configurations, including hand-held devices, multiprocessor systems, microprocessor-based or programmable consumer electronics, personal computers (“PCs”), network PCs, mini computers, mainframe computers, and the like. The embodiments can be practiced in distributed computing environments where tasks or modules are performed by remote processing devices, which are linked through a communications network such as network 116. In a distributed computing environment, program modules may be located in both local and remote memory storage devices.
AIM systems may offer the user built-in options to issue insurance policies. These built-in options vary from internally generating the document directly from policy data, to sending policy data to word processing utilities which generate the actual document using templates. External policy issuance utilities may also follow this model, and accept policy data which is then placed in pre-defined locations and eventually produce a printable policy document in a similar manner. Although each of these approaches addresses certain difficulties inherent to issuing insurance policies, there still exists the potential of user error surrounding the issuance process and may also involve an excessive amount of time to maintain these systems.
Advantageously, the embodiments of the general agent system described herein instead or additionally provide an integration library and associated programs that produce policy data in a standardized declarative language format (e.g., in Association for Cooperative Operations Research and Development Extensible Markup Language (ACORD XML)), which is then transmitted to the policy issuance server 112. Note that the transmitted XML need not communicate to the policy issuance server 112 where to place the data on any particular policy document or form, and the user (e.g., the general agent) need not have seen the policy form templates nor its endorsement forms prior to using the system. This substantially reduces potential of user error surrounding the policy issuance process and also reduces the amount of time to maintain the general agent systems.
The process 300 starts at 302, wherein the basic policy data is received by the policy issuance server (e.g., in ACORD XML format). For example, the general agent or other user may enter basic policy data into the general agent system, and then send a request that includes the basic policy data to the policy issuance server for a list of required and optional policy forms based on the received basic policy data.
At 304, based on the received policy data, the policy issuance server automatically determines and sends the list of required and optional policy forms to the general agent system. The policy issuance server may use the received policy data to determine the listed optional forms, and those that are marked as required for the particular policy. The policy issuance server may automatically apply custom business rules for each individual insurance carrier to compile policy documents, automating an otherwise typically error-prone and time consuming process. The policy issuance server may also provide the general agent the ability to overlay or place their own images within a Web browser interface on top of a carrier's forms. This need may arise in instances where the general agent wants to include state specific stamps on policy forms in accordance with state specific insurance laws and regulations. The policy issuance server may automatically generate the insurance policy form templates based on forms previously received corresponding to the applicable insurance carrier and any customized insurance carrier forms on which stamps have been placed by the general agent, and then populate the forms with the appropriate received basic policy data. Alternatively, the forms may be populated with the appropriate received basic policy data and then the general agent may customize the forms by electronically placing their own images within a Web browser interface on top of the completed forms.
At 306, for example, the general agent may select forms from the list of required and optional policy forms and optionally overlay any state specific desired stamps or other images on the selected forms within a graphical user interface of a Web browser. The forms may be accessed at the policy issuance server, general agent system, or any other system or database in which the forms are stored. This process is detailed further in
At 308, the general agent system selects forms from the required and optional policy forms to include on an insurance quote document. Such may be performed via the user interface.
At 310, the policy issuance server may send a list of all forms for a particular carrier to the general agent if requested for an additional endorsement to the policy being quoted. For example, if the user decides that an endorsement form that is not listed needs to be attached to the policy, the user can request a list of all of the forms the corresponding carrier has made available to the general agent. At this point, the general agent may again select forms from the list of all of the forms the corresponding carrier has made available to the general agent and optionally overlay any state specific desired stamps or other images on the selected forms within a graphical user interface of a Web browser.
At 312, the general agent system electronically attaches the selected electronic endorsement forms to the electronically stored policy. For example, the general agent system may include the selected electronic endorsement forms in the same folder or object in which the electronically stored policy is stored or associated, or may otherwise electronically associate the selected electronic endorsement forms to the electronically stored policy.
At 402, after the policy has been bound, the general agent system may then submit the completed policy's data, exported to ACORD XML, to the policy issuance server.
At 404, the policy issuance server automatically validates the policy data to ensure the policy is valid. This validation may include electronically automatically checking the policy data against formatting rules, checking for data integrity and checking that the data complies with applicable insurance regulations and policy issuance procedures.
At 406, if the policy is valid, the policy issuance server sends a policy issuance policy identifier (policy ID) to enable the policy issuance workflow to be completed by the general agent. For example, this new ID is used to generate a uniform resource locator (URL) to a Web page on the policy issuance server that will allow the user to complete the service's issuance workflow.
