Information
-
Patent Grant
-
6621403
-
Patent Number
6,621,403
-
Date Filed
Tuesday, November 20, 200123 years ago
-
Date Issued
Tuesday, September 16, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 337 55
- 337 56
- 337 59
- 337 75
- 337 78
- 337 99
- 337 101
- 337 111
- 335 21
- 335 27
- 335 31
- 335 43
- 335 44
- 335 141
- 335 145
-
International Classifications
- H01H7110
- H01H7116
- H01H6101
-
Abstract
An overload tripping device includes a temperature-compensating bimetal operating as a tripping lever and interposed between an output lever of a differential shifter mechanism linked with a main bimetal and a latch receiver of an opening-and-closing mechanism section of a circuit breaker. The temperature-compensating bimetal has an intermediate portion journaled on a bimetal holder. An operating arm made of a light molding material is attached to a tip of the temperature-compensating bimetal so as to push the latch receiver. Additionally, a balance weight may be installed on the temperature-compensating bimetal to balance inertial moments on the opposite sides of the bimetal. Thus, the circuit breaker is prevented from being inadvertently tripped due to external stimulus.
Description
BACKGROUND OF THE INVENTION AND RELATED ART STATEMENT
The present invention relates to a bimetal overload tripping device installed in a circuit breaker, such as an autobreaker.
Taking the autobreaker as an example, a configuration of a circuit breaker in which the present invention is implemented will be described with reference to FIGS.
3
(
a
) and
3
(
b
). In these figures, reference numeral
1
denotes a main body case of a circuit breaker (in the figures, the cover has been removed from the case),
2
is a power supply side main circuit terminal,
3
is a load side circuit terminal,
4
is a handle for opening and closing operations, and
5
is an adjustment dial for adjusting a current flowing through a thermal overload/open-phase tripping device to a rated value described below. The case
1
internally has a breaking section
8
formed of a movable contact shoe
8
a
, a fixed contact shoe
8
b
, and an arc extinguish chamber
8
c
, an opening-and-closing mechanism section
9
for driving the movable contact shoe
8
a
of the breaking section
8
to an open or a closed position, a thermal overload/open-phase tripping device
10
, an electromagnetic instantaneous tripping device
11
, and other parts.
The thermal overload/open-phase tripping device
10
is formed of a combination of a heater-mounted main bimetal
12
connected to each phase of a main circuit, a differential shifter mechanism
13
linked with an operating end of the main bimetal of each phase to detect operational displacement of the bimetal, and a temperature-compensating bimetal
14
interposed between the differential shifter mechanism
13
and a latch receiver incorporated in the opening-and-closing mechanism section
9
to transmit an output signal from the differential shifter mechanism to the latch receiver in order to trip the opening-and-closing mechanism section
9
, with the temperature-compensating bimetal also acting as a tripping lever.
Furthermore, the differential shifter mechanism
13
includes a combination of a slide push shifter
15
and a pull shifter
16
located on opposite sides of the arrangement of the main bimetal
12
of each phase, and fitted and supported in a groove in an interphase partition wall
1
b
of the case
1
, with an output lever
17
extending across the top surfaces of the push shifter
15
and pull shifter
16
and coupled to these shifters
15
and
16
with pins so as to move therewith. Arm portions projecting from the push shifter
15
and pull shifter
16
face each other, with the main bimetal
12
of each phase located between the arm portions.
The temperature-compensating bimetal
14
in the illustrated example is formed by bending a piece of bimetal like a hair pin, and has one end journaled on a bearing
18
linked with the adjustment dial
5
and the other end facing the output lever
17
of the above-described differential shifter mechanism
13
. Moreover, an operating piece extending from near the bearing toward the opening-and-closing mechanism section
9
faces the latch receiver of the opening-and-closing mechanism section.
When the overload tripping device configured as described above is operated, an overload current flows through the main circuit to bend the main bimetal
12
in a predetermined direction, and the push shifter
15
and pull shifter
16
of the differential shifter mechanism
13
are displaced so as to follow the bending of the main bimetal
12
. Then, the output lever
17
pushes a tip of the temperature-compensating bimetal
14
. Therefore, the temperature
5
compensating bimetal
14
rotates clockwise around a shaft support point of the bearing
18
, causing the operating piece thereof to push the latch receiver to a released position. Synchronously with this movement, the opening-and-closing mechanism section
9
is tripped to open the movable contact shoe
8
a
of the breaking section
8
, thereby interrupting the main circuit current. Furthermore, if an open phase occurs in the main circuit, the push shifter
15
and pull shifter
16
of the differential shifter mechanism
13
differentially operate to cause the output lever
17
to rotate counterclockwise around the pin coupling the output lever to the pull shifter. Thus, the temperature-compensating bimetal
14
is pushed to trip the circuit breaker, as described above.
