The invention relates to a belt drive assembly for driving belt driven accessories in an engine of an automotive vehicle, and more particularly, to a decoupling mechanism for allowing the belt driven accessories to operate temporarily at a speed other than the belt drive assembly.
It is widely known in an automotive vehicle engine to transfer a portion of the engine output to a plurality of belt driven accessories utilizing an endless serpentine belt. Typically, each component includes an input drive shaft and a pulley coupled to a distal end of the drive shaft for driving engagement with the belt. An example of such a belt driven accessory is an alternator.
It is also known to provide a decoupler operatively coupled between the pulley and the alternator to allow the alternator drive shaft to “overrun” or rotate at a faster speed than the pulley and to allow the speed of the pulley to oscillate with respect to the alternator drive shaft due to oscillations in the engine speed.
Examples of decouplers are disclosed in the U.S. Pat. No. 6,083,130, issued to Mevissen et al. on Jul. 4, 2000 and the U.S. Pat. No. 5,139,463, issued to Bytzek et al. on Aug. 18, 1992.
It remains desirable to provide a decoupler that is easier to manufacture and has better durability over conventional decoupler designs.
According to one aspect of the invention, a decoupler assembly is provided for transferring torque between a shaft and a drive belt. The decoupler assembly includes a hub configured to be fixedly secured to the shaft. The hub includes a helical first slot formed therein. A carrier is rotatably mounted on the hub. The carrier includes a helical second slot formed therein. A torsion spring extends between a hub end and a carrier end for transferring torque between the hub and carrier, wherein the hub end is retained in the helical first slot to prevent relative movement between the hub end of the torsion spring and the hub and the carrier end is retained in the helical second slot to prevent relative movement between the carrier end of the torsion spring and the carrier. A pulley is rotatably coupled to the hub. The pulley includes an outer surface configured to frictionally engage with the drive belt. The pulley has an inner surface formed therein. A clutch spring is fixedly secured to the carrier and has a plurality of helical coils frictionally engaging with the inner surface of the pulley to selectively couple the hub and pulley. The torsion spring and the clutch spring are wound in opposite senses enabling the clutch spring to expand into gripping engagement with the inner surface during acceleration of the pulley relative to the hub and to contract out of gripping engagement with the inner surface during deceleration of the pulley relative to the hub.
Advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Referring to the figures, an engine for an automotive vehicle is generally indicated at 10 in
Referring to
A socket 40 is formed in the second end 26 for receiving a suitable tool therein for rotatably threading the hub 22 onto the drive shaft 15. An annular first flange 41 extends radially outwardly from the body 28 adjacent the second end 26. The first flange 41 includes an outer flange surface 42 having a larger outer diameter than the body 28. An annular surface 44 extends generally radially between the body 28 and the outer flange surface 42 opposite the second end 26. A generally helical first slot 46 is formed in the annular surface 44 defining a first locating surface 48 therein.
A generally cylindrical pulley 50 is rotatably journaled to the hub 22. More specifically, the pulley 50 extends between opposite first 52 and second 54 ends. The pulley 50 includes an inner surface 56 extending between the first 52 and second 54 ends. A ball bearing member 57 is coupled between the pulley 50 and the hub 22. The bearing member 57 includes an inner race 58 fixedly secured to a portion of the outer mounting surface 36 and an outer race 59 fixedly secured to a portion of the inner surface 56 adjacent the first end 52 of the pulley 50. A plurality of ball bearings 55 is rollingly engaged between the inner 58 and outer 59 races of the bearing member 57. A cylindrical bushing 60 is journal mounted between the pulley 50 and the first flange 41. The bushing 60 includes a sleeve wall 62 extending between a portion of the inner surface 56 adjacent the second end 54 and the outer flange surface 42 of the first flange 41. A bushing bushing flange 64 extends radially inwardly from the sleeve wall 62 and abuts the annular surface 44 in the first flange 41.
The pulley 50 includes an outer periphery 66 with a plurality of V-shaped grooves 68 formed therein for rollingly engaging and guiding the belt 14.
Referring to
The carrier 75 is rotatably mounted on the hub 22. The carrier 75 is generally ring shaped and extends axially between opposite first and second sides 76, 78. A hooked slot 84 is formed in the second side 78 of the carrier 75 and is configured to retain the hooked proximal end 73 of the clutch spring 71. A generally helical second slot 86 is formed in the second side 78 of the carrier 75 defining a second locating surface 88 generally opposing the first locating surface 48 formed in the annular surface 44.
Referring to
A cap 100 is fixedly assembled to a flange 102 formed in the pulley 50 for preventing contaminants from entering the decoupler assembly 20 and for retaining the lubricant within the decoupler assembly 20.
