The present disclosure generally relates to medical devices. More particularly, the present disclosure relates to optical-fiber imaging probes, methods of manufacturing optical-fiber imaging probes, as well as systems and methods for imaging biological samples using such probes.
Optical-fiber-based imaging probes, such as catheters and endoscopes, have been developed to access and image internal organs of humans and animals, and are now commonly used in various medical fields. Using an optical fiber based probe for imaging bodily lumens is getting more and more prevalent in a number of applications that can benefit from miniaturized probe sizes and high resolution images. In most of these applications, in order to provide a reasonable field of view, a rotating fiber with distal beam-forming optics is employed. Since these probes are required to be disposable in most medical applications, it is imperative to keep costs of such probes as low as possible, while maintaining high image quality.
Various methods have been previously disclosed for manufacturing miniature optical systems suitable for optical fiber imaging probes that provide some of the desired functionality described above. For example, in cardiology, optical coherence tomography (OCT), white light back-reflection, near infrared spectroscopy (NIRS) and fluorescence optical probes have been developed to obtain structural and/or molecular images of vessels and other bodily lumens with a catheter. An OCT catheter, which generally comprises a sheath, a torque coil and an optical probe inside the coil, is navigated through a lumen (e.g., a coronary artery), by manual or automatic control, to obtain intraluminal images. To miniaturize the size of the probe and improve image quality, for example, pre-grant publication US 2010/0253949 discloses an optical cap having a lensed surface configured to redirect light from a rotating probing fiber and focus the light outside of the cap. In another example, U.S. Pat. RE 45,512 discloses an OCT probe having a ball lens with multiple surfaces for reducing astigmatism of the focusing light.
Similarly, spectrally encoded endoscopy (SEE) is a technology that utilizes optical fibers, miniature optics, and a diffraction grating for high-speed imaging through small diameter and flexible endoscopic probes. Monochromatic or polychromatic light emanating from the diffraction grating at the distal end of an SEE probe is spectrally dispersed and projected in such a way that that each diffractive order or each color (wavelength) illuminates a different location of a sample (tissue) in one line (a spectrally-encoded dispersive line). Reflected light from the tissue can be collected and decoded by a spectrometer to form a line image, where each position of the line image corresponds to the specific wavelength of illumination. Spatial information in the other dimension perpendicular to the dispersive line is obtained by moving the probe using a motor, or by using a galvanometric scanner. SEE has been demonstrated to produce high quality images in two and three dimensions in monochromatic as well as in multiple color wavelengths. See for example U.S. Pat. No. 9,295,391.
Recent disclosures by the present applicant have addressed some aspects of certain needs for improvement in SEE imaging probes. For example, U.S. Pat. No. 10,288,868 discloses that, in an optical arrangement for forward viewing SEE, the imaging probe can comprise, a light guiding component, a light focusing component, a light reflecting component, and a simplified grating element along the probe optical axis, such that, when the light is transmitted through the grating component, at least one diffracted light propagates directly in a forward direction substantially parallel to the probe optical axis. In addition, U.S. Pat. No. 10,261,223 discloses a method for fabrication of a miniature endoscope using nanoimprint lithography. This patent discloses the fabrication method of an SEE endoscope by using nanoimprint lithography (micro-stamping) to form a diffractive patterned surface directly on the distal end of the probe. In one configuration, the optical probe includes an optical fiber and a gradient-index (GRIN) lens, and the method includes forming the diffractive configuration (a grating) directly on a distal end of the GRIN lens. Other related art for SEE imaging probes includes U.S. Pat. Nos. 8,145,018; 7,796,270; 7,859,679; 8,045,177; 8,812,087; 8,780,176.
However, these extremely small optical elements are fragile, difficult to handle, and prone to damage during manufacturing and operation. In particular, during operation, when the probe is immersed in fluids, such as water, contrast agents, blood, or stomach acid, or when the probe is rotated and/or translated at high speed in order to form an image, these extremely small optical elements can break or become detached. The overall effect of these drawbacks is that miniature optical systems are difficult to manufacture, prone to damage, and excessively expensive to be disposable. Therefore, there remains a need for fiber-optic-based imaging probes that can be fabricated easily, at low cost, and can maintain the ability to provide high quality images.