Since the driving force or displacement of the main bimetal, which is effected when the main bimetal is bent to swing the temperature-compensating bimetal
14
, is small, the latch receiver of the opening-and-closing mechanism section
9
is designed to move to its release position under a weak driving force.
In contrast, the electromagnetic instantaneous tripping device
11
includes a tripping coil
11
a
connected to the main circuit, a yoke
11
b
, a plunger
11
c
, and a tripping lever
11
d
following a movement of the plunger
11
c
. When an overcurrent flows through the main circuit due to a short circuit or the like, the plunger
11
c
carries out a sucking or pulling operation, causing the tripping lever lid to release the latch receiver of the opening-and-closing mechanism section
9
, thereby instantaneously tripping the circuit breaker.
Furthermore, the temperature-compensating bimetal
14
in the illustrated example is bent like a hairpin and has one pivotally supported end. However, the temperature-compensating bimetal may be linearly formed so as to have a longitudinally intermediate point thereof journaled by the bearing so as to swing therearound, with one end thereof facing the output lever of the differential shifter mechanism and the other end facing the latch receiver of the opening-and-closing mechanism section via the intermediate lever. Alternatively, the tip of the temperature-compensating bimetal may extend toward the latch receiver without using the intermediate lever, or another metallic arm portion may be welded to the tip of the temperature-compensating bimetal so as to directly push the latch receiver, thereby allowing signals to be transmitted more efficiently.
In the above conventional configuration for the temperature-compensating bimetal, also acting as the tripping lever, opposite sides extending from the swinging shaft support point thereof toward the differential shifter and the latch receiver, respectively, have different lengths and masses.
In this case, if the temperature-compensating bimetal is linearly formed so as to have the longitudinally intermediate point journaled by the bearing to swing therearound, and the tip of the temperature-compensating bimetal is extended toward the latch receiver or another metallic arm portion is welded to the tip of the temperature-compensating bimetal so as to face the latch receiver, then the tip side with respect to the swinging shaft support point has a larger mass and thus a larger inertial moment than the opposite end. Consequently, the opposite sides of the temperature-compensating bimetal with respect to the swinging shaft support point are imbalanced.
Therefore, if an external stimulus, e.g., vibration or impact, is applied to a circuit breaker during use, the temperature-compensating bimetal may swing around the swinging shaft support point like a pendulum due to the difference in the inertial moment described above, pushing the latch receiver of the opening-and-closing mechanism section to its released position. Thus, although no overload current is flowing through the main circuit, the circuit breaker may be tripped to interrupt the main circuit.
The present invention is designed to resolve these issues, and an object of the invention is to provide an overload tripping device for a circuit breaker having an improved vibration-resisting performance so as to prevent the circuit breaker from being inadvertently tripped due to an external stimulus, such as a vibration or impact.
SUMMARY OF THE INVENTION
To attain this objective, the present invention provides an overload tripping device for a circuit breaker formed of a combination of a main bimetal for detecting overloads, a differential shifter mechanism linked with the main bimetal, and a temperature-compensating bimetal interposed between an output end of the differential shifter mechanism and an opening-and-closing mechanism section to transmit an output signal from the differential shifter to a latch receiver of the opening-and-closing mechanism section. The temperature-compensating bimetal also acts as a tripping lever, and has an longitudinally intermediate portion journaled so as to swing therearound and one end facing an output lever of the differential shifter mechanism. An operating arm made of a molding material, such as plastic, that has a lower density than metal is attached to a tip of the temperature-compensating bimetal, so that the tip of the temperature-compensating bimetal faces the latch receiver of the opening-and-closing mechanism section via the operating arm (first aspect of the invention).
With this configuration, the tip side of the temperature-compensating bimetal is lighter than the conventional structure, which has a portion pushing the latch receiver made of metal, thus reducing the difference in an inertial moment between the opposite sides of the bimetal with respect to the swinging shaft support point to maintain a substantially even balance between these sides. This, in turn, reduces the swinging vibration of the temperature-compensating bimetal induced by an external stimulus, thereby allowing the circuit breaker to resist vibration properly when it is inadvertently tripped.
