Oversized switchgear trailer for electric hydraulic fracturing

Information

  • Patent Grant
  • 11578577
  • Patent Number
    11,578,577
  • Date Filed
    Thursday, March 19, 2020
    4 years ago
  • Date Issued
    Tuesday, February 14, 2023
    a year ago
Abstract
A hydraulic fracturing system for fracturing a subterranean formation includes a primary switchgear arranged on a support structure. The system also includes a secondary switchgear, arranged on the support structure, the secondary switchgear positioned separately from the primary switchgear and within an enclosure, the secondary switchgear receiving an electrical input from the primary switchgear and including an plurality of feed connections for supplying electrical power to a plurality of fracturing equipment.
Description
BACKGROUND
1. Technical Field

This disclosure relates generally to hydraulic fracturing and more particularly to systems and methods for switchgear and power distribution systems.


2. Background

Hydraulic fracturing operations may be performed at remote locations, and as a result, trailers and other equipment are utilized to transport equipment between well sites. However, certain regulations may restrict loads along roadways, which may drive one or more design considerations for equipment utilized at well sites. These smaller, compact trailers may lead to comprises to design that would otherwise not be desirable.


SUMMARY

The present disclosure is directed to configurations for trailers utilized in hydraulic fracturing operations.


In an embodiment, a hydraulic fracturing system for fracturing a subterranean formation includes a primary switchgear, arranged on a support structure, the primary switchgear electrically coupled to a power source to receive power from the power source. The system also includes a secondary switchgear, arranged on the support structure, the secondary switchgear positioned separately from the primary switchgear and within an enclosure, the secondary switchgear receiving an electrical input from the primary switchgear and including an plurality of feed connections for supplying electrical power to a plurality of fracturing equipment. The system further includes support equipment, arranged on the support structure, the support equipment providing one or more services to at least the secondary switchgear.


In an embodiment an electrical distribution system for providing electrical to hydraulic fracturing equipment includes a primary bus, arranged on a support structure, electrically coupled to at least one generator providing electrical power to a breaker coupled to the primary bus and also arranged on the support structure. The system also includes a secondary bus, arranged on the support structure, electrically coupled to the primary bus via at least one cable, the secondary bus being positioned within an enclosure and including a plurality of feed connections for supplying electrical power to at least one piece of fracturing equipment.


In an embodiment, a hydraulic fracturing system for fracturing a subterranean formation includes at least one generator and at least one switchgear system receiving electrical power from the generator, the switchgear system including a primary bus and a secondary bus both arranged on a first support structure. The system also includes an electric powered pump, arranged on a second support structure, the electric powered pump coupled to a well associated with the subterranean formation and powered by at least one electric motor, the electric powered pump configured to pump fluid into a wellbore associated with the well at a high pressure so that the fluid passes from the wellbore into the subterranean formation and fractures the subterranean formation.


In an embodiment, multiple components of a switchgear system are incorporated into a single trailer, which ray be an oversized trailer, to simplify operations at the well site. In various embodiments, incorporation of components onto a single trailer may eliminate certain components, such as cables, which may also reduce costs.


Embodiments of the present disclosure may facilitate advantageous configurations for trailers utilized at a well site that my reduce redundancy, eliminate wiring at the well site, and incorporate remote evaluation and monitoring capabilities.


Embodiments may provide for elimination or reduction of several redundant switchgear breakers. Current configurations having multiple independent switchgear trailers may include separate, independent incoming and outgoing breakers, which may be used to comply with various professional codes. For example, if the switchgear trailers are divided up into a Common Bus Switchgear trailer and two or more Distribution Switchgear trailers, then each one needs incoming and outgoing breakers. Embodiments of the present disclosure may consolidate these components onto a single trailer unit, and as a result, only a single set of incoming and outgoing breakers are used for the entire system.


Embodiments may provide for elimination or reduction of interconnecting cables. In various embodiments, cables between the individual switchgear trailers will no longer be needed or a number used may be reduced. Due to the possible amperage between switchgear trailers, these cables are normally very large and heavy, which requires extra man power for rig up and rig down. They are also expensive and require additional insulation resistance tests before each energization. Elimination or reduced may reduce costs and complexity at the well site.


Embodiments may provide for remote 86 lockout relay controls incorporated into the system. The 86 lockout relays, which are tripped in the event of an electrical fault, can be reset externally using embodiments of the present disclosure. This prevents technicians from either: 1) interrupting operations by de-energizing the entire switchgear trailer so they can safely enter the switchgear house to reset the breaker, or 2) using arc flash suits, which can be difficult to put on in an oilfield environment and can possibly fail in the event of an arc flash.


Embodiments may provide for remote breaker open and close systems to be incorporated into the system. The same benefits will apply as to the 86 lockout relay controls described above.


Embodiments may provide for remote ground check monitoring incorporated into the system. As a result, technicians are provided the ability to ensure cable integrity as well as positive cable coupling on any input or output without entering the switchgear enclosure, which is undesirable if any piece of equipment is energized.


Embodiments may provide for remote human machine interfaces (HMI) to be incorporated into the system. An HMI or GUI can be used to allow technicians to interface with the breakers and relays without being in the breaker enclosure. Control software instead of mechanical switches will allow access to more information and control options in a much smaller package which can be a minimum of one screen.


Embodiments may provide for remote monitoring incorporated into the system. Ethernet (or serial) support may enable an onsite data van for frac operations to monitor and control individual breaker settings and statuses. This information may be streamed to the data van in real (or near-real) time to enable an operator to react to readings. Furthermore, in various embodiments, alarms and automated progressing, among other features, may be utilized in order to react to certain data readings.


Embodiments may provide for remote data collection incorporated into the system. When data is sent to the data van, via Ethernet (or serial), it may also be collected and transmitted to a cloud based storage system for historical analysis as well as troubleshooting support. In various embodiments, the storage may also be local. For example, data may be streamed in real (or near-real) time to the cloud system, where it may be accessible via a remote client device. The data may be raw data or processed data, which may be processed using one or more computer systems associated with a distributed computing environment. Moreover, as will be appreciated, the data may be encrypted or otherwise access-restricted.


Embodiments may provide for remote laptop USB ports. In various embodiments, this may be an external port so technicians may download and observe detailed information as well as upload and download breaker settings without entering the energized switchgear housing. For example, the ports may be arranged external of an enclosure to enable technicians to gain data access from a remote location and/or from outside of the enclosure


Embodiments may provide for external beaker indicator lights. Lights will give technicians and other onsite personnel a quick way to verifying breaker status such as Open/Closed/Tripped. The lights may be LED lights that are color coded and/or may involve individual lights associated with each status.


Embodiments may provide for shore power/battery power. The batteries may provide power for lights and/or initial breaker closing before a small onboard transformer can draw power to operate breakers and other ancillary functions. Often times, in cold weather or during startup with equipment difficulties, it is possible to deplete the batteries. A shore power connection provides an option for technicians to quickly and easily recharge the batteries from a small generator or light plant.


Embodiments may provide for battery heaters. This is to increase the operational longevity of the batteries as well as increase amp-hours in colder weather.


Adequate HVAC may be incorporated into the system. Heating and cooling keeps condensation out of sensitive electronics as well keeps them from overheating. Switchgear trailers of the present embodiments may be designed to maintain room temperature internally while operating is ambient temperatures of −25° C. to 55° C.


In various embodiments, the system may include at least 24 outgoing breakers. However, it should be appreciated that more outgoing breakers may be incorporated. As a result, power may be provided to 22 frac pumps and 2 blenders simultaneously.


In various embodiments, the system may include at least 2 incoming breakers. However, it should be appreciated that more incoming breakers may be incorporated. In various operations, power may be distributed from 2 larger block turbine generators (e.g., 30 MW and above) or up to 4 small block turbine generators (e.g., 10 MW and below). The incoming breakers for the new equipment may be positioned to accept power from large or small block turbine generators. Software settings can be changed to accommodate for either sized generator. Older generations of switchgear trailers could only accept power from 4 small turbine generators while certain designs can accept power from up to 3 large or small turbine generators, with the most common set up being one large turbine generator and one small turbine generator load sharing through a 3000 A common bus on the switchgear trailer.


Embodiments may provide for a compact switchgear. The feeder breakers (or outgoing) may be reduced to a 1200 A bus. This allows the components to be much more compact. A single compact breaker can fit within a 15″×36″ or 26″×45″ section instead of the larger 3′×8″ profile of the incoming breakers.


Embodiments may provide for 3000 A or 2000 A bus bar sections. This configuration provides for load sharing multiple turbine generators on a common bus.


Embodiments may provide for 3000 A, 2000 A, or 1200 A bus bar sections. Such a configuration may enable power distributions to multiple individual power loads such as frac pumps, blenders, hydration units, sand equipment, water pumps, chemical mixers, data vans, etc.