According to at least one embodiment of the present disclosure a process of forming an optical probe includes overmolding a distal optics component over a light guiding component and/or a light focusing component. More specifically, the process includes (a) a step of inserting and positioning a distal end of a light guiding component such as an optical fiber inside a mold adapted to form a distal optics component having at least one beam directing surface; (b) a step of injecting molten optically transparent material (thermoplastic or glass) into the mold; (c) a step of allowing time for the injected material to solidify; and (d) an step opening the mold and removing the distal end of the light guiding component with the distal optics component directly molded on the distal end of the light guiding component.
According to at least one more embodiment, an optical probe includes a drive cable, a light guiding component arranged inside the driver cable, and a distal optics component formed directly over the end of the light guiding component by overmolding. The drive cable has a shape of a hollow shaft extending from a proximal end to a distal end of the probe. The light guiding component includes a single mode fiber or a multi-mode fiber, and the fiber can be a multi-clad fiber. The distal optics component is directly molded over the fiber end making the probe manufacturing less expensive in mass production. The molded distal optics component strengthens the connections at the interface between the light guiding component and other optical components of the probe (e.g., GRIN lens to fiber, and GRIN lens to spacer).
According to another embodiment, the optical probe further includes a mechanical housing bonded to the distal end of the drive cable. In this embodiment, the distal optics component includes, an optical spacer, a reflective surface, a focusing lens, and a lead-in end all formed in a single part molded at least partially inside the metallic housing and contacting directly the distal end of the optical fiber. The distal optics component may be injection molded out of transparent thermoplastic material or compression molded out of glass.
These and other objects, features, and advantages of the present disclosure will become apparent to persons of ordinary skill in the art upon reading the following detailed description of exemplary embodiments in conjunction with the enclosed drawings, and appended claims.
Further objects, features and advantages of the present disclosure will become apparent from the following detailed description when taken in conjunction with the accompanying figures showing illustrative embodiments of the present disclosure.
The exemplary embodiments disclosed herein are based on an objective of providing micron-sized fiber-optic-based imaging probes that can be fabricated easily, at low cost, and can maintain the ability to provide high quality images. As used herein, micron-sized imaging probes and optical elements thereof may refer to components having physical dimensions 1.5 millimeter (mm) or less in diameter.
Throughout the figures, the same reference numerals and characters, unless otherwise stated, are used to denote like features, elements, components or portions of the illustrated embodiments. In addition, while the subject disclosure is described in detail with reference to the enclosed figures, it is done so in connection with illustrative exemplary embodiments. It is intended that changes and modifications can be made to the described exemplary embodiments without departing from the true scope and spirit of the subject disclosure as defined by the appended claims. Although the drawings represent some possible configurations and approaches, the drawings are not necessarily to scale and certain features may be exaggerated, removed, or partially sectioned to better illustrate and explain certain aspects of the present disclosure. The descriptions set forth herein are not intended to be exhaustive or otherwise limit or restrict the claims to the precise forms and configurations shown in the drawings and disclosed in the following detailed description.
When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached”, “coupled” or the like to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown in one embodiment can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” to another feature may have portions that overlap or underlie the adjacent feature.
The terms first, second, third, etc. may be used herein to describe various elements, components, regions, parts and/or sections. It should be understood that these elements, components, regions, parts and/or sections are not limited by these terms of designation. These terms of designation have been used only to distinguish one element, component, region, part, or section from another region, part, or section. Thus, a first element, component, region, part, or section discussed below could be termed a second element, component, region, part, or section merely for purposes of distinction but without limitation and without departing from structural or functional meaning.
As used herein, the singular forms “a”, “an”, and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It should be further understood that the terms “includes” and/or “including”, “comprises” and/or “comprising”, “consists” and/or “consisting” when used in the present specification and claims, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof not explicitly stated. Further, in the present disclosure, the transitional phrase “consisting of” excludes any element, step, or component not specified in the claim. It is further noted that some claims or some features of a claim may be drafted to exclude any optional element; such claims may use exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or it may use of a “negative” limitation.