Furthermore, according to the present invention, in order to further improve the vibration resistance of the overload tripping device, the temperature-compensating bimetal has a balance weight additionally installed thereon to correct imbalance between the inertial moments on opposite sides thereof with respect to the shaft support point thereof (second aspect of the invention).
By adding the balance weight to the temperature-compensating bimetal, the above-described balance of the inertial moment can be further enhanced. The balance weight is made of metal and is attached to an optimal position, depending on the degree of deviation of the center of gravity of the temperature-compensating bimetal that deviates from its correct position.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS.
1
(
a
) to
1
(
c
) show a configuration of essential parts of an overload tripping device according to an embodiment of the present invention, wherein FIG.
1
(
a
) is a top plan view, FIG.
1
(
b
) is a front view, and FIG.
1
(
c
) is a side view;
FIGS.
2
(
a
) to
2
(
d
) illustrate an operation performed by the device shown in FIGS.
1
(
a
)-
1
(
c
), wherein FIGS.
2
(
a
) and
2
(
b
) are top plan views of the tripping device, illustrating a steady state and a tripping operation state, respectively, and FIGS.
2
(
c
) and
2
(
d
) are side views of the tripping device, illustrating the steady state and the tripping operation state, respectively; and
FIGS.
3
(
a
) and
3
(
b
) show an entire structure of an autobreaker in which a conventional overload tripping device is installed, wherein FIG.
3
(
a
) is a top plan view illustrating an internal mechanism, and FIG.
3
(
b
) is a side sectional view thereof.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
Embodiments of the present invention will be described below on the basis of structures shown in FIG.
1
(
a
) to FIG.
2
(
d
).
In the figures illustrating the embodiment, members that correspond to FIGS.
3
(
a
) and
3
(
b
) are denoted by the same reference numerals, and a description thereof is omitted.
First, in FIGS.
1
(
a
) to
1
(
c
), a temperature-compensating bimetal
14
, also acting as an overload tripping lever of the circuit breaker, is formed by a plate-like piece of bimetal, and has a longitudinally intermediate portion journaled on a bimetal holder
5
b
assembled on a holder
5
a
for the adjustment dial
5
, so that the bimetal can swing in the direction indicated by the arrows in the figures. The temperature-compensating bimetal
14
has a right end facing the output lever
17
of the differential shifter mechanism
13
, as described in FIGS.
3
(
a
) and
3
(
b
). Furthermore, a left end of the temperature-compensating bimetal
14
has an operating arm
19
having a holding portion or hole
19
a
and a tip
19
b
. The operating arm is made of plastic, e.g. nylon, which is lighter than metal. The temperature-compensating bimetal
14
is fitted in the holding portion
19
a
, and the tip
19
b
of the operating arm
19
faces the latch receiver
9
a
of the opening-and-closing mechanism section to be able to push the same. The bimetal holder
5
b
is linked with a cam portion (not shown) of the adjustment dial
5
to move and regulate the position of a shaft support point A of the temperature-compensating bimetal
14
in accordance with a set value for the rated current.
A tripping operation of the above configuration will be described with reference to FIGS.
2
(
a
) to
2
(
d
). FIGS.
2
(
a
) and
2
(
c
) illustrate a steady state, and FIGS.
2
(
b
) and
2
(
d
) illustrate an overload tripping state. That is, in the steady state, the output lever
17
is stopped in a receding position where it is separated from the temperature-compensating bimetal
14
. Accordingly, the temperature-compensating bimetal
14
is in a free neutral state in which the operating arm
19
installed at the tip of the bimetal does not push the latch receiver
9
a
, so that the breaking section
8
of the circuit breaker, shown in FIG.
3
(
b
), remains in a closed condition.
On the other hand, when the main bimetal described in FIGS.
3
(
a
) and
3
(
b
) detects an overload or an open phase in the main circuit, the differential shifter mechanism follows the bending of the main bimetal to cause the output lever
17
to push the temperature-compensating bimetal
14
. Therefore, the temperature-compensating bimetal
14
swings clockwise around the swinging shaft support point A, and a tip
19
a
of the operating arm
19
thus pushes the latch receiver
9
a
in the direction shown by the arrows in the figures. As a result, the latch receiver
9
a
moves to its released position using a support shaft
9
a
-
1
as a support point, thereby tripping the opening-and-closing mechanism section. Simultaneously with this tripping operation, the breaking section is opened.