Embodiments may provide for bus connectors (BCs). The use of incoming and outgoing breakers with a common bus for load sharing may be utilized in systems of the present disclosure. As a result, an economical platform which can fit enough capability onto a single trailer is provided. In various embodiments, using bus connectors between different bus segments that have no (or limited) external cable connections, enables safe distribution of power from high amperage bus sections to lower amperage rated bus sections. Bus connectors can be in the form of fuses, switches, fused switches, or breakers. Fuses and switches are generally more compact and cheaper than breakers. Switches also allow the advantage of providing technicians with a visible disconnect between bus work which is important during maintenance or troubleshooting tasks. However, switches may not be remotely controllable.


Embodiments may provide for a separate bus work. That is, differently rated bus bar sections can be used together on the same switchgear trailer. Accordingly, a 3000 A or 2000 A common bus for load sharing between multiple generators for the incoming breakers as well as lower rated 2000 A or 1200 A bus bar sections for smaller more compact switchgear breakers for the outgoing power distribution is provided.


Embodiments may provide for fused switches. In various embodiments, using fused switches for protection in between differently rated sections of bus bars is a cheaper and more compact alternative to using full sized breakers and relays.


Embodiments may provide for a divided current bus bar. As will be described below, a lower amperage rated bus bar would effectively load share more than its rated amperage. This would work by having the incoming power physically entering the bus work in the middle with the feeder breakers (power load) being distributed to either end of the bus work where either side could only draw half of the possible power load. This would cause a current divider, where the maximum amperage drawn by either side of the main breakers would be under the limits of the bus work. This reduces costs by for example, being able to use a 2000 A bus bar instead of a larger and costlier 3000 A bus bar.


Embodiments may provide for multiphase receptacles. If the power requirement is below a threshold, for example approximately 10 MW, then cables and receptacles can be used that are in a three phase conductor configuration with an embedded ground and ground check conductor all within a single cable jacket and receptacle housing. This reduces the amount of physical connections that are required as well as increasing safety and reducing EMF. Sometimes several cables are used in parallel to transmit large amounts of power while keeping the cables to a manageable size.


Embodiments may provide for single phase receptacles. To transmit power larger generators, a single phase cable scheme if often used. This method can use multiple single conductor cables per phase and an independent ground conductor. Ruggedized single conductor quick disconnecting receptacles are used to preserve stress cones which are often fragile and can fail if they are damaged or dirty. An alternative method is to use standard NEMA 2 hole lugs with indoor or outdoor stress cones to lug the cables directly to the busbars. However, such a configuration may include tradeoffs, such as shorter service life.


The mobile switchgear units of the present disclosure can be trailerized, skid mounted, or mounted on a bodyload truck.


Embodiments may provide for arc flash rating. Individual switchgear breakers can be rated as explosion proof, which means that arc flash suits are not required by personnel inside any enclosure as long as the breaker cabinets are closed. Moreover, the breakers may be unrated which means that personnel cannot safely enter the switchgear enclosures without an arc flash suit. Non-explosion rated gear is usually physically more compact. With non-explosion proof gear, features such as remote open/close, remote 86 lockout reset, and remote instrumentation may provide safe and seamless operations.


Embodiments may provide for generators. In embodiments, switchgear systems described herein can accept power from many types of power sources such as turbine generators, reciprocating generators, battery banks, utility power grids, etc.


Embodiments may provide for instrumentation that may be incorporated into the system, such as potential transformers (PTs) and current transformers (CTs) to monitor voltage and amperage levels on all breakers, buses, cables, fuses, and switches.





BRIEF DESCRIPTION OF DRAWINGS

Some of the features and benefits of the present disclosure having been stated, others will become apparent as the description proceeds when taken in conjunction with the accompanying drawings, in which:



FIG. 1 is a schematic plan view of an embodiment of a fracturing operation, in accordance with embodiments of the present disclosure;



FIG. 2 is a schematic diagram of an embodiment of a well site layout using multiple switchgear trailers, in accordance with embodiments of the present disclosure;



FIG. 3 is a schematic diagram of an embodiment of a wellsite including a consolidated switchgear trailer, in accordance with embodiments of the present disclosure;



FIG. 4 is a top plan view of an embodiment of the oversized switchgear trailer, in accordance with embodiments of the present disclosure;



FIG. 5 is a top plan view of an embodiment of an oversized switchgear trailer, in accordance with embodiments of the present disclosure;



FIG. 6 is a top plan view of an embodiment of an oversized switchgear trailer, in accordance with embodiments of the present disclosure;



FIGS. 7-13 provide perspective, side, and top plan views of embodiments of the oversized switchgear trailer, in accordance with embodiments of the present disclosure;



FIG. 14 is a schematic diagram of an embodiment of a multi-bus power distribution switchgear system, in accordance with embodiments of the present disclosure;



FIG. 15 is a top plan view of an embodiment of an oversized switchgear trailer, in accordance with embodiments of the present disclosure;



FIG. 16 is a schematic diagram of an embodiment of a consolidated trailer, in accordance with embodiments of the present disclosure;



FIG. 17 is a schematic diagram of an embodiment of a single bus power distribution switchgear system, in accordance with embodiments of the present disclosure; and



FIG. 18 is a schematic diagram of an embodiment of a load sharing configuration, in accordance with embodiments of the present disclosure.





While the disclosure will be described in connection with the preferred embodiments, it will be understood that it is not intended to limit the disclosure to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the disclosure as defined by the appended claims.


DETAILED DESCRIPTION

The method and system of the present disclosure will now be described more fully hereinafter with reference to the accompanying drawings in which embodiments are shown. The method and system of the present disclosure may be in many different forms and should not be construed as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey its scope to those skilled in the art. Like numbers refer to like elements throughout. In an embodiment, usage of the term “about” includes +/− 5% of the cited magnitude. In an embodiment, usage of the term “substantially” includes +/− 5% of the cited magnitude.


It is to be further understood that the scope of the present disclosure is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed illustrative embodiments and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation.


When introducing elements of various embodiments of the present disclosure, the articles “a”, “an”, “the”, and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including”, and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Any examples of operating parameters and/or environmental conditions are not exclusive of other parameters/conditions of the disclosed embodiments. Additionally, it should be understood that references to “one embodiment”, “an embodiment”, “certain embodiments”, or “other embodiments” of the present disclosure are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Furthermore, reference to terms such as “above”, “below”, “upper”, “lower”, “side”, “front”, “back”, or other terms regarding orientation or direction are made with reference to the illustrated embodiments and are not intended to be limiting or exclude other orientations or directions. Additionally, recitations of steps of a method should be understood as being capable of being performed in any order unless specifically stated otherwise. Furthermore, the steps may be performed in series or in parallel unless specifically stated otherwise.



FIG. 1 is a plan schematic, view of an embodiment of a hydraulic fracturing system 10 positioned at a well site 12. In the illustrated embodiment, pumps 14 (which may be arranged on one or more trailers, skids, or the like), making up a pumping system 16, are used to pressurize a slurry solution for injection into a wellhead 18. An optional hydration unit 20 receives fluid from a fluid source 22 via a line, such as a tubular, and also receives additives from an additive source 24. In an embodiment, the fluid is water and the additives are mixed together and transferred to a blender unit 26 where proppant from a proppant source 28 may be added to form the slurry solution (e.g., fracturing slurry) which is transferred to the pumping system 16. The pumps 14 may receive the slurry solution at a first pressure (e.g., 80 psi to 160 psi) and boost the pressure to around 15,000 psi for injection into the wellhead 18. In certain embodiments, the pumps 14 are powered by electric motors.


After being discharged from the pump system 16, a distribution system 30, such as a manifold, receives the slurry solution for injection into the wellhead 18. The distribution system 30 consolidates the slurry solution from each of the pumps 14 and includes discharge piping 32 coupled to the wellhead 18. In this manner, pressurized solution for hydraulic fracturing may be injected into the wellhead 18.


In the illustrated embodiment, one or more sensors 34, 36 are arranged throughout the hydraulic fracturing system 10 to measure various properties related to fluid flow, vibration, and the like.


It should be appreciated that while various embodiments of the present disclosure may describe electric motors powering the pumps 14, in embodiments, electrical generation can be supplied by various different options, as well as hybrid options. Hybrid options may include two or more of the following electric generation options: Gas turbine generators with fuel supplied by field gas, CNG, and/or LNG, diesel turbine generators, diesel engine generators, natural gas engine generators, batteries, electrical grids, and the like. Moreover, these electric sources may include a single source type unit or multiple units. For example, there may be one gas turbine generator, two gas turbines generators, two gas turbine generators coupled with one diesel engine generator, and various other configurations.