At 408, based on the received policy data, the policy issuance server automatically generates completed policy forms (e.g., in Adobe® portable document format (PDF)) when the policy workflow is completed. For example, the policy issuance server may automatically generate the insurance policy form templates based on forms received from the corresponding insurance carrier, including electronically placing state specific stamps or other images on the PDF forms as previously indicated by the general agent system. The policy issuance server may then populate the forms with the applicable received policy data. Alternatively, the policy issuance server may first populate the forms with the applicable received policy data and then generate the final forms by electronically placing the state specific stamps or other images on the populated forms as indicated by the general agent system. In another embodiment, the PDF forms may have already had the state specific stamps or other images electronically placed or incorporated into the PDF forms as previously indicated by the general agent system before policy issuance validation.
At 410, the completed policy forms are made available to the user for verification and the policy is automatically marked issued once verified. For example, the general agent system polls another generated URL, again using the policy ID, until a link to the issued policy's PDF URL is available. Once the PDF's link is retrieved, the PDF is downloaded, saved to the general agent system's attachment directory, logged to the general agent system's activity log and displayed to the user for validation. The policy can be modified and re-issued, and different images overlaid as needed on the various policy forms, until the policy has been marked as issued on policy issuance server. After the policy has been issued and verified, the general agent can then mail out the policy (e.g., physically mailing a paper form of the policy). This also marks the policy as completed on the policy issuance server. Once the policy has been mailed out, it may be modified by an endorsement.
At 502, the policy issuance server receives modified policy data after the policy is issued. For example, the general agent system may electronically communicate updates or changes in the policy data (e.g., insured or beneficiary name changes, coverage changes, etc.) to the policy issuance server.
At 504, the policy issuance server automatically identifies policy changes and validates policy data. For example, the policy issuance server may compare the received modified policy data to the existing policy data to identify particular changes. The policy issuance server may perform the validation on the identified changes. The validation may include electronically automatically checking the policy data against formatting rules, checking for data integrity and checking that the data complies with applicable insurance regulations and policy issuance procedures.
At 506, based on the received modified policy data, the policy issuance server automatically identifies and generates completed applicable policy endorsement forms. For example, the policy issuance server may automatically generate the insurance policy endorsement form templates based on forms received from the corresponding insurance carrier, including electronically placing state specific stamps or other images on the .pdf forms as previously indicated by the general agent system. The policy issuance server may then populate the forms with the applicable received policy data. Alternatively, the policy issuance server may first populate the forms with the applicable received policy data and then generate the final forms by electronically placing the state specific stamps or other images on the populated forms as indicated by the general agent system. In another embodiment, the PDF forms may have already had the state specific stamps or other images electronically placed or incorporated into the .pdf forms as previously indicated by the general agent system before modified policy data has been received or before policy changes have been identified.
At 508, the policy issuance server automatically electronically attaches the completed endorsement forms to the electronically stored policy. For example, the policy issuance server may include the completed endorsement forms in the same folder or object in which the electronically stored policy is stored or associated, or may otherwise electronically associate the completed endorsement forms to the electronically stored policy.
At 510, the completed policy forms including endorsement forms are made available to the user for verification (e.g., by the policy issuance server automatically posting a link to the completed endorsement forms or sending a link to the completed endorsement forms to the general agent system).
Internally, the general agent system may use mapping files 610 to export policy data 604 retrieved from the AIM database 602 as valid ACORD XML 612. These mapping files 610 may also be formatted as XML and are distributed with the AIM client 606 software (e.g., AIM.exe). These mapping files 610 can be broken into parts, which are compiled into a full map file before being processed by AIM client software 606. The appropriate mapping files are loaded based on the policy's line(s) of business that are currently being exported. Before the mapping files are processed, the raw policy data 604 is loaded into policy objects 608 and it is these policy objects 608 that are directly mapped to ACORD XML. The policy data may also include information indicating the location on particular forms of the policy on which to overlay particular images (e.g., state specific stamps) as well as the size of the image to be overlaid on the form.
In the mapping files 610, each of the policy objects 608 are represented as data sources and the pieces of data held by the object are represented as fields. The AIM client software 606 processes the map files sequentially, allowing the map files to dictate how the policy's objects are accessed and what data is being exported. The mapping files 610 takes these data sources and fields, and places them into ACORD XML nodes 612. The latter part of this process is also performed sequentially, allowing the AIM client software 606 to adhere to the ordering of the mapped ACORD XML nodes 612. This ACORD XML 612 is then communicated to the policy issuance Web service 614 such that policy issuance server may automatically generate the insurance policy form templates, including incorporating any state specific stamps on the forms. this form generation may be based on the information indicating the location on particular forms of the policy on which to overlay particular images or stamps and based on forms received from the corresponding insurance carrier or other sources. The policy issuance Web service 614 may then populate the forms with the applicable policy data of the received ACORD XML 612.
Referring also again to
At 702, the applicable policy forms are received by the policy issuance server. These may be received from the insurance carrier, general agent or other party and may be in PDF format, for example.