In this case, since the operating arm
19
installed at the tip of the temperature-compensating bimetal
14
is made of plastic molding, which has a lower density than metal, as described above, the balance between inertial moments on the right and left sides of the temperature-compensating bimetal
14
, including the operating arm
19
, with respect to the swinging shaft support point A is substantially maintained in order to restrain the center of gravity from deviating from its correct position.
Consequently, even if an external stimulus, such as a vibration or impact, is applied to the circuit breaker, the temperature-compensating bimetal
14
will not be stimulated and swing like a pendulum around the shaft support point A to push the latch receiver
9
a
of the opening-and-closing mechanism section to its released position, thereby inadvertently tripping the circuit breaker. Thus, the tripping device can resist vibration more appropriately.
Next, an applied variation of the embodiment according to a second aspect of the invention is explained, in which the above tripping device has a further improved vibration resistance. That is, in the above configuration, if the mass is still imbalanced between the right and left sides of the temperature-compensating bimetal
14
with respect to the swinging shaft support point A when the operating arm
19
attached to the tip of the temperature-compensating bimetal
14
is made of plastic molding which is lighter than metal, a balance weight
20
is additionally attached to a location of the temperature-compensating bimetal
14
at the right side with respect to the shaft support point A, as shown in the illustrated embodiment. Thus, the inertial moment with respect to the shaft support point A can be corrected in order to maintain an even balance between the right and left sides of the bimetal. The balance weight
20
is made of metal and is attached to an optimal location so that the balance of the temperature-compensating bimetal
14
is maintained.
As described above, according to the configuration of the present invention for the temperature-compensating bimetal interposed between the output end of the differential shifter mechanism and the opening-and-closing mechanism section to transmit an output signal from the differential shifter to the latch receiver of the opening-and-closing mechanism section, with the temperature-compensating bimetal also acting as a tripping lever, the operating arm made of a light molding material is attached to the tip of the temperature-compensating bimetal so that the tip of the temperature-compensating bimetal faces the latch receiver of the opening-and-closing mechanism section via the operating arm. Consequently, the difference in inertial moment between the opposite sides of the temperature-compensating bimetal with respect to the swinging shaft support point is reduced in order to maintain a substantially even balance between these sides. This reduces the pendulum vibration of the temperature-compensating bimetal induced by an external stimulus, thereby allowing the circuit breaker to resist vibration more properly when it is inadvertently tripped.
By adding the balance weight to the temperature-compensating bimetal to correct the imbalance between the inertial moments on the opposite sides of the bimetal with respect to the shaft support point thereof, the balance of the inertial moment can be further enhanced to improve the vibration resistance.
While the invention has been explained with reference to the specific embodiments of the invention, the explanation is illustrative and the invention is limited only by the appended claims.
Claims
- 1. An overload tripping device for a circuit breaker, comprising:a main bimetal for detecting an overload, a differential shifter mechanism linked with the main bimetal and having an output end, and a temperature-compensating bimetal device situated adjacent to the output end of the differential shifter mechanism to transmit an output signal from the differential shifter to a latch receiver of an opening-and-closing mechanism section and acting as a tripping lever, said temperature-compensating bimetal device having an intermediate portion in a longitudinal direction thereof to be journaled to swing thereat, one end facing the output end of the differential shifter, and an operating arm made of a light molding material attached to the other end thereof and adapted to face the latch receiver of the opening-and-closing mechanism.
- 2. An overload tripping device according to claim 1, wherein said temperature-compensating bimetal device has a balance weight thereon to correct any imbalance between inertial moments on opposite sides thereof with respect to the intermediate portion thereof.
- 3. An overload tripping device according to claim 1, wherein said temperature-compensating bimetal device has an elongated bimetal having said one and the other ends, and said operating arm has a holding portion for receiving the other end of the bimetal and a tip extending from the holding section to face the latch receiver.
- 4. An overload tripping device according to claim 3, wherein said elongated bimetal has projections extending opposite directions at the intermediate portion.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2000-364331 |
Nov 2000 |
JP |
|
US Referenced Citations (7)
Foreign Referenced Citations (4)
Number |
Date |
Country |
2000348597 |
Dec 2000 |
JP |
2001256876 |
Sep 2001 |
JP |
2001345038 |
Dec 2001 |
JP |
2002170474 |
Jun 2002 |
JP |