In various embodiments, equipment at the well site may utilize 3 phase, 60 Hz, 690V electrical power. However, it should be appreciated that in other embodiments different power specifications may be utilized, such as 4160V or at different frequencies, such as 50 Hz. Accordingly, discussions herein with a particular type of power specification should not be interpreted as limited only the particularly discussed specification unless otherwise explicitly stated. Furthermore, systems described herein are designed for use in outdoor, oilfield conditions with fluctuations in temperature and weather, such as intense sunlight, wind, rain, snow, dust, and the like. In embodiments, the components are designed in accordance with various industry standards, such as NEMA, ANSI, and NFPA.


Current switchgear trailer designs have focused on traditional breakers and standard DOT size limits for trailers. In order to fit the appropriate switchgear required to safely power and operate an electric hydraulic fracturing fleet, two to three full size switchgear trailers have been required. On well sites requiring a common bus to combine the power of multiple generators, a minimum of three switchgear trailers has been used. On well sites were a split bus is allowed, where not all generators can load share, a minimum of two switchgear trailers will be required. These historical requirements are also for fracturing fleets that will be used for single well operations on shallow shale formations that use a relatively lower Hydraulic Horsepower (HHP). Many modern fleets that perform zipper frac operations (simultaneous operations on two or more wells) on deep wells (higher well pressure) will require more HHP and therefore more frac pumps and the required switchgear to accommodate.



FIG. 2 is a schematic diagram of an embodiment of a well site layout 200 using multiple switchgear trailers 202A, 202B, 202C (SWGR A, SWGR B, SWGR C). The layout 200 further includes generators 204A, 204B, 204C and fracturing equipment 206D, which may include pumps, blenders, hydration units, etc. The three shown generators 204A-204C are load sharing through switchgear 202A (“SWGR A”), whereas switchgears 202B, 202C (“SWGR B” and “SWGR C”) are designed using smaller feeder breakers (outgoing) for powering multiple pieces of equipment. Power cables 208 are illustrated as lines that include arrows, but it should be appreciated that a single black line with an arrow can be multiple parallel power cables, especially in the case of the interconnecting cables between SWGR A and SWGR B/C.


Frac equipment 206 can be frac pumps, blenders, hydration units, transformers, power distribution gear, variable frequency drives (VFDs), soft starters, motor control centers, water pumps, wireline equipment, cranes, datavans, support trailers, chemical trailers, fluid processing trailers, lighting equipment, wellsite instrumentation, gas processing equipment, safety equipment, utility lines, etc. Accordingly, while embodiments of the present disclosure may mention particular systems, such as pumps, it should not be interpreted as limiting coupling to various other equipment utilized at fracturing sites


A current drawback with existing systems arises from the interconnection requirements between the switchgear trailers. Each individual switchgear trailer has both incoming and outgoing breakers to protect itself and the interconnecting power cables. This increases costs and also makes connection requirements more complicated, as described above. Previous switchgear trailer designs have focused on DOT trailer size limits and compactness to allow for multiple trailers to fit onto a well site. The limiting dimensions have been 8.5 ft wide, 53 ft long, and 13.5 ft high. Due to the size of large aero-derivative turbine engines, which are often packaged on custom oversized trailers for mobilization, the concept of allowing oversized trailers for other equipment is now feasible. Using larger switchgear trailers with consolidated distribution switchgear has many advantages. As long as the oversized switchgear trailer is no larger than the turbine trailer, the mobility of the hydraulic fracturing fleet as a whole will not be impacted. Embodiments of the present disclosure may take advantage of the relaxed size restrictions to provide an improved, oversized switchgear trailer.



FIG. 3 is a schematic diagram of an embodiment of a wellsite layout 300 including a consolidated switchgear trailer (SWGR) 302. As described above, the consolidated switchgear trailer may be capable of loading sharing and power distribution, while remaining mobile, as described above. Accordingly, various advantages can be realized. By way of example only, the SWGR 302 reduces or eliminates a number of interconnecting cables 208. For example, when compared to FIG. 2, it is evident that FIG. 3 has eliminated several sections of cable, for example, the cables connecting the switchgear trailer 202A to the switchgear trailers 202B, 202C.


As a result, there is less employee risk, as interconnecting cables weigh over 11 lbs/ft and can be in 50 ft, 100 ft, 150 ft, 200 ft, and 400 ft increments and are usually carried and connected by hand. Furthermore, elimination provides a capital cost reduction of up to $150,000 per fleet for the elimination of the power cables and connectors. Furthermore, up to $2 MM capital cost reduction in the net cost of 3 trailers vs. a single oversize trailer and the elimination of redundant switchgear breakers and relays. Additional benefits include shorter rig up/rig down time as total cables on the fleet can be reduced by 22-36 percent, depending on the wellsite layout. Also, less insulation resistance testing due to there being fewer multiconductor cables. This process is used during each rig up to ensure the integrity of the power cable insulation. This process can take two technicians up to 15 minutes per cable.


Furthermore, no spare inventory for the cable receptacles and jumpers internal to the switchgear would be utilized in systems of the present disclosure. Due to the load sharing capability, the interconnecting switchgear cables are usually a larger conductor than the cables that supply the frac equipment or generators. The elimination of this size of cables allows spare inventory to be also be eliminated. Additionally, fewer cables to transport and take up drop deck space. These cables can require their own drop deck trailer and tractor to transport between well sites. Moreover, reduced repair and maintenance costs associated with the cables. Cables that span between equipment often experience extreme wear and tear during the rig up and rig down process as well as corrosion when they are disconnected for mobilization. Additionally, there is a lower risk of cable failure due to there being fewer cables.


Embodiments also provide advantages with respect to utilizing the single trailer configuration illustrated for the SWGR 302. For example, a single oversized trailer, when compared to three standard trailers, uses 2 fewer tractors, 2 fewer drivers, less DOT trailer maintenance, lower total insurance costs, and space saved on pad due to fewer trailers as well as the elimination of the clearance requirement between switchgear trailers to allow for external cable connections.


Additional advantages include fewer trailers to spot on pad. Placing the equipment within inches of other trailers in specific spots can often be a time consuming process. This is also where equipment s the most likely to be damaged due to hitting other parked equipment at low speeds. Moreover, better cable management is provided because there are fewer trailers to interconnect and fewer cables.


Simplified breaker management is also provided using embodiments of the present disclosure. To energize a frac pump with multiple switchgear trailers, the process is often as follows: Close incoming breaker for SWGR A (202A)→Close Outgoing breaker to SWGR B (202B)→Close incoming breaker for SWGR B (202B)→Close outgoing breaker to frac pump. However, with a single consolidated switchgear trailer, the process is simplified as: Close incoming breaker for SWGR (302)>Close outgoing breaker to frac pump. If a bus connector is used, the process may be: Close incoming breaker for SWGR (302)>Close bus connector>Close outgoing breaker to frac pump. In most situations the bus connector will always (or mostly likely) remained closed and will not need to be operated every time. Additional advantages also include fewer potential arc flash areas due to there being fewer total switchgear breakers, less total HVAC maintenance due to there being fewer HVAC units, and earth grounding for a single trailer, which means fewer ground rods, less ground cable, and reduced rig up time.



FIG. 4 is a schematic top plan view of an embodiment of the oversized switchgear trailer configuration 400, such as the SWGR 302. The illustrated embodiment combines all of the switchgear breakers onto a single oversized trailer. It does not eliminate redundant components, however, other embodiments may eliminate redundant components. A 3000 A bus portion is illustrated along with further 1200 A buses that can each distribute power to 6 pieces of frac equipment. A control power transformer (CPT) is used to power onboard instrumentation, breaker open/close functions, HVAC, lighting, and batteries for offline operations. It should be appreciated that various components may also be arranged outside of an enclosure or the like, and may be arranged on a tongue of the trailer. The control cabin (which may also be referred to as external controls) will house the remote breaker open/close functions, remote lockout relay resets, remote laptop connections, any HMI screens or other instrumentation displays. In this embodiment, main breakers on a common 3000 A bus are used to load share power from multiple generators while feeder breakers on the same 3000 A bus are used as bus connectors to safely distribute power to the lower rated 1200 A bus sections (in green) with the lower rated feeder breakers. The 1200 A distribution sections can supply up to 6 pieces of equipment each for a total of 24. It is important to note that more than 24 feeders can be installed as well as more than 2 or 3 main breakers.


The illustrated embodiment includes a trailer 402, which may also be referred to as an oversized trailer, that includes a first or primary bus portion 404 (which may also be referred to as a primary switchgear 404) arranged at a rear 406 of the trailer. It should be appreciated that positioning components at the rear may be for illustrative purposes only, unless otherwise specified, and that various components may be arranged differently than the illustrated embodiment for convenience, HSE considerations, or the like. The rear 406 further includes a walkway 408, which may provide access to an enclosure 410 that houses second or secondary bus portions 412 (which may also be referred to as a secondary switchgear). As noted above, the enclosure may include HVAC equipment 418, which may be roof mounted, to control temperature and moisture within the enclosure 410. Such an arrangement is advantageous when considering the electrical components and also the harsh conditions typically associated with well sites.