At 704, the policy issuance server converts the one or more received electronic forms stored in an electronic file from the received file type into another file type, e.g., from PDF format to Joint Picture Expert Group (JPEG or JPG). For example, the received file type format may support an electronically fillable form (e.g., the form stored in the file having the received file type format has included form related tags or metadata having to do with particular form fields included in the file) and the file type format into which the form is converted stores an image of the original electronic form, but is not electronically fillable. The particular file type format to which the forms are being converted, for example, is one in which images in such a format may have other images visually placed over them within a graphical user interface of a Web browser, or of a Web page displayed in the Web browser, in such a manner that the position of the other image relative to the image on which it is placed is captured and stored using the functionality of the Web browser or application being accessed by the Web browser. Also, if a client other than a Web browser is being used to access the forms, the particular format to which the forms are being converted, for example, is one in which images in such a format may have other images visually placed over them within the particular type of client being used in such a manner that the position of the other image relative to the image on which it is placed is stored using functionality of the particular client or application being accessed by the client.
At 706, the converted forms are displayed in the Web browser or other client. For example, the policy issuance server responds to a request received via the Web browser and displays the converted image or images (e.g., JPEG images) corresponding to a particular form received in a different format (e.g., PDF format). In one embodiment, the general agent uses the general agent system to access various forms or form templates on the policy issuance server and the policy issuance server responds by displaying the converted form or group of forms requested within the Web browser of the general agent system. Alternatively, the policy issuance server may wait to convert the form or form template (e.g., from PDF to a JPEG image) until the request is received from the general agent system to access the particular form or form template on the policy issuance server. In various other embodiments, these converted forms or form templates may be stored at the policy issuance server, general agent system, or any other third party system or database.
At 708, one or more of the various images (e.g., state specific stamps) that are available to be placed on or overlaid on one or more of the displayed converted forms are also displayed. For example, the policy issuance server responds to a request received via the Web browser and displays images that are available to be placed on or overlaid on one or more of the displayed converted forms. These various images may be received from the insurance carrier, general agent or other party and may be in various formats, for example, and may have also been previously converted to JPEG or other format (e.g., from PDF to a JPEG image). In various other embodiments, these images may be stored at the policy issuance server, general agent system, or any other third party system or database.
At 710, an indication of a location on which the overlay image is to be overlaid on a particular form or form template is received. For example, within the Web browser of the general agent system, the general agent selects (e.g., clicks on) a particular displayed state specific stamp icon and drags the selected icon to a location on a particular form or form template displayed within the Web browser on which the general agent wants the stamp to be placed. Since the particular form or form template displayed within the Web browser is in JPEG format (e.g., as opposed to its original PDF format), the Web browser has the ability to overlay an image (e.g., the state specific stamp) with mouse control directly on top of the form or form template displayed within the Web browser. Thus, displaying the JPEG image of each PDF page of the form or form template within the Web browser instead of the original PDF of the form or form template gives the user the impression that they are placing the overlay image directly on the PDF document. The size of the overlay image, color of the overlay image, and orientation of the overlay image may also be selected and indicated within the Web browser.
Other embodiments may include various other ways of selecting the overlay image using various applicable GUI controls. Also, other embodiments may include various other ways of indicating the location on which the overlay image is to be placed on a particular form and the size of the overlay image including, but not limited to: entering a name or a tag of the overlay image, directly entering coordinates and dimensions of the overlay image, dragging a corner of a selection box which indicates the size and location of the overlay image, etc.
At 802, the coordinates on the PDF form or form template on which to place an overlay image are determined from the received indicated location at which the overlay image was placed on the JPEG image of the form. For example, once the general agent had, using a mouse, selected, dragged and dropped the overlay image on the JPEG image, the Web browser or image application accessed by the Web browser captures the specific coordinates of the JPEG image underneath the overlay image and on which the overlay image is located. These are then translated into the corresponding coordinates of the original PDF form version of the underlying JPEG image. This translation may be performed by the policy issuance server or the general agent system. If performed by the general agent system, the corresponding coordinates of the original PDF form version of the underlying JPEG image may then be communicated to the policy issuance server.
At 804, a new PDF form or form template corresponding to the underlying JPEG image is generated including the overlay image placed on the new PDF form or form template at the determined corresponding coordinates. For example, the policy issuance server may use the corresponding coordinates of the original PDF version of the underlying JPEG image to use a PDF form generation or editing tool to automatically generate the new PDF including the overlay image placed on the new PDF form or for template at the determined corresponding coordinates. Alternatively, this form generation may be performed by the general agent system and then the general agent system may send the generated form to the policy issuance server.
At 806, the policy issuance server then attaches the new PDF form to the policy. In other embodiments, the electronic forms or form templates generated from the underlying image and overlay image may be in various other formats instead of PDF. Also, in other embodiments, instead of JPEG, the particular format of the underlying image may be other formats which are also formats in which images in such formats may have other images visually placed over them within a graphical user interface of a Web browser in such a manner that the position of the other image relative to the image on which it is placed is stored using the functionality of the Web browser or application being accessed by the Web browser. Also, if a client other than a Web browser is being used to access the forms, the particular format of the underlying image, for example, is one in which images in such a format may have other images visually placed over them within the particular type of client being used in such a manner that the position of the other image relative to the image on which it is placed is stored using functionality of the particular client or application being accessed by the client.