The term “about” or “approximately” as used herein means, for example, within 10%, within 5%, or less. In some embodiments, the term “about” may mean within measurement error. In this regard, where described or claimed, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical range, if recited herein, is intended to include all sub-ranges subsumed therein. As used herein, the term “substantially” is meant to allow for deviations from the descriptor that do not negatively affect the intended purpose. For example, deviations that are from limitations in measurements, differences within manufacture tolerance, or variations of less than 5% can be considered within the scope of substantially the same. The specified descriptor can be an absolute value (e.g. substantially spherical, substantially perpendicular, substantially concentric, etc.) or a relative term (e.g. substantially similar, substantially the same, etc.).
The present disclosure generally relates to medical devices, and it exemplifies embodiments of an optical probe which may be applicable to a spectroscopic apparatus (e.g., an endoscope), an optical coherence tomographic (OCT) apparatus, or a combination of such apparatuses (e.g., a multi-modality optical probe). The embodiments of the optical probe and portions thereof are described in terms of their state in a three-dimensional space. As used herein, the term “position” refers to the location of an object or a portion of an object in a three-dimensional space (e.g., three degrees of translational freedom along Cartesian X, Y, Z coordinates); the term “orientation” refers to the rotational placement of an object or a portion of an object (three degrees of rotational freedom—e.g., roll, pitch, and yaw); the term “posture” refers to the position of an object or a portion of an object in at least one degree of translational freedom and to the orientation of that object or portion of object in at least one degree of rotational freedom (up to six total degrees of freedom); the term “shape” refers to a set of posture, positions, and/or orientations measured along the elongated body of the object. As it is known in the field of medical devices, the terms “proximal” and “distal” are used with reference to the manipulation of an end of an instrument extending from the user to a surgical or diagnostic site. In this regard, the term “proximal” refers to the portion of the instrument closer to the user, and the term “distal” refers to the portion of the instrument further away from the user and closer to a surgical or diagnostic site.
As used herein the term “catheter” generally refers to a flexible and thin tubular instrument made of medical grade material designed to be inserted through a narrow opening into a bodily lumen (e.g., a vessel) to perform a broad range of medical functions. The more specific term “optical catheter” refers to a medical instrument comprising an elongated bundle of one or more flexible light conducting fibers disposed inside a protective sheath made of medical grade material and having an optical imaging function. A particular example of an optical catheter is fiber optic catheter which comprises a sheath, a coil, a protector and an optical probe. In some applications a catheter may include a “guide catheter” which functions similarly to a sheath.
As used herein the term “endoscope” refers to a rigid or flexible medical instrument which uses light guided by an optical probe to look inside a body cavity or organ. A medical procedure, in which an endoscope is inserted through a natural opening, is called an endoscopy. Specialized endoscopes are generally named for how or where the endoscope is intended to be used, such as the bronchoscope (mouth), sigmoidoscope (rectum), cystoscope (bladder), nephroscope (kidney), bronchoscope (bronchi), laryngoscope (larynx), otoscope (ear), arthroscope (joint), laparoscope (abdomen), and gastrointestinal endoscopes.
In the present disclosure, the terms “optical fiber”, “fiber optic”, or simply “fiber” refers to an elongated, flexible, light conducting conduit capable of conducting light from one end to another end due to the effect known as total internal reflection. The terms “light guiding component” or “waveguide” may also refer to, or may have the functionality of, an optical fiber. The term “fiber” may refer to one or more light conducting fibers. An optical fiber has a generally transparent, homogenous core, through which the light is guided, and the core is surrounded by a homogenous cladding. The refraction index of the core is larger than the refraction index of the cladding. Depending on design choice some fibers can have multiple claddings surrounding the core.
Turning now to the specific embodiments shown in the drawings,
The first light guiding component 102 is spliced or glued to the focusing component 104; and the focusing component 104 is in turn bonded or glued to the spacer 106 (e.g., a coreless fiber, a transparent optical grade glass or plastic). The spacer 106 has a substantially cylindrical shape, and at least part of its cylindrical surface is fixedly attached to the inner surface of the mechanical housing 130. The focusing component 104 is aligned off-center with respect to the optical axis (Ox) of spacer 106. The spacer 106 has two surfaces (a first surface 107 and a second surface 109) at the distal end thereof. The first surface 107 and second surface 109 may be polished at specific angles to direct the light from the focusing component 104 in a predetermined direction. However, as explained later in more detail, the spacer 106 along with its first and second surfaces 106 and 107 may be directly molded as a single element part inside the mechanical housing 130. The first surface 107 is or includes a reflective surface (e.g., a mirror coating or total-internal-reflection surface) which reflects the light from the focusing component 104 towards the second surface 109. A grating structure or the like is provided as the diffractive component 110 on the second surface 109. In some embodiments, the diffractive component 110 is fabricated by micro-stamping a suitable material to form a diffractive grating, and the grating disperses the light to a predetermined field of view. The mechanical housing 130 is provided at the distal end of the drive cable 120 in the form of a metallic can for protection and positioning of the distal optics. The proximal end of the mechanical housing 130 is rigidly attached to a flexible coil of the drive cable 120. The drive cable 120 is used for transmitting rotational torque from a non-shown motor to the first light guiding component 102 (optical fiber) and/or to the distal optics (focusing component 104 and spacer 106). The metallic can or mechanical housing 130 is preferably welded or soldered or otherwise attached to the distal end of drive cable 120.