The illustrated trailer 402 further includes a tongue section 414 at a front 416, opposite the rear 406, which may house and/or store one or more components. It should be appreciated that these components may not be covered or enclosed, but in various embodiments, may include shades or weather coverings. An example of components, which is not intended to be limiting, including additional or substitute HVAC equipment 418, a CPT 420, batteries 422, and a control cabin 424 (e.g., external controls), which may include remote circuit breaker controls. As a result, several trailers worth of components may be positioned on the illustrated trailer 402 to simplify well layouts, among other advantages.


Turning to the bus portions 404, 412, the primary bus 404 may include 13.8 kV mains and feeders, for example, 2 13.8 kV mains, 4 13.8 kV feeders, and a 13.8 kV CPT. The primary bus 404 shay receive a power cable from a switchgear feeder to the chains. The secondary bus portion 412, which is illustrated as 4 different components in the illustrated embodiment, may include 24 feeder connections for supplying power to the fracturing equipment at the well site.


As noted above, in various embodiments, the configuration 400 may utilize an oversized trailer having dimensions that do not restrict or otherwise affect portability of the fracturing operations. In other words, the dimensions may be substantially equal to or less than another component that dictates mobility. In the illustrated embodiment, the trailer 402 has a length 426 and a width 428. The length 426, in embodiments, may be approximately 60 feet. The width 428, in embodiments, may be approximately 11.5 feet. Furthermore, it should be appreciated that a tongue length 430, an enclosure length 432, and a rear length 434 may be particularly selected based on operating conditions. The illustrated tongue length 430 is approximately 10 feet, the illustrated enclosure length 432 is approximately 28 feet, and the illustrated rear length 434 is approximately 22 feet. Furthermore, various openings, walkways, and the like may have predetermined dimensions to enable ingress and egress.



FIG. 5 is a top plan view of an embodiment of an oversized switchgear trailer. The illustrated configuration 500 shows a different orientation when compared to the embodiment shown in FIG. 4, but in various embodiments may share one or more features and/or dimensions. In this embodiment, a front 416 of the trailer 402 includes the CPT 420 and battery 422 at the tongue section 414. Moreover, the primary bus 404 is arranged between the enclosure 410, including the second bus 412, and the tongue section 414. As noted above, the primary bus 404 may include incoming breakers. Compared to the embodiment of FIG. 4, the present embodiment uses smaller, cheaper fused switches for a smaller space. As a result, a length 402 of the primary bus 404 may be reduced (for example to approximately 18 feet compared to the 22 foot configuration in FIG. 4.) This embodiment includes three main breakers and two cabinets for bus connectors (BCs) 504. The illustrated embodiment also includes the enclosure 410 having the secondary bus 412.


As noted above, utilizing features of FIG. 5 may enable a shorter overall length 426. For example, certain embodiments of FIG. 4 may have the length of approximately 60 feet. Features associated with FIG. 5 may reduce that length to approximately 53 feet. This space saving may be significant at the well site, where all space is at a premium and various trailers may be positioned very closely to other trailers.



FIG. 6 is a top plan view of an embodiment of an oversized switchgear trailer. The illustrated configuration 600 shows a different orientation when compared to the embodiments shown in FIGS. 4 and 5, but in various embodiments may share one or more features and/or dimensions. In this embodiment, the bus connectors are moved to the smaller 1200 A sections (e.g., second bus 412). This arrangement allows the trailer to be shortened even more due to the bus connectors 504 being rated for a lower amperage bus section.



FIGS. 7-13 provide perspective, side, and top plan views of embodiments of the oversized switchgear trailer. FIGS. 11-13 provide a cross section of the “B” portion of the switchgear trailer (also known as the feeder breakers, outgoing breakers, or distribution breakers).



FIG. 7 is a perspective view of an embodiment of a configuration 700 that includes the primary bus 404 and the secondary bus 412, each arranged at different platforms or segments along the trailer 402. As shown, the tongue section 414 is arranged at the front 416 and includes various support components. The primary bus 404 is positioned near the rear 406 and includes the walkway 408 having an overhang, for example, to enable an operator to work out of the elements and/or protected from rain, sun, etc. Further illustrated is the enclosure 410 housing the secondary bus 412.



FIG. 8 is a rear perspective view of the configuration 700, further illustrating a door 800 for entry into the enclosure 410. In various embodiments, the power cables would extend from the primary bus 404 feeders to the incoming mains on the switchgear through the center of the substructure, which is mounted below the enclosure 410 and not visible in the illustrated embodiment.



FIGS. 9 and 10 are side elevational views of the configuration 700, further illustrating the features of the primary bus 404, enclosure 410, and the like. Illustrated in FIGS. 9 and 10 is a feed connection bulkhead area 900. As will be appreciated, these connections may be utilized to connect to equipment at the well site and may be arranged at ground level to simplify access for operators at the site. The side views of FIGS. 9 and 10 further illustrate cable access areas 902, under the primary bus 404, which may receive cables from the one or more generators.



FIG. 11 is a top plan view of the configuration 700 illustrating the corresponding locations of the primary bus 404, enclosure 410, and the tongue section 414. The configuration shown in FIG. 11 shares one or more similarities with FIG. 4 regarding the layout of the components.



FIGS. 12 and 13 are perspective views of the enclosure 410 including the secondary bus 412 where certain features have been removed to provide access to the interior of the enclosure 410. As shown, the secondary bus 412 includes a lineup that provides space for access and movement by an operator within the enclosure 410.



FIG. 14 is a schematic diagram of an embodiment of a multi-bus power distribution switchgear system 1400. The illustrated embodiment incorporates using multiple bus sections 1402, 1404 that are rated for different amperage to allow for different breaker configurations to achieve a specific size, capability, and/or price. The bus connectors (BC) 1406 are between the different bus sections 1402, 1404 and may be configured to meet NEC code for bus bar and cable protection. The illustrated embodiment only shows two main breakers, two bus connectors, and four feeder breakers for simplicity. However, as described above, in various embodiments, up to 3 main breakers, 4 bus connectors, and 24 feeder breakers may be used.



FIG. 15 is a top plan view of an oversized switchgear trailer. A different style feeder breaker is used, when compared to other embodiments illustrated herein, which is slightly larger but is compatible with a 2000 A bus and can be stacked. The main breakers can have a switch which can be used by technicians to verify that there is a visible disconnect a to the prior embodiment). The overall length and width of this trailer is greatly reduced when compared to other configurations discussed herein.



FIG. 16 is a schematic diagram of a consolidated trailer 1600. In various embodiments, the consolidated switchgear trailer may be utilized on a single bus power distribution system. A single continuous 3000 A or 2000 A bus would load share power from the incoming (main) breakers and distribute to the outgoing (feeder) breakers to the frac equipment. Because these breakers are compatible with the higher amperage bus work, they are physically larger and more expensive than breakers designed for a 1200 A bus. However, interconnecting bus connectors (as breakers, fuses, and/or switches) to safely distribute power between differently rated bus sections are no longer needed which can offset the physical size and cost increase.



FIG. 17 is a schematic diagram of an embodiment of a single bus power distribution switchgear system 1700. In the illustrated embodiment, as compared to the previous embodiments, only a single common bus 1702 is used. The Single Bus Power Distribution Switchgear System allows bus connectors and different bus sections to be eliminated. However, each breaker is configured to be compatible with the higher amperage bus and can, therefore, utilize larger and more expensive gear.



FIG. 18 is a schematic diagram of an embodiment of a load sharing configuration 1800. The illustrated embodiment may effectively load share nearly 3000 A of current on a single 2000 A common bus 1802. If the incoming power is physically entering the bus work in the middle, and the breakers to either side of the bus work can only ever draw a maximum of less than 2000 A, a 2000 A bus will be acceptable. In the example above, two main breakers 1804 are supplying up to 1400 A (IM) each for a maximum of 2800 A. If there are 12 feeders 1806 each capable of drawing up to 150 A (IF) on each on either side of the bus work 1802, there would only be a maximum of 1800 A (IB) of current flowing outward from the main breaker connections onto the bus work 1802. In FIG. 18, for simplicity, IM=Main Breaker Current, IB=Bus Current, ID=Differential Current, IF=Feeder Current. The differential current is the maximum current that could flow between the two main breakers. This is the load sharing where the common bus 1802 will allow current from either main breaker (generators) to power either side of the bus work (frac equipment).


It should be appreciated that embodiments of the present disclosure may be utilized to power any electrical equipment, which may include as non-limiting examples: drilling rigs, coil tubing units, nitrogen, acid pump, hydraulic fracturing pumps, dual pumpers, pump down pumps, blenders, hydration units, sand equipment, dust mitigation equipment, work over rigs, auxiliary equipment, wire line trailers, cranes, and a variety of other oilfield equipment. Furthermore embodiments may also be used for microgrids in other industries beyond the oilfield. Additionally, the single switchgear can be utilized with other equipment to send power long distances including up to 3 miles or more. In embodiments, different power sources can be used including diesel generators, grid power, turbine generators, natural gas generators, battery banks, and other power sources. It should be appreciated that one or more power sources may be utilized.