The underlying form 1308 being displayed in JPEG format within the Web browser also allows the user to drag, with the mouse cursor 1312, the overlay image 1310 to the desired location on the underlying form 1308 within the Web browser. Using the mouse cursor, the user may also resize the overlay image 1310 by selecting (e.g., clicking) and dragging on a corner or side of the overlay image 1310. Alternatively, the user may select (e.g., click) and drag the thumbnail image 1304 itself onto the underlying form 1308 to indicate the desired location of the corresponding overlay image 1310. Although the underlying form 1308 displayed is actually a JPEG version of the original PDF form, it appears to the user that they are placing the overlay image directly on the original PDF version of the underlying form 1308.
The settings panel 1316 on the left of the screenshot 1314 displays the current dimensions of the overlay image 1402 and the current location of the overlay image 1402 on the underlying form 1308. A user may also directly enter in the fields of the settings panel 1314 the particular desired dimensions of the overlay image 1402 and the desired location on the underlying form 1308 on which to place the overlay image 1402. Also shown is a save button or icon 1316 on the settings panel 1314 which the user may select to save the current settings. Once the user selects the save button or icon 1316, the current settings are saved and the corresponding coordinates are ultimately used by the policy issuance server to generate the final PDF version of the underlying form including the overlay form integrated on the PDF version of the form according to the saved settings.
The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, schematics, and examples. Insofar as such block diagrams, schematics, and examples contain one or more functions and/or operations, it will be understood by those skilled in the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, the present subject matter may be implemented via Application Specific Integrated Circuits (ASICs). However, those skilled in the art will recognize that the embodiments disclosed herein, in whole or in part, can be equivalently implemented in standard integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more controllers (e.g., microcontrollers) as one or more programs running on one or more processors (e.g., microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of ordinary skill in the art in light of this disclosure.
In addition, those skilled in the art will appreciate that the mechanisms taught herein are capable of being distributed as a program product in a variety of forms, and that an illustrative embodiment applies equally regardless of the particular type of signal bearing media used to actually carry out the distribution. Examples of non-transitory signal bearing media include, but are not limited to, the following: recordable type media such as floppy disks, hard disk drives, CD ROMs, digital tape, and computer memory including registers.
The various embodiments described above can be combined to provide further embodiments. To the extent that they are not inconsistent with the specific teachings and definitions herein, all of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification are incorporated herein by reference, in their entirety, including U.S. Provisional Patent Application No. 61/422,090, filed Dec. 10, 2010. Aspects of the embodiments can be modified, if necessary, to employ systems, circuits and concepts of the various patents, applications and publications to provide yet further embodiments.
These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
3970992 | Boothroyd et al. | Jul 1976 | A |
4346442 | Musmanno | Aug 1982 | A |
4347568 | Giguere et al. | Aug 1982 | A |
4359631 | Lockwood et al. | Nov 1982 | A |
4383298 | Huff et al. | May 1983 | A |
4410940 | Carlson et al. | Oct 1983 | A |
4429360 | Hoffman et al. | Jan 1984 | A |
4486831 | Wheatley et al. | Dec 1984 | A |