As shown in
To obviate such drawbacks of splicing and aligning, the spacer 106 illustrated in
The grating structure of the diffractive component 110 can be either molded together with the spacer 206, e.g., with a microstructure insert, or it can be stamped onto the second angled surface 109 after the molded part is formed. For example, the method of forming a diffractive configuration as disclosed in U.S. Pat. No. 10,261,223, which is incorporated by reference herein, can be used for forming the diffractive component 110 using nanoimprint lithography.
In the embodiment shown in
Therefore, according to at least one embodiment, a grating component can be etched (or produced by any other method of mass-production) on a thin glass wafer, then diced into individual chips, and an individual chip can be inserted into the mold to be overmolded as one piece with a spacer. This process could allow for a more robust assembly and, at the same time, lower manufacturing cost. Alternatively, the grating component can be added as a final step in a molding process of forming the optical spacer 606. Specifically, the above described individually diced grating chip can be added to the material of the optical spacer 606, as a final step of the molding process, but before the spacer material is solidified. Adding the grating component 610 to the optical spacer 606, during or after the distal optics assembly is molded, as shown in
As noted in the background section, the present disclosure acknowledges that extremely small optical elements are fragile, difficult to handle, and prone to damage during manufacturing and operation. There remains a need for fiber-optic-based imaging probes that can be fabricated easily and at low cost while maintaining the ability to provide high quality images. However, certain miniature optical systems are difficult to manufacture, are prone to damage, and are excessively expensive to be disposable. The foregoing embodiments address at least some of those needs, by disclosing a novel distal optics assembly (e.g., a spacer and a prism or grating, and/or focusing optics, and/or dispersive optics) formed directly over the end of a fiber optics assembly (e.g., single mode fiber, GRIN lens attached to a fiber, a GRIN lens attached to a spacer then to a fiber as fiber optics assembly, etc.) by overmolding a single distal optics component at the distal end of drive cable component or the mechanical housing component.
The OCT probe 700 is configured to rotate or oscillate in a direction of arrow R around its probe optical axis Ox, and to linearly translate along a direction L substantially parallel to the probe optical axis Ox. To that end, the drive cable 720 and the optical-focusing component are fixed relative to each other. The drive cable 720 delivers rotational torque from a non-shown torque drive unit at its proximal end to its distal end in order to spin the distal end of the probe, which is attached to the optical-focusing component to create an OCT 3D scan.
At the distal end of the optical-imaging probe 700 is the lead-in feature or cap 714. This lead-in feature or cap 714 is preferably atraumatic and configured to provide a guiding surface for safe advancement of the optical probe through lumens such as blood vessels and the like. Thus, a half-ball shaped lead-in end may be positioned at the distal end of the mechanical housing 730 to facilitate safe probe advancement. The lead-in feature or cap 714 may be, for example, a rounded tip integrally formed (molded) with the rest of the optical-focusing component. The lead-in feature or cap 714 has a soft rounded-off profile to minimize trauma to a blood vessel wall.
Also provided in this particular embodiment is the fiber centering spacer 703 located concentrically between the light guiding component 102 and the drive cable 720. The centering spacer 703 may be used to ensure precise position and alignment of the optical axis relative to the axis of rotation of the fiber.