The present disclosure described herein, therefore, is well adapted to carry out the objects and attain the ends and advantages mentioned, as well as others inherent therein. While a presently preferred embodiment of the disclosure has been given for purposes of disclosure, numerous changes exist in the details of procedures for accomplishing the desired results. These and other similar modifications will readily suggest themselves to those skilled in the art, and are intended to be encompassed within the spirit of the present disclosure disclosed herein and the scope of the appended claims.

Claims
  • 1. A hydraulic fracturing system for fracturing a subterranean formation, comprising: a primary switchgear, arranged on a support structure, the primary switchgear electrically coupled to a power source to receive electrical power from the power source;a secondary switchgear, arranged on the support structure, the secondary switchgear positioned separately from the primary switchgear and within an enclosure, the secondary switchgear receiving an electrical input from the primary switchgear and including a plurality of feed connections for supplying the electrical power to a plurality of fracturing equipment; andsupport equipment, arranged on the support structure, the support equipment providing one or more services to at least the secondary switchgear,wherein at least one of the primary switchgear or the secondary switchgear is a multi-bus power distribution system, the multi-bus power distribution system comprising:a high amperage load sharing bus;at least one low amperage distribution bus; andat least one bus connector arranged between the high amperage load sharing bus and the at least one low amperage distribution bus.
  • 2. The hydraulic fracturing system of claim 1, further comprising: a walkway arranged proximate the primary switchgear, the walkway extending along at least a portion of the support structure and providing access to a door of the enclosure housing the secondary switchgear.
  • 3. The hydraulic fracturing system of claim 1, wherein the support equipment includes at least one of HVAC equipment, a control power transformer, a battery, or external controls.
  • 4. The hydraulic fracturing system of claim 1, further comprising: a cable routing area positioned to extend from the primary switchgear to the secondary switchgear, the cable routing area being predetermined and consolidating one or more cables utilized to transmit the electrical power from the primary switchgear to the secondary switchgear.
  • 5. The hydraulic fracturing system of claim 1, wherein the high amperage load sharing bus receives the electrical power from one or more generators of the power source at one or more main breakers, the one or more main breakers directing the electrical power to the high amperage load sharing bus for distribution to one or more components of the fracturing equipment of the plurality of fracturing equipment.
  • 6. The hydraulic fracturing system of claim 1, wherein the support structure includes at least one of a trailer, a skid, or a truck.
  • 7. The hydraulic fracturing system of claim 1, wherein the enclosure is climate controlled.
  • 8. The hydraulic fracturing system of claim 1, wherein a length of the support structure is less than or equal to a length of an associated support structure of one or more components of the hydraulic fracturing system.
  • 9. An electrical distribution system for providing electrical to hydraulic fracturing equipment, comprising: a primary bus, arranged on a support structure, electrically coupled to at least one generator providing electrical power to a breaker coupled to the primary bus and also arranged on the support structure, wherein the primary bus corresponds to a high amperage load sharing bus forming a portion of a multi-bus power distribution system; anda secondary bus, arranged on the support structure, electrically coupled to the primary bus via at least one cable, the secondary bus being positioned within an enclosure and including a plurality of feed connections for supplying the electrical power to at least one piece of fracturing equipment, wherein the secondary bus corresponds to at least one low amperage distribution bus that is part of the multi-bus power distribution system; andat least one bus connector between the primary bus and the secondary bus.
  • 10. The electrical distribution system of claim 9, wherein the support structure includes at least one of a trailer, a skid, or a truck.
  • 11. The electrical distribution system of claim 9, wherein the enclosure is climate controlled and positioned separately from the primary bus.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to and the benefit of U.S. Provisional Patent Application Ser. No. 62/821,138 filed Mar. 20, 2019 titled “OVERSIZED SWITCHGEAR TRAILER FOR ELECTRIC HYDRAULIC FRACTURING,” the full disclosure of which is hereby incorporated herein by reference in its entirety for all purposes.