4491725 | Pritchard | Jan 1985 | A |
4503499 | Mason et al. | Mar 1985 | A |
4553206 | Smutek et al. | Nov 1985 | A |
4567359 | Lockwood | Jan 1986 | A |
4591974 | Dornbush et al. | May 1986 | A |
4598367 | DeFrancesco et al. | Jul 1986 | A |
4633430 | Cooper | Dec 1986 | A |
4642768 | Roberts | Feb 1987 | A |
4646229 | Boyle | Feb 1987 | A |
4646231 | Green et al. | Feb 1987 | A |
4646250 | Childress | Feb 1987 | A |
4648037 | Valentino | Mar 1987 | A |
4658351 | Teng | Apr 1987 | A |
4730252 | Bradshaw | Mar 1988 | A |
4794515 | Hornung | Dec 1988 | A |
4809170 | Leblang et al. | Feb 1989 | A |
4819156 | DeLorme et al. | Apr 1989 | A |
4831526 | Luchs et al. | May 1989 | A |
4845644 | Anthias et al. | Jul 1989 | A |
4860247 | Uchida et al. | Aug 1989 | A |
4912628 | Briggs | Mar 1990 | A |
4918588 | Barrett et al. | Apr 1990 | A |
4928243 | Hodges et al. | May 1990 | A |
4928252 | Gabbe et al. | May 1990 | A |
4949251 | Griffin et al. | Aug 1990 | A |
4951194 | Bradley et al. | Aug 1990 | A |
4959769 | Cooper et al. | Sep 1990 | A |
4985831 | Dulong et al. | Jan 1991 | A |
5072412 | Henderson, Jr. et al. | Dec 1991 | A |
5086502 | Malcolm | Feb 1992 | A |
5159669 | Trigg et al. | Oct 1992 | A |
5161226 | Wainer | Nov 1992 | A |
5170480 | Mohan et al. | Dec 1992 | A |
5175853 | Kardach et al. | Dec 1992 | A |
5201033 | Eagen et al. | Apr 1993 | A |
5220665 | Coyle, Jr. et al. | Jun 1993 | A |
5241677 | Naganuma et al. | Aug 1993 | A |
5257375 | Clark et al. | Oct 1993 | A |
5261099 | Bigo et al. | Nov 1993 | A |
5263134 | Paal et al. | Nov 1993 | A |
5265159 | Kung | Nov 1993 | A |
5282052 | Johnson et al. | Jan 1994 | A |
5317733 | Murdock | May 1994 | A |
5363214 | Johnson | Nov 1994 | A |
5448729 | Murdock | Sep 1995 | A |
5517644 | Murdock | May 1996 | A |
5530861 | Diamant et al. | Jun 1996 | A |
5537315 | Mitcham | Jul 1996 | A |
5553282 | Parrish et al. | Sep 1996 | A |
5583922 | Davis et al. | Dec 1996 | A |
5634052 | Morris | May 1997 | A |
5864340 | Bertram et al. | Jan 1999 | A |
5880724 | Bertram et al. | Mar 1999 | A |
5968125 | Garrick et al. | Oct 1999 | A |
6049877 | White | Apr 2000 | A |
6065026 | Cornelia et al. | May 2000 | A |
6128653 | del Val et al. | Oct 2000 | A |
6199079 | Gupta et al. | Mar 2001 | B1 |
6247020 | Minard | Jun 2001 | B1 |
6271846 | Martinez et al. | Aug 2001 | B1 |
6272678 | Imachi et al. | Aug 2001 | B1 |
6301592 | Aoyama et al. | Oct 2001 | B1 |
6366920 | Hoose et al. | Apr 2002 | B1 |
6377948 | Kikuchi et al. | Apr 2002 | B2 |
6381744 | Nanos et al. | Apr 2002 | B2 |
6385642 | Chlan et al. | May 2002 | B1 |
6393407 | Middleton, III et al. | May 2002 | B1 |
6405238 | Votipka | Jun 2002 | B1 |
6407752 | Harnett | Jun 2002 | B1 |
6430575 | Dourish et al. | Aug 2002 | B1 |
6437803 | Panasyuk et al. | Aug 2002 | B1 |
6463343 | Emens et al. | Oct 2002 | B1 |
6490601 | Markus et al. | Dec 2002 | B1 |
6510430 | Oberwager et al. | Jan 2003 | B1 |
6538667 | Duursma et al. | Mar 2003 | B1 |
6546405 | Gupta et al. | Apr 2003 | B2 |
6592629 | Cullen et al. | Jul 2003 | B1 |
6601047 | Wang et al. | Jul 2003 | B2 |
6658167 | Lee et al. | Dec 2003 | B1 |
6658659 | Hiller et al. | Dec 2003 | B2 |
6915435 | Merriam | Jul 2005 | B1 |
6918082 | Gross et al. | Jul 2005 | B1 |
6978376 | Giroux et al. | Dec 2005 | B2 |
6993529 | Basko et al. | Jan 2006 | B1 |
6993661 | Garfinkel | Jan 2006 | B1 |
7010503 | Oliver et al. | Mar 2006 | B1 |
7020779 | Sutherland | Mar 2006 | B1 |
7146495 | Baldwin et al. | Dec 2006 | B2 |
7178110 | Fujino | Feb 2007 | B2 |
7206998 | Pennell et al. | Apr 2007 | B2 |
7266537 | Jacobsen et al. | Sep 2007 | B2 |
7299202 | Swanson | Nov 2007 | B2 |
7299502 | Schmeling et al. | Nov 2007 | B2 |
7318193 | Kim et al. | Jan 2008 | B2 |
7321539 | Ballantyne | Jan 2008 | B2 |
7322025 | Reddy et al. | Jan 2008 | B2 |
7372789 | Kuroda | May 2008 | B2 |
7421438 | Turski et al. | Sep 2008 | B2 |
7440967 | Chidlovskii | Oct 2008 | B2 |
7574048 | Shilman et al. | Aug 2009 | B2 |
7584196 | Reimer et al. | Sep 2009 | B2 |