In operation, the engine 10 is started and the pulley 50 is accelerated and rotated in a driven direction by the belt 14 driven by the engine 10. Acceleration and rotation of the pulley 50 in the driven direction relative to the hub 22 creates friction between the inner surface 56 of the pulley 50 and preferably all of the coils 72 of the clutch spring 71. It should be appreciated that the clutch spring 71 will function even where at the onset at least one of the coils 72 of the clutch spring 71 is frictionally engaged with the inner surface 56 of the pulley 50. The clutch spring 71 is helically coiled such that the friction between the inner surface 56 of the pulley 50 and at least one of the coils 72 would cause the clutch spring 71 to expand radially outwardly toward and grip the inner surface 56 of the pulley 50. Continued rotation of the pulley 50 in the driven direction relative to the hub 22 would cause a generally exponential increase in the outwardly radial force applied by the coils 72 against the inner surface 56 until all of the coils 72 of the clutch spring 71 become fully brakingly engaged with the pulley 50. When the clutch spring 71 is fully engaged with the inner surface 56, the rotation of the pulley 50 is fully directed toward rotation of the drive shaft 15 of the belt driven accessory 16. Additionally, centrifugal forces help to retain the clutch spring 71 in braking engagement with the inner surface 56 of the pulley 50.
The rotational movement of the carrier 75 in the driven direction is transferred to the hub 22 by the torsional spring 90 such that generally the carrier 75, thrust washer 39, hub 22, and the drive shaft 15 from the belt driven accessory 16 rotate together with the pulley 50. Additionally, the torsional spring 90 resiliently allows relative movement between the carrier 75 and the hub 22 to accommodate oscillations in the speed of the pulley 50 due to corresponding oscillations in the operating speed of the engine 10.
When the pulley 50 decelerates, the hub 22 driven by the inertia associated with the rotating drive shaft 15 and the rotating mass within the belt driven accessory 16 will initially “overrun” or continue to rotate in the driven direction at a higher speed than the pulley 50. More specifically, the higher rotational speed of the hub 22 relative to the pulley 50 causes the clutch spring 71 to contract radially relative to the inner surface 56 of the pulley 50. The braking engagement between the clutch spring 71 and the pulley 50 is relieved, thereby allowing overrunning of the hub 22 and drive shaft 15 from the belt driven accessory 16 relative to the pulley 50. The coils 72 may remain frictionally engaged with the inner surface 56 while the pulley 50 decelerates relative to the clutch assembly 70 and the hub 22. The coils 72 of the clutch spring 71 begin to brakingly reengage the inner surface 56 as the pulley 50 accelerates beyond the speed of the hub 22.
Referring to
A first tab 112 extends outwardly from the spring support 110. A first notch 114 is formed in the hub end 92′ of the torsion spring 90′ for axially receiving the first tab 112 therein. Engagement between the first tab 112 and the first notch 114 prevents relative rotational movement of the hub end 92′ of the torsion spring 90′ relative to the spring support 110 and hub 22′. Similarly, a second tab 116 extends outwardly from the second locating surface 88′ of the carrier 75′. A second notch 118 is formed in the carrier end 94′ of the torsion spring 90′ for axially receiving the second tab 116 therein. Engagement between the second tab 116 and the second notch 118 prevents relative rotational movement of the carrier end 94′ of the torsion spring 90′ relative to the carrier 75′.
The pulley 50′ includes an outer periphery 120 for seating the belt 14′ therein and an inner flange portion 122. The inner flange portion 122 has a generally U-shaped cross section defined by outer 124 and inner 126 pulley walls and a first connecting wall 128 extending radially therebetween. The carrier 75′ is retained between the outer 124 and inner 126 pulley walls and the first connecting wall 128 of the inner flange portion 122, such that the carrier 75′ rotates with the pulley 50′. A second connecting wall 130 extends radially between the outer pulley wall 124 and the outer periphery 120.
The carrier 75′ includes a slot or split 132, which helps the carrier 75′ to flex and accommodate loads associated with the rotation of the decoupler assembly 22′.
Referring to
The outer periphery 120″ and the inner flange portion 122″ of the pulley 50″ are formed separately and fixedly connected in a subsequent assembly operation using any suitable method, such as welding. The generally U-shaped cross section of the inner flange portion 122″ opens toward the first flange 41″. The carrier 75″ is retained between the outer 124″ and inner 126″ pulley walls and the first connecting wall 128″, such that the carrier 75″ rotates with the pulley 50″.
A ring plate 143 is mounted concentrically onto the outer mounting surface 36″ adjacent the abutment surface 38″. A thrust washer 144 is disposed between the first flange 41″ and the ring plate 143. The thrust washer 144 is axially spaced apart from the end wall 134 of the flange 41″ for receiving the inner flange portion 122″ of the pulley 50″ therebetween.
A torsional vibration damper 146, as known by those skilled in the art, is fixedly secured to the outer flange wall 138 of the first flange 41″ for dampening vibrations experienced at the crankshaft 106 associated with the operations of the engine.
The invention has been described in an illustrative manner, and it is to be understood that the terminology, which has been used, is intended to be in the nature of words of description rather than of limitation. Many modification and variations of the present invention are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced other than as specifically described.
Number | Date | Country | |
---|---|---|---|
60398979 | Jul 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10519591 | Dec 2004 | US |
Child | 12402819 | US |