The optical-focusing component is located inside a mechanical housing or can 730 for protection and positioning. The can 730 is a cylindrical tube surrounding the optical-focusing component. The proximal end of the can is rigidly attached to a flexible wound drive cable 720 transmitting rotational motion from a non-illustrated torque source to the optical fiber and the distal optics. In some embodiments, the can 730 is preferably welded or soldered to the drive cable 720. In some embodiments, at least one surface of the optical-focusing component is directly formed on at least one surface of the can 730. The mechanical housing 730 includes an opening or window 732 through which the light beam 750 is focused outside of the sheath (not shown).
The forming of the molded light-focusing component is not limited to the embodiments shown in
Also provided in this particular embodiment is an optional locking or positioning feature 903 which is a “V” shaped notch formed around the outer surface of the tubular mechanical housing or can 930. The “V” shaped notch or groove like feature on the outside of the probe can allow to precisely position and positively lock the can in the mold. The entire tubular mechanical housing (or can) 930, or at least a portion thereof, can be made of radiopaque material such as Platinum or Iridium. Therefore, the tubular mechanical housing 930 may function as a marker band used to identify and/or track the location of the optical probe during imaging procedures.
In yet another embodiment the end of the optical fiber may be cleaved and/or polished at an angle other than normal to the optical axis prior to overmolding to minimize back reflections. In yet another embodiment the end of the optical fiber may be coated with an antireflection coating prior to overmolding to minimize back reflections. The distal optics component is directly overmolded over the fiber end making its position more precise and probe manufacturing less expensive in mass production.
In the various embodiments described above, the distal optics component molded as a single component can be disposable. The distal optics component may be made compression molded glass or injection molded optical-grade plastics, which can be manufactured relatively inexpensively such that the distal optics component may be disposed of after a single use and remain cost-effective in comparison with conventional optical probe designs. In certain embodiments, the distal optics component may be sterilizable.
As noted in the background section, the present disclosure acknowledges that extremely small optical elements are fragile, difficult to manufacture and handle, and prone to damage during manufacturing and operation. Also, conventional optical imaging probes tend to be excessively expensive to be disposable. The foregoing embodiments address at least some of these issues, by disclosing a novel distal optics assembly (e.g., a spacer and a prism or grating, and/or focusing optics, and/or dispersive optics) formed directly over the end of a fiber optics assembly (e.g., single mode fiber, GRIN lens attached to a fiber, a GRIN lens attached to a spacer then to a fiber as fiber optics assembly, etc.) by overmolding a single distal optics component at the distal end of a drive cable component.
The overmolded distal optics component comprises a spacer and at least one dispersive component. The overmolded distal optics component comprises a spacer and at least one beam directing surface. The beam directing surface is a TIR surface or a surface coated with reflective coating. The beam directing surface has a dispersive component such as a microstructural diffractive grating on it.
In some embodiments, the distal optics component is molded directly over the end of the fiber optics assembly so as to be disposed, at least partially, inside a mechanical housing attached to the drive cable. The distal optics comprises at least one beam directing surface which has positive optical power.
In at least one embodiment, the distal optics component is formed on the drive cable separated from the fiber optics assembly. The distal optics comprises at least one dispersive component. The dispersive component includes a grating which is made separately from the overmolded component and is added to the distal optics component assembly after the molding process.
The process of overmolding the distal optics component over the light guiding component and/or the light focusing component may include (a) a step inserting and positioning a distal end of the light guiding component inside a mold adapted to form a distal optics component having at least one beam directing surface; (b) injecting molten optically transparent material (thermoplastic or glass) into the mold; (c) allowing time for the injected material to solidify; and (d) opening the mold and removing the distal end of the light guiding component with the distal optics component directly molded on the distal end of the light guiding component. The foregoing process will result in the formation of an imaging core as that illustrated in
The sample arm 13 includes a patient-interface unit 15 and an optical-imaging device 19. The optical-imaging device 19 includes an optical probe 100, which directs a beam of light to a sample 16 and detects light that is reflected from or scattered by the sample 16. The optical probe 100 then transmits the reflected or scattered light back to the beam splitter 14.
The reference arm 12 can include conventional optics and an optical delay line 18. The optical delay line 18 includes a mirror, and light that travels through the optical delay line 18 is reflected off the mirror and travels back to the beam splitter 14. The sample and reference arms in the interferometer could consist of free-space optics, photonic integrated circuits, fiber-optics or combinations thereof, and the interferometer could have different architectures such as Michelson, Mach-Zehnder, or common-path interferometer designs.