7587327 | Jacobs et al. | Sep 2009 | B2 |
7593532 | Plotkin et al. | Sep 2009 | B2 |
7624189 | Bucher | Nov 2009 | B2 |
7636898 | Takahashi | Dec 2009 | B2 |
7650320 | Nakano | Jan 2010 | B2 |
7676792 | Irie et al. | Mar 2010 | B2 |
7698230 | Brown et al. | Apr 2010 | B1 |
7757168 | Shanahan et al. | Jul 2010 | B1 |
8166388 | Gounares et al. | Apr 2012 | B2 |
8370403 | Matsuki | Feb 2013 | B2 |
20010027420 | Boublik et al. | Oct 2001 | A1 |
20010032092 | Calver | Oct 2001 | A1 |
20020065879 | Ambrose et al. | May 2002 | A1 |
20020120474 | Hele et al. | Aug 2002 | A1 |
20020138476 | Suwa et al. | Sep 2002 | A1 |
20020194033 | Huff | Dec 2002 | A1 |
20020194578 | Irie et al. | Dec 2002 | A1 |
20020198743 | Ariathurai et al. | Dec 2002 | A1 |
20030101200 | Koyama et al. | May 2003 | A1 |
20030144887 | Debber | Jul 2003 | A1 |
20030191938 | Woods et al. | Oct 2003 | A1 |
20030200125 | Erlanger | Oct 2003 | A1 |
20030212610 | Duffy et al. | Nov 2003 | A1 |
20040039757 | McClure | Feb 2004 | A1 |
20040059740 | Hanakawa et al. | Mar 2004 | A1 |
20040186750 | Surbey et al. | Sep 2004 | A1 |
20040193455 | Kellington | Sep 2004 | A1 |
20050071203 | Maus | Mar 2005 | A1 |
20050080804 | Bradshaw et al. | Apr 2005 | A1 |
20050097061 | Shapiro et al. | May 2005 | A1 |
20050137928 | Scholl et al. | Jun 2005 | A1 |
20050144195 | Hesselink et al. | Jun 2005 | A1 |
20060059418 | Elkady | Mar 2006 | A1 |
20060100912 | Kumar et al. | May 2006 | A1 |
20060184452 | Barnes et al. | Aug 2006 | A1 |
20060195491 | Nieland et al. | Aug 2006 | A1 |
20060195494 | Dietrich | Aug 2006 | A1 |
20060259524 | Horton | Nov 2006 | A1 |
20070006222 | Maier et al. | Jan 2007 | A1 |
20070016465 | Schaad | Jan 2007 | A1 |
20070061154 | Markvoort et al. | Mar 2007 | A1 |
20070067772 | Bustamante | Mar 2007 | A1 |
20070146823 | Borchers et al. | Jun 2007 | A1 |
20070186214 | Morgan | Aug 2007 | A1 |
20070244921 | Blair | Oct 2007 | A1 |
20070244935 | Cherkasov | Oct 2007 | A1 |
20070245230 | Cherkasov | Oct 2007 | A1 |
20070282927 | Polouetkov | Dec 2007 | A1 |
20080002830 | Cherkasov et al. | Jan 2008 | A1 |
20080040690 | Sakai | Feb 2008 | A1 |
20080091846 | Dang | Apr 2008 | A1 |
20080243897 | Petri | Oct 2008 | A1 |
20090055242 | Rewari et al. | Feb 2009 | A1 |
20090119133 | Yeransian et al. | May 2009 | A1 |
20090328171 | Bayus et al. | Dec 2009 | A1 |
20100060926 | Smith et al. | Mar 2010 | A1 |
20100064230 | Klawitter et al. | Mar 2010 | A1 |
20100064258 | Gorczowski et al. | Mar 2010 | A1 |
20100064375 | Gorczowski et al. | Mar 2010 | A1 |
20100076993 | Klawitter et al. | Mar 2010 | A1 |
20100091317 | Williams et al. | Apr 2010 | A1 |
20100161616 | Mitchell | Jun 2010 | A1 |
20100179883 | Devolites | Jul 2010 | A1 |
20100191785 | Serlet et al. | Jul 2010 | A1 |
20110119574 | Rogers et al. | May 2011 | A1 |
20110145037 | Domashchenko et al. | Jun 2011 | A1 |
20110153560 | Bryant et al. | Jun 2011 | A1 |
20110161375 | Tedder et al. | Jun 2011 | A1 |
20110173153 | Domashchenko et al. | Jul 2011 | A1 |
20110283177 | Gates et al. | Nov 2011 | A1 |
20120150919 | Brown et al. | Jun 2012 | A1 |
20120232934 | Zhang et al. | Sep 2012 | A1 |
20120271657 | Anderson et al. | Oct 2012 | A1 |
20130024418 | Sitrick et al. | Jan 2013 | A1 |
20130073942 | Cherkasov | Mar 2013 | A1 |
Number | Date | Country |
---|---|---|
2646167 | Oct 2007 | CA |
2649441 | Oct 2007 | CA |
2733857 | Sep 2010 | CA |
2761405 | Jun 2012 | CA |
2737734 | Oct 2012 | CA |
0585192 | Mar 1994 | EP |
60-41138 | Mar 1985 | JP |
3-282941 | Dec 1991 | JP |
4-373026 | Dec 1992 | JP |
2007120772 | Oct 2007 | WO |
2007120773 | Oct 2007 | WO |
2007120774 | Oct 2007 | WO |
2010030675 | Mar 2010 | WO |
2010030676 | Mar 2010 | WO |
2010030677 | Mar 2010 | WO |
2010030678 | Mar 2010 | WO |
2010030679 | Mar 2010 | WO |
2010030680 | Mar 2010 | WO |
Entry |
---|
Gray, K. E. (2006). Towards customizable pedagogic programming languages. (Order No. 3224978, The University of Utah). ProQuest Dissertations and Theses, , 144-144 p. Retrieved from http://search.proquest.com/docview/304985817?accountid=14753. (304985817). |