US Referenced Citations (578)
Number Name Date Kind
1541601 Tribe Jun 1925 A
1656861 Leonard Jan 1928 A
1671436 Melott May 1928 A
1743771 Hall Jan 1930 A
1967466 Damsel Jul 1934 A
2004077 McCartney Jun 1935 A
2183364 Bailey Dec 1939 A
2220622 Aitken Nov 1940 A
2244106 Granberg Jun 1941 A
2248051 Armstrong Jul 1941 A
2407796 Page Sep 1946 A
2416848 Rothery Mar 1947 A
2610741 Schmid Sep 1952 A
2753940 Bonner Jul 1956 A
2976025 Pro Mar 1961 A
3055682 Bacher Sep 1962 A
3061039 Peters Oct 1962 A
3066503 Fleming Dec 1962 A
3302069 Webster Jan 1967 A
3334495 Jensen Aug 1967 A
3347570 Roessler Oct 1967 A
3722595 Kiel Mar 1973 A
3764233 Strickland Oct 1973 A
3773140 Mahajan Nov 1973 A
3837179 Barth Sep 1974 A
3849662 Blaskowski Nov 1974 A
3878884 Raleigh Apr 1975 A
3881551 Terry May 1975 A
3967841 Kendrick Jul 1976 A
4037431 Sugimoto Jul 1977 A
4100822 Rosman Jul 1978 A
4151575 Hogue Apr 1979 A
4226299 Hansen Oct 1980 A
4265266 Kierbow et al. May 1981 A
4411313 Johnson et al. Oct 1983 A
4432064 Barker Feb 1984 A
4442665 Fick Apr 1984 A
4456092 Kubozuka Jun 1984 A
4506982 Smithers et al. Mar 1985 A
4512387 Rodriguez Apr 1985 A
4529887 Johnson Jul 1985 A
4538916 Zimmerman Sep 1985 A
4601629 Zimmerman Jul 1986 A
4676063 Goebel et al. Jun 1987 A
4759674 Schroder Jul 1988 A
4768884 Elkin Sep 1988 A
4783038 Gilbert Nov 1988 A
4793386 Sloan Dec 1988 A
4845981 Pearson Jul 1989 A
4922463 Del Zotto et al. May 1990 A
5004400 Handke Apr 1991 A
5006044 Walker, Sr. Apr 1991 A
5025861 Huber Jun 1991 A
5050673 Baldridge Sep 1991 A
5114239 Allen May 1992 A
5130628 Owen Jul 1992 A
5131472 Dees et al. Jul 1992 A
5172009 Mohan Dec 1992 A
5189388 Mosley Feb 1993 A
5230366 Marandi Jul 1993 A
5293947 Stratton Mar 1994 A
5334899 Skybyk Aug 1994 A
5366324 Arlt Nov 1994 A
5422550 McClanahan Jun 1995 A
5433243 Griswold Jul 1995 A
5439066 Gipson Aug 1995 A
5486047 Zimmerman Jan 1996 A
5517822 Haws et al. May 1996 A
5548093 Sato Aug 1996 A
5549285 Collins Aug 1996 A
5590976 Kilheffer et al. Jan 1997 A
5606853 Birch Mar 1997 A
5655361 Kishi Aug 1997 A
5736838 Dove et al. Apr 1998 A
5755096 Holleyman May 1998 A
5790972 Kohlenberger Aug 1998 A
5791636 Loziuk Aug 1998 A
5798596 Lordo Aug 1998 A
5813455 Pratt et al. Sep 1998 A
5865247 Paterson Feb 1999 A
5879137 Yie Mar 1999 A
5894888 Wiemers Apr 1999 A
5907970 Havlovick et al. Jun 1999 A
5950726 Roberts Sep 1999 A
6035265 Dister et al. Mar 2000 A
6097310 Harrell et al. Aug 2000 A
6116040 Stark Sep 2000 A
6121705 Hoong Sep 2000 A
6138764 Scarsdale et al. Oct 2000 A
6142878 Barin Nov 2000 A
6164910 Mayleben Dec 2000 A
6202702 Ohira Mar 2001 B1
6208098 Kume Mar 2001 B1
6254462 Kelton Jul 2001 B1
6271637 Kushion Aug 2001 B1
6273193 Hermann et al. Aug 2001 B1
6315523 Mills Nov 2001 B1
6406011 Kosar Jun 2002 B1
6442942 Kopko Sep 2002 B1
6477852 Dodo Nov 2002 B2
6484490 Olsen Nov 2002 B1
6491098 Dallas Dec 2002 B1
6510695 Fisher Jan 2003 B1
6529135 Bowers et al. Mar 2003 B1
6585455 Petersen et al. Jul 2003 B1
6626646 Rajewski Sep 2003 B2
6719900 Hawkins Apr 2004 B2
6765304 Baten et al. Jul 2004 B2
6776227 Beida Aug 2004 B2
6788022 Sopko Sep 2004 B2
6802690 Han Oct 2004 B2
6808303 Fisher Oct 2004 B2
6837910 Yoshikawa Jan 2005 B1
6931310 Shimizu et al. Aug 2005 B2
6936947 Leijon Aug 2005 B1
6985750 Vicknair et al. Jan 2006 B1
7082993 Ayoub Aug 2006 B2
7104233 Ryczek et al. Sep 2006 B2
7170262 Pettigrew Jan 2007 B2
7173399 Sihler Feb 2007 B2
7279655 Blutke Oct 2007 B2
7308933 Mayfield Dec 2007 B1
7309835 Morrison Dec 2007 B2
7312593 Streicher et al. Dec 2007 B1
7336514 Amarillas Feb 2008 B2
7341287 Gibb Mar 2008 B2
7445041 O'Brien Nov 2008 B2
7494263 Dykstra Feb 2009 B2
7500642 Cunningham Mar 2009 B2
7525264 Dodge Apr 2009 B2
7563076 Brunet Jul 2009 B2
7581379 Yoshida Sep 2009 B2
7675189 Grenier Mar 2010 B2
7683499 Saucier Mar 2010 B2
7717193 Egilsson May 2010 B2
7755310 West et al. Jul 2010 B2
7770396 Roby Aug 2010 B2
7795830 Johnson Sep 2010 B2
7807048 Collette Oct 2010 B2
7835140 Mori Nov 2010 B2
7845413 Shampine Dec 2010 B2
7900893 Teurlay Mar 2011 B2
7926562 Poitzsch Apr 2011 B2
7940039 de Buda May 2011 B2
7894757 Keast Jul 2011 B2
7977824 Halen et al. Jul 2011 B2
7984757 Keast Jul 2011 B1
8037936 Neuroth Oct 2011 B2
8054084 Schulz et al. Nov 2011 B2
8083504 Williams Dec 2011 B2
8091928 Carrier Jan 2012 B2
8096354 Poitzsch Jan 2012 B2
8096891 Lochtefeld Jan 2012 B2
8139383 Efraimsson Mar 2012 B2
8146665 Neal Apr 2012 B2
8154419 Daussin et al. Apr 2012 B2
8221513 Ariyapadi Jul 2012 B2
8232892 Overholt et al. Jul 2012 B2
8261528 Chillar Sep 2012 B2
8272439 Strickland Sep 2012 B2
8310272 Quarto Nov 2012 B2
8354817 Yeh et al. Jan 2013 B2
8474521 Kajaria Jul 2013 B2
RE44444 Dole Aug 2013 E
8506267 Gambier et al. Aug 2013 B2
8534235 Chandler Sep 2013 B2
8556302 Dole Oct 2013 B2
8573303 Kerfoot Nov 2013 B2
8596056 Woodmansee Dec 2013 B2
8616005 Cousino Dec 2013 B1
8616274 Belcher Dec 2013 B2
8646521 Bowen Feb 2014 B2
8692408 Zhang et al. Apr 2014 B2
8727068 Bruin May 2014 B2
8760657 Pope Jun 2014 B2
8763387 Schmidt Jul 2014 B2
8774972 Rusnak Jul 2014 B2
8789601 Broussard Jul 2014 B2
8795525 McGinnis et al. Aug 2014 B2
8800652 Bartko Aug 2014 B2
8807960 Stephenson Aug 2014 B2
8838341 Kumano Sep 2014 B2
8851860 Mail Oct 2014 B1
8857506 Stone, Jr. Oct 2014 B2
8899940 Laugemors Dec 2014 B2
8905056 Kendrick Dec 2014 B2
8905138 Lundstedt et al. Dec 2014 B2
8997904 Cryer Apr 2015 B2
9018881 Mao et al. Apr 2015 B2
9051822 Ayan Jun 2015 B2
9051923 Kuo Jun 2015 B2
9061223 Winborn Jun 2015 B2
9062545 Roberts et al. Jun 2015 B2
9067182 Nichols Jun 2015 B2
9103193 Coli Aug 2015 B2
9119326 McDonnell Aug 2015 B2
9121257 Coli et al. Sep 2015 B2
9140105 Pattillo Sep 2015 B2
9140110 Coli et al. Sep 2015 B2
9160168 Chapel Oct 2015 B2
9260253 Naizer Feb 2016 B2
9322239 Angeles Boza et al. Apr 2016 B2
9324049 Thomeer Apr 2016 B2
9340353 Oren May 2016 B2
9353593 Lu et al. May 2016 B1
9366114 Coli et al. Jun 2016 B2
9410410 Broussard Aug 2016 B2
9450385 Kristensen Sep 2016 B2
9475020 Coli et al. Oct 2016 B2
9475021 Coli et al. Oct 2016 B2
9482086 Richardson et al. Nov 2016 B2
9499335 McIver Nov 2016 B2
9506333 Castillo et al. Nov 2016 B2
9513055 Seal Dec 2016 B1
9534473 Morris Jan 2017 B2
9562420 Morris et al. Feb 2017 B2
9587649 Oehring Mar 2017 B2
9611728 Oehring Apr 2017 B2
9650871 Oehring et al. May 2017 B2
9650879 Broussard et al. May 2017 B2
9706185 Ellis Jul 2017 B2
9728354 Skolozdra Aug 2017 B2
9738461 DeGaray Aug 2017 B2
9739546 Bertilsson et al. Aug 2017 B2
9745840 Oehring Aug 2017 B2
9790858 Kanebako Oct 2017 B2
9840901 Oehring Dec 2017 B2
9863228 Shampine et al. Jan 2018 B2
9893500 Oehring Feb 2018 B2
9903190 Conrad Feb 2018 B2
9909398 Pham Mar 2018 B2
9915128 Hunter Mar 2018 B2
9932799 Symchuk Apr 2018 B2
9945365 Hernandez et al. Apr 2018 B2
9963961 Hardin May 2018 B2
9970278 Broussard et al. May 2018 B2
9976351 Randall May 2018 B2
9995218 Oehring Jun 2018 B2
10008880 Vicknair Jun 2018 B2
10020711 Oehring Jul 2018 B2
10036238 Oehring Jul 2018 B2
10107086 Oehring Oct 2018 B2
10119381 Oehring et al. Nov 2018 B2
10184465 Enis et al. Jan 2019 B2
10196878 Hunter Feb 2019 B2