A sample beam from the sample arm 13 and a reference beam from the reference arm 12 are recombined by the beam splitter 14, which generates a recombined beam that has an interference pattern (an interference pattern occurs when the reference arm and the sample arm have the same optical length). The recombined beam is detected by the one or more detectors 17 (e.g., photodiodes, photomultiplier tubes, a linear CCD array, an image sensor, a CCD array, a CMOS array) which convert the intensity of the interference pattern in an electrical signal. A computer 20 receives and processes the signal from the detector 17, and a display 30 provides a user with a resulting images and/or data obtained by the OCT system 10.
More specifically, the OCT system 10 is computer controlled by the computer 20 which includes one or more processors (e.g., one or more than one central processing unit or CPU) and associated circuitry to provide signaling commands for timing and control, and to process the interferometric data received from detector 17 into images or volumetric data. Specifically, the electrical signals from the detector 17 are transferred to the computer 20 for processing and display. The computer 20 may contain, in addition to a CPU, for example, one or more of a field-programmable gate array (FPGA), a digital signal processor (DSP), an application specific integrated circuit (ASIC), a graphic processing unit (GPU), a system on chip (SoC) or a combination thereof, which performs some or the entire image processing and signaling of the OCT system 10.
The CPU 21 may be configured to read and perform computer-executable instructions stored in the storage memory 22. The computer-executable instructions may include those for the performance of the methods, measurements, and/or calculations described herein. For example, CPU 21 may receive signals from detector 17 and calculate, measure, or determine the intensity of the interference light and/or interference patterns.
The system interface 24 provides communication interfaces to input and output devices, which may include a keyboard, a display, a mouse, a printing device, a touch screen, a light pen, an optical storage device, a scanner, a microphone, a camera, a drive, communication cable and a network (either wired or wireless).
The optical-imaging device 19, located, for example, at the distal end of an OCT probe is usually comprised of a number of components designed to shape and direct light coming from and to the probe optical fiber as well as to maintain mechanical integrity of the probe. Examples of the optical probe too applicable to the optical-imaging device 19 include either of the probe 700 shown in
However, the optical-imaging device 19 and optical probe too described in the present disclosure are not limited to those applicable to an OCT system. The optical-imaging device 19 can be, for example, a catheter or an endoscope. In the case where the optical-imaging device 19 is an endoscope, the imaging system does not use an interferometer.
The light scattered back from dispersed line 56 formed in an object or sample (not shown) can be collected by detection fibers 59 and guided to a spectrometer 95. The detector/spectrometer 95 can be or include a line sensor, or it can include a simple light intensity detector such as photo-detector. By mechanically scanning the line, it is possible to acquire the two-dimensional image of the object. The detection fibers 59 may be arranged in between a non-rotatable inner sheath 125 and an outer sheath 58. The distal end of the probe 100 may have a transparent window 57. By mechanically scanning the SEE probe 100 in a rotating direction R using a mechanical scanning unit contained within the FORJ 93, it is possible to obtain a two-dimensional image of the object. The mechanical scan can be performed by, e.g., Galvo scanner or motor to rotate a drive cable 120 together with the light guiding component 102 and the distal optics 906 contained therein.
The SEE system 50 as described and shown with respect to
One function of the fiber junction (FORJ 93) is to make the SEE probe 100, including the illumination fiber 102 and distal optics 906, detachable. With this exemplary function, the probe 100 can be disposable and thus a sterile probe for human “in vivo” use can be provided every time an imaging operation is performed. In embodiments where the probe 100 is a disposable probe, the fiber 102, and/or the detection fibers 59 may be detachable. With this exemplary function, the probe 100 may be disposable in order to ensure that a sanitary probe is used in treating a subject which may be a human body. The microprocessor 94 shown in
While the present disclosure has been described with reference to exemplary embodiments, it is to be understood that the present disclosure is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
In referring to the description, specific details are set forth in order to provide a thorough understanding of the examples disclosed. In other instances, well-known methods, procedures, components and circuits have not been described in detail as not to unnecessarily lengthen the present disclosure. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the subject specification, but rather only by the plain meaning of the claim terms employed.
This application claims priority to U.S. Provisional Application Ser. No. 62/742,029 filed Oct. 5, 2018, the content of which is incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62742029 | Oct 2018 | US |