Hwang, J. Y. (2009). Development of a multi-mode optical imaging system for preclinical applications in vivo. (Order No. 3368560, University of Southern California). ProQuest Dissertations and Theses, , 143. Retrieved from http://search.proquest.com/docview/304997952?accountid=14753. (304997952). |
“Update insurance template according to changes to policy” retrieved from URL=https://www.google.com/?tbm=pts on Sep. 24, 2012, 2 pages. |
Brown et al., “Agency Management System and Content Management System Integration,” Amendment filed Jan. 9, 2013, for U.S. Appl. No. 13/004,572, 23 pages. |
Brown et al., “Agency Management System and Content Management System Integration,” Office Action mailed Oct. 9, 2012, for U.S. Appl. No. 13/004,572, 24 pages. |
Brown et al., “Agency Management System and Content Management System Integration,” Office Action mailed Feb. 13, 2013, for U.S. Appl. No. 13/004,572, 29 pages. |
Zhang et al., “Agency Management System and Content Management System Integration,” U.S. Appl. No. 61/422,090, filed Dec. 10, 2010, 54 pages. |
Zhang et al., “Automated Insurance Policy Form Generation and Completion,” Amendment filed Oct. 2, 2012, for U.S. Appl. No. 13/046,501, 18 pages. |
Zhang et al., “Automated Insurance Policy Form Generation and Completion,” Office Action mailed Jun. 20, 2012, for U.S. Appl. No. 13/046,501, 22 pages. |
“AMS Real-Time Getting Started Guide,” AMS Services, Vertafore, Inc., 9 pages, 2008. |
“VERITAS Replication Exec version 3.1 for Windows,” Administrator's Guide, pp. i-20, 49-68, and 119-160, Dec. 2004, 100 pages. |
Announcement, “Coming Attraction, AMS Invites you to a Special Sneak Preview,” AMS Services, 1 page, Aug. 1, 2008. |
Brochure, “AMS 360—Business Growth. Productivity. Proven Technology.,” Vertafore, Inc., 8 pages, 2008. |
Brown et al., “Agency Management System and Content Management System Integration,” Amendment filed Apr. 12, 2013, for U.S. Appl. No. 13/004,572, 18 pages. |
Brown et al., “Agency Management System and Content Management System Integration,” filed Dec. 10, 2010, for U.S. Appl. No. 61/422,090, 54 pages. |
Bryant et al., “Apparatus, Method and Article to Manage Electronic or Digital Documents in a Networked Enviornment,” Amendment filed May 11, 2012, for U.S. Appl. No. 12/641,843, 24 pages. |
Bryant et al., “Apparatus, Method and Article to Manage Electronic or Digital Documents in a Networked Enviornment,” Amendment filed Sep. 19, 2012, for U.S. Appl. No. 12/641,843, 23 pages. |
Bryant et al., “Apparatus, Method and Article to Manage Electronic or Digital Documents in a Networked Enviornment,” Final Rejection mailed Jul. 19, 2012, for U.S. Appl. No. 12/641,843, 17 pages. |
Bryant et al., “Apparatus, Method and Article to Manage Electronic or Digital Documents in a Networked Enviornment,” Non- Final Office Action mailed Feb. 14, 2012, for U.S. Appl. No. 12/641,843, 15 pages. |
Corriveau et al., “AMS Portal Server: Bridging the Gap Between Web Presentation and the Back Office,” White Paper, AMS Services, 13 pages, 2008. |
Snyder et al., “Apparatus, Method and Article to Automate and Manage Communications in a Networked Environment,” filed Apr. 19, 2012, for U.S. Appl. No. 13/451,139, 70 pages. |
Snyder et al., “Apparatus, Method and Article to Automate and Manage Communications in a Networked Environment,” Office Action mailed Jun. 18, 2013, for U.S. Appl. No. 13/451,139, 24 pages. |
Snyder et al., “Apparatus, Method and Article to Automate and Manage Communications to Multiple Entities in a Networked Environment,” filed Apr. 19,2012, for U.S. Appl. No. 13/451,168, 82 pages. |
Snyder et al., “Apparatus, Method and Article to Automate and Manage Communications to Multiple Entities in a Networked Environment,” Office Action mailed Jun. 18, 2013, for U.S. Appl. No. 13/451,168, 27 pages. |
Snyder et al., “Apparatus, Method and Article to Automate and Manage Electronic Documents in a Networked Enviornment,” Office Action mailed Feb. 5, 2013, for U.S. Appl. No. 13/451,136, 22 pages. |