10221639 Romer et al. Mar 2019 B2
10227854 Glass Mar 2019 B2
10232332 Oehring Mar 2019 B2
10246984 Payne Apr 2019 B2
10254732 Oehring et al. Apr 2019 B2
10260327 Kajaria Apr 2019 B2
10280724 Hinderliter May 2019 B2
10287873 Filas May 2019 B2
10302079 Kendrick May 2019 B2
10309205 Randall Jun 2019 B2
10337308 Broussard Jul 2019 B2
10371012 Davis Aug 2019 B2
10378326 Morris Aug 2019 B2
10393108 Chong Aug 2019 B2
10407990 Oehring Sep 2019 B2
10408030 Oehring et al. Sep 2019 B2
10408031 Oehring et al. Sep 2019 B2
10415332 Morris et al. Sep 2019 B2
10436026 Ounadjela Oct 2019 B2
10526882 Oehring Jan 2020 B2
10627003 Dale et al. Apr 2020 B2
10648270 Brunty et al. May 2020 B2
10648311 Oehring et al. May 2020 B2
10669471 Schmidt et al. Jun 2020 B2
10669804 Kotrla Jun 2020 B2
10686301 Oehring et al. Jun 2020 B2
10690131 Rashid Jun 2020 B2
10695950 Igo et al. Jun 2020 B2
10711576 Bishop Jul 2020 B2
10731561 Oehring et al. Aug 2020 B2
10740730 Altamirano et al. Aug 2020 B2
10767561 Brady Sep 2020 B2
10781752 Kikkawa et al. Sep 2020 B2
10794165 Fischer et al. Oct 2020 B2
10914155 Oehring Feb 2021 B2
10934824 Oehring et al. Mar 2021 B2
10988998 Fischer et al. Apr 2021 B2
11091992 Broussard Aug 2021 B2
11208878 Oehring Dec 2021 B2
11359462 Morris Jun 2022 B2
11451016 Oehring Sep 2022 B2
20010000996 Grimland et al. May 2001 A1
20020169523 Ross et al. Nov 2002 A1
20030079875 Weng Jan 2003 A1
20030056514 Lohn Mar 2003 A1
20030057704 Baten Mar 2003 A1
20030138327 Jones et al. Jul 2003 A1
20040040746 Niedermayr et al. Mar 2004 A1
20040045703 Hooper et al. Mar 2004 A1
20040102109 Cratty et al. May 2004 A1
20040167738 Miller Aug 2004 A1
20050061548 Hooper Mar 2005 A1
20050116541 Seiver Jun 2005 A1
20050201197 Duell et al. Sep 2005 A1
20050274508 Folk Dec 2005 A1
20060052903 Bassett Mar 2006 A1
20060065319 Csitari Mar 2006 A1
20060109141 Huang May 2006 A1
20070125544 Robinson Jun 2007 A1
20070131410 Hill Jun 2007 A1
20070187163 Cone Aug 2007 A1
20070201305 Heilman Aug 2007 A1
20070226089 DeGaray et al. Sep 2007 A1
20070277982 Shampine Dec 2007 A1
20070278140 Mallet et al. Dec 2007 A1
20080017369 Sarada Jan 2008 A1
20080041596 Blount Feb 2008 A1
20080095644 Mantei et al. Apr 2008 A1
20080112802 Orlando May 2008 A1
20080137266 Jensen Jun 2008 A1
20080164023 Dykstra et al. Jul 2008 A1
20080208478 Ella et al. Aug 2008 A1
20080217024 Moore Sep 2008 A1
20080236818 Dykstra Oct 2008 A1
20080257449 Weinstein et al. Oct 2008 A1
20080264625 Ochoa Oct 2008 A1
20080264649 Crawford Oct 2008 A1
20080277120 Hickie Nov 2008 A1
20080288115 Rusnak Nov 2008 A1
20090045782 Datta Feb 2009 A1
20090065299 Vito Mar 2009 A1
20090068031 Gambier Mar 2009 A1
20090068301 Gambier Mar 2009 A1
20090072645 Quere Mar 2009 A1
20090078410 Krenek Mar 2009 A1
20090093317 Kajiwara et al. Apr 2009 A1
20090095482 Surjaatmadja Apr 2009 A1
20090114392 Tolman May 2009 A1
20090145611 Pallini, Jr. Jun 2009 A1
20090153354 Daussin Jun 2009 A1
20090188181 Forbis Jul 2009 A1
20090200035 Bjerkreim et al. Aug 2009 A1
20090260826 Sherwood Oct 2009 A1
20090308602 Bruins Dec 2009 A1
20090315297 Nadeau Dec 2009 A1
20100000508 Chandler Jan 2010 A1
20100019574 Baldassarre et al. Jan 2010 A1
20100038907 Hunt Feb 2010 A1
20100045109 Arnold Feb 2010 A1
20100051272 Loree et al. Mar 2010 A1
20100132949 DeFosse et al. Jun 2010 A1
20100146981 Motakef Jun 2010 A1
20100172202 Borgstadt Jul 2010 A1
20100193057 Gamer Aug 2010 A1
20100250139 Hobbs Sep 2010 A1
20100281876 Khan Nov 2010 A1
20100293973 Erickson Nov 2010 A1
20100303655 Scekic Dec 2010 A1
20100322802 Kugelev Dec 2010 A1
20110005757 Hebert Jan 2011 A1
20110017468 Birch et al. Jan 2011 A1
20110052423 Gambier et al. Mar 2011 A1
20110061855 Case Mar 2011 A1
20110081268 Ochoa et al. Apr 2011 A1
20110085924 Shampine Apr 2011 A1
20110110793 Leugemors et al. May 2011 A1
20110166046 Weaver Jul 2011 A1
20110175397 Amrine Jul 2011 A1
20110197988 Van Vliet Aug 2011 A1
20110241590 Horikoshi Oct 2011 A1
20110247878 Rasheed Oct 2011 A1
20110272158 Neal Nov 2011 A1
20120018016 Gibson Jan 2012 A1
20120049625 Hopwood Mar 2012 A1
20120063936 Baxter et al. Mar 2012 A1
20120085541 Love et al. Apr 2012 A1
20120112757 Vrankovic May 2012 A1
20120127635 Grindeland May 2012 A1
20120150455 Franklin et al. Jun 2012 A1
20120152716 Kikukawa et al. Jun 2012 A1
20120205301 McGuire et al. Aug 2012 A1
20120205400 DeGaray et al. Aug 2012 A1
20120222865 Larson Sep 2012 A1
20120232728 Karimi et al. Sep 2012 A1
20120247783 Berner et al. Oct 2012 A1
20120255734 Coli Oct 2012 A1
20130009469 Gillett Jan 2013 A1
20130025706 DeGaray et al. Jan 2013 A1
20130051971 Wyse et al. Feb 2013 A1
20130078114 Van Rijswick Mar 2013 A1
20130138254 Seals May 2013 A1
20130175038 Conrad Jul 2013 A1
20130175039 Guidry Jul 2013 A1
20130180722 Olarte Caro et al. Jul 2013 A1
20130189629 Chandler Jul 2013 A1
20130199617 DeGaray et al. Aug 2013 A1
20130233542 Shampine Sep 2013 A1
20130255271 Yu et al. Oct 2013 A1
20130284278 Winborn Oct 2013 A1
20130284455 Kajaria et al. Oct 2013 A1
20130299167 Fordyce et al. Nov 2013 A1
20130306322 Sanborn Nov 2013 A1
20130317750 Hunter Nov 2013 A1
20130341029 Roberts et al. Dec 2013 A1
20130343858 Flusche Dec 2013 A1
20140000899 Nevison Jan 2014 A1
20140010671 Cryer et al. Jan 2014 A1
20140054965 Jain Feb 2014 A1
20140060658 Hains Mar 2014 A1
20140077607 Clarke Mar 2014 A1
20140095114 Thomeer Apr 2014 A1
20140096974 Coli Apr 2014 A1
20140124162 Leavitt May 2014 A1
20140138079 Broussard May 2014 A1
20140174717 Broussard Jun 2014 A1
20140219824 Burnette Aug 2014 A1
20140238683 Korach Aug 2014 A1
20140246211 Guidry et al. Sep 2014 A1
20140251623 Lestz et al. Sep 2014 A1
20140255214 Burnette Sep 2014 A1
20140277772 Lopez Sep 2014 A1
20140290768 Randle Oct 2014 A1
20140294603 Best Oct 2014 A1
20140379300 Devine Dec 2014 A1
20150027712 Vicknair Jan 2015 A1
20150053426 Smith Feb 2015 A1
20150068724 Coli et al. Mar 2015 A1
20150068754 Coli et al. Mar 2015 A1
20150075778 Walters Mar 2015 A1
20150083426 Lesko Mar 2015 A1
20150097504 Lamascus Apr 2015 A1
20150114652 Lestz Apr 2015 A1
20150136043 Shaaban May 2015 A1
20150144336 Hardin May 2015 A1
20150147194 Foote May 2015 A1
20150159911 Holt Jun 2015 A1
20150175013 Cryer et al. Jun 2015 A1
20150176386 Castillo et al. Jun 2015 A1
20150211512 Wiegman Jul 2015 A1
20150211524 Broussard Jul 2015 A1
20150217672 Shampine Aug 2015 A1
20150225113 Lungu Aug 2015 A1
20150233530 Sandidge Aug 2015 A1
20150252661 Glass Sep 2015 A1
20150300145 Coli et al. Oct 2015 A1
20150300336 Hernandez Oct 2015 A1
20150314225 Coli et al. Nov 2015 A1
20150330172 Allmaras Nov 2015 A1
20150354322 Vicknair Dec 2015 A1
20160006311 Li Jan 2016 A1
20160032703 Broussard et al. Feb 2016 A1
20160102537 Lopez Apr 2016 A1
20160105022 Oehring Apr 2016 A1
20160160889 Hoffman et al. Jun 2016 A1
20160177675 Morris et al. Jun 2016 A1
20160177678 Morris Jun 2016 A1
20160186531 Harkless et al. Jun 2016 A1
20160208592 Oehring Jul 2016 A1
20160208593 Coli et al. Jul 2016 A1
20160208594 Coli et al. Jul 2016 A1
20160208595 Tang Jul 2016 A1
20160221220 Paige Aug 2016 A1
20160230524 Dumoit Aug 2016 A1
20160230525 Lestz et al. Aug 2016 A1