Snyder et al., “Apparatus, Method and Article to Automate and Manage Electronic Documents in a Networked Enviornment,” filed Apr. 19, 2012, for U.S. Appl. No. 13/451,136, 80 pages. |
Snyder et al., “Apparatus, Method and Srticle to Provide an Insurance Workflow Management System,” filed Aug. 29, 2012, for U.S. Appl. No. 13/598,297, 86 pages. |
Tedder et al., “Systems, Methods and Articles for Template Based Generation of Markup Documents to Access Back Office Systems,” Amendment filed May 3, 2012, for U.S. Appl. No. 12/647,235, 16 pages. |
Tedder et al., “Systems, Methods and Articles for Template Based Generation of Markup Documents to Access Back Office Systems,” Amendment filed Sep. 10, 2012, for U.S. Appl. No. 12/647,235, 21 pages. |
Tedder et al., “Systems, Methods and Articles for Template Based Generation of Markup Documents to Access Back Office Systems,” Final Office Action mailed Jul. 10, 2012, for U.S. Appl. No. 12/647,235, 20 pages. |
Tedder et al., “Systems, Methods and Articles for Template Based Generation of Markup Documents to Access Back Office Systems,” Non-Final Office Action mailed Feb. 3, 2012, for U.S. Appl. No. 12/647,235, 20 pages. |
“Adobe Introduces Adobe Acrobat 3.0 Software,” PR Newswire, Jun. 3, 1996, 3 pages. |
“CoreData Inc. Announces Technology and Marketing Agreement with MobileStar Network Corp.,” Business Wire, Aug. 26, 1998, 2 pages. |
“CoreData Offers E-mail Connectivity for RemoteWorx,” Newsbytes News Network, Sep. 18, 1998, 1 page. |
“Free Sticky Notes software—Sticky Notes program MoRUN.net Sticker Lite,” Jan. 11, 2006, retrieved from http://web.archive.org/web/20060112031435/http://www.sticky-notes.net/free/stickynotes.html, on Oct. 10, 2013, 2 pages. |
“Internet lifts servers to 64 bits,” Electronic Engineering Times, Dec. 23, 1996, 3 pages. |
“NotesPlusPlus,” Feb. 25, 2006, retrieved from http://web.archive.org/web/20060225020405/http://www.sharewareconnection.com/notesplusplus.htm, on Oct. 10, 2013, 2 pages. |
“SPSS Unveils Aggressive Development Plans: 1999 Product Releases Will Focus on Scalability and Deployment Solutions for the Enterprise,” Business Wire, Feb. 18, 1999, 3 pages. |
“Windows XP: The Complete Reference: Using Files and Folders,” Apr. 28, 2004, retrieved from http://web.archive.org/web/20040428222156/http://delltech.150m.com/XP/files/7.htm, on Oct. 10, 2013, 4 pages. |
Extended European Search Report, dated Jul. 9, 2012, for Application No. 07755347.7, 8 pages. |
Extended European Search Report, dated Jun. 14, 2012, for Application No. 07755348.5, 8 pages. |
Extended European Search Report, dated Jun. 19, 2012, for Application No. 07755349.3, 8 pages. |
Extended European Search Report, dated Jun. 14, 2012, for Application No. 07755350.1, 9 pages. |
Fogel, “Open Source Development With CVS,” Copyright 1999, 2000, retrieved from http://web.archive.org/web/20000815211634/http://cvsbook.red-bean.com/cvsbook.ps, on Oct. 10, 2013, 218 pages. |
Gadia, “A Homogeneous Relational Model and Query Languages for Temporal Databases,” ACM Transactions on Database Systems 13(4):418-448, Dec. 1988. |
Gage, “Sun's ‘objective’ is to populate Java networks,” Computer Reseller News, Apr. 15, 1996, p. 69, 2 pages. |
International Search Report and Written Opinion, mailed Aug. 5, 2008, for PCT/US2007/009040, 7 pages. |
International Search Report and Written Opinion, mailed Jul. 18, 2008, for PCT/US2007/009041, 8 pages. |
International Search Report and Written Opinion, mailed Jul. 14, 2008, for PCT/US2007/009042, 6 pages. |
International Search Report and Written Opinion, mailed Jul. 18, 2008, for PCT/US2007/009043, 9 pages. |
Murdock, “Office Automation System for Data Base Management and Forms Generation,” U.S. Appl. No. 07/471,290, filed Jan. 26, 1990, 163 pages. |
Snodgrass et al., “Temporal Databases,” IEEE Computer, Sep. 1986, pp. 35-42. |
Number | Date | Country | |
---|---|---|---|
20120271657 A1 | Oct 2012 | US |