20160230660 Zeitoun et al. Aug 2016 A1
20160258267 Payne Sep 2016 A1
20160265457 Stephenson Sep 2016 A1
20160273328 Oehring Sep 2016 A1
20160273456 Zhang et al. Sep 2016 A1
20160281484 Lestz Sep 2016 A1
20160290114 Oehring Oct 2016 A1
20160290563 Diggins Oct 2016 A1
20160312108 Lestz et al. Oct 2016 A1
20160319650 Oehring Nov 2016 A1
20160326853 Fred et al. Nov 2016 A1
20160326854 Broussard Nov 2016 A1
20160326855 Coli et al. Nov 2016 A1
20160341281 Brunvold et al. Nov 2016 A1
20160348479 Oehring Dec 2016 A1
20160349728 Oehring Dec 2016 A1
20160369609 Morris et al. Dec 2016 A1
20170016433 Chong Jan 2017 A1
20170021318 McIver et al. Jan 2017 A1
20170022788 Oehring et al. Jan 2017 A1
20170022807 Dursun Jan 2017 A1
20170028368 Oehring et al. Feb 2017 A1
20170030177 Oehring et al. Feb 2017 A1
20170030178 Oehring et al. Feb 2017 A1
20170036178 Coli et al. Feb 2017 A1
20170036872 Wallace Feb 2017 A1
20170037717 Oehring Feb 2017 A1
20170037718 Coli et al. Feb 2017 A1
20170043280 Vankouwenberg Feb 2017 A1
20170051732 Hemandez et al. Feb 2017 A1
20170074076 Joseph et al. Mar 2017 A1
20170082033 Wu et al. Mar 2017 A1
20170096885 Oehring Apr 2017 A1
20170096889 Blanckaert et al. Apr 2017 A1
20170104389 Morris et al. Apr 2017 A1
20170114625 Norris Apr 2017 A1
20170130743 Anderson May 2017 A1
20170138171 Richards et al. May 2017 A1
20170145918 Oehring May 2017 A1
20170146189 Herman May 2017 A1
20170159570 Bickert Jun 2017 A1
20170159654 Kendrick Jun 2017 A1
20170175516 Eslinger Jun 2017 A1
20170204852 Barnett Jul 2017 A1
20170212535 Shelman et al. Jul 2017 A1
20170218727 Oehring Aug 2017 A1
20170218843 Oehring Aug 2017 A1
20170222409 Oehring Aug 2017 A1
20170226838 Ceizobka et al. Aug 2017 A1
20170226839 Broussard Aug 2017 A1
20170226842 Omont Aug 2017 A1
20170234250 Janik Aug 2017 A1
20170241221 Seshadri Aug 2017 A1
20170259227 Morris et al. Sep 2017 A1
20170292513 Haddad Oct 2017 A1
20170313499 Hughes et al. Nov 2017 A1
20170314380 Oehring Nov 2017 A1
20170314979 Ye Nov 2017 A1
20170328179 Dykstra Nov 2017 A1
20170369258 DeGaray Dec 2017 A1
20170370639 Barden et al. Dec 2017 A1
20180028992 Stegemoeller Feb 2018 A1
20180038216 Zhang Feb 2018 A1
20180045331 Lopez Feb 2018 A1
20180090914 Johnson et al. Mar 2018 A1
20180156210 Oehring Jun 2018 A1
20180181830 Laharuka et al. Jun 2018 A1
20180183219 Oehring Jun 2018 A1
20180216455 Andreychuk Aug 2018 A1
20180238147 Shahri Aug 2018 A1
20180245428 Richards Aug 2018 A1
20180258746 Broussard Sep 2018 A1
20180259080 Dale et al. Sep 2018 A1
20180266217 Funkhauser et al. Sep 2018 A1
20180266412 Stokkevag Sep 2018 A1
20180274446 Oehring Sep 2018 A1
20180284817 Cook et al. Oct 2018 A1
20180291713 Jeanson Oct 2018 A1
20180298731 Bishop Oct 2018 A1
20180312738 Rutsch et al. Nov 2018 A1
20180313677 Warren et al. Nov 2018 A1
20180320483 Zhang Nov 2018 A1
20180343125 Clish Nov 2018 A1
20180363437 Coli Dec 2018 A1
20180363640 Kajita et al. Dec 2018 A1
20180366950 Pedersen et al. Dec 2018 A1
20190003329 Morris Jan 2019 A1
20190010793 Hinderliter Jan 2019 A1
20190040727 Oehring et al. Feb 2019 A1
20190063309 Davis Feb 2019 A1
20190100989 Stewart Apr 2019 A1
20190112910 Oehring Apr 2019 A1
20190119096 Haile Apr 2019 A1
20190120024 Oehring Apr 2019 A1
20190128080 Ross May 2019 A1
20190128104 Graham et al. May 2019 A1
20190145251 Johnson May 2019 A1
20190154020 Glass May 2019 A1
20190162061 Stepheson May 2019 A1
20190169971 Oehring Jun 2019 A1
20190178057 Hunter Jun 2019 A1
20190178235 Coskrey Jun 2019 A1
20190203567 Ross Jul 2019 A1
20190203572 Morris Jul 2019 A1
20190211661 Reckels Jul 2019 A1
20190226317 Payne Jul 2019 A1
20190245348 Hinderliter Aug 2019 A1
20190249527 Kraynek Aug 2019 A1
20190257462 Rogers Aug 2019 A1
20190292866 Ross Sep 2019 A1
20190292891 Kajaria Sep 2019 A1
20190316447 Oehring Oct 2019 A1
20200040878 Morris Feb 2020 A1
20200047141 Oehring et al. Feb 2020 A1
20200088152 Alloin et al. Mar 2020 A1
20200232454 Chretien Jul 2020 A1
20200325760 Markham Oct 2020 A1
20200350790 Luft et al. Nov 2020 A1
20220029391 Ough Jan 2022 A1
Foreign Referenced Citations (38)
Number Date Country
2406801 Nov 2001 CA
2707269 Dec 2010 CA
2482943 May 2011 CA
3050131 Nov 2011 CA
2955706 Oct 2012 CA
2966672 Oct 2012 CA
3000322 Apr 2013 CA
2787814 Feb 2014 CA
2833711 May 2014 CA
2978706 Sep 2016 CA
2944980 Feb 2017 CA
3006422 Jun 2017 CA
3018485 Aug 2017 CA
2964593 Oct 2017 CA
2849825 Jul 2018 CA
3067854 Jan 2019 CA
2919649 Feb 2019 CA
2919666 Jul 2019 CA
2797081 Sep 2019 CA
2945579 Oct 2019 CA
101977016 Feb 2011 CN
104117308 Oct 2014 CN
104196613 Dec 2014 CN
205986303 Feb 2017 CN
108049999 May 2018 CN
112196508 Jan 2021 CN
2004264589 Sep 2004 JP
0047893 Aug 2000 WO
2009046280 Apr 2009 WO
2012051705 Apr 2012 WO
2014116761 Jul 2014 WO
2014177346 Nov 2014 WO
2014177346 Nov 2014 WO
2016144939 Sep 2016 WO
2016160458 Oct 2016 WO
2018044307 Mar 2018 WO
2018213925 Nov 2018 WO
2019210417 Nov 2019 WO
Non-Patent Literature Citations (322)
Entry
Morris et al., U.S. Appl. No. 62/526,869; Hydration-Blender Transport and Electric Power Distribution for Fracturing Operation; filed Jun. 28, 2018; USPTO; see entire document.
Final Office Action dated Feb. 4, 2021 in U.S. Appl. No. 16/597,014.
International Search Report and Written Opinion dated Feb. 4, 2021 in PCT/US20/59834.
International Search Report and Written Opinion dated Feb. 2, 2021 in PCT/US20/58906.
International Search Report and Written Opinion dated Feb. 3, 2021 in PCT/US20/58899.
Non-Final Office Action dated Jan. 29, 2021 in U.S. Appl. No. 16/564,185.
Final Office Action dated Jan. 21, 2021 in U.S. Appl. No. 16/458,696.
Final Office Action dated Jan. 11, 2021 in U.S. Appl. No. 16/404,283.
Non-Final Office Action dated Jan. 4, 2021 in U.S. Appl. No. 16/522,043.
International Search Report and Written Opinion dated Dec. 14, 2020 in PCT/US2020/53980.
The American Heritage Dictionary of the English Language, Fifth Edition, Fiftieth Anniversary, p. 911.
Collins English Dictionary, Twelfth Edition, 2014, p. 1005.
Declaration of Robert Schaaf, IPR2021-01539, Jan. 25, 2022, 37 pages.
Department of Transportation, Federal Motor Carrier Safety Administration, 49 CFR Parts 390, 392 and 393—Parts and Accessories Necessary for Safe Operation; General Amendments; Final Rule, Federal Register, Aug. 15, 2005, vol. 70, No. 156, 49 pages.
D. Nedelcut et al., “On-line and Off-line Monitoring-Diagnosis System (MDS) for Power Transformers,” IEEE, 2008 International Conference on Condition Monitoring and Diagnosis, Beijing, China, Apr. 21-24, 2008, 7 pages.
Random House Webster's Unabridged Dictionary, Second Edition, 2001, p. 990.
A. B. Lobo Ribeiro et al, “Multipoint Fiber-Optic Hot-Spot Sensing Network Integrated Into High Power Transformer for Continuous Monitoring,” IEEE Sensors Journal, Jul. 2008, vol. 8, No. 7, pp. 1264-1267.
Society of Automotive Engineers, SAE J1292: Automobile, Truck, Truck-Tractor, Trailer, and Motor Coach Wiring, 49 CFR 393.28, Oct. 1981, 6 pages.
“StarTech NETRS2321E 1 Port RS-232/422/485 Serial over IP Ethernet Device Server,” StarTech, http://www.amazon.com/StarTech-NETRS2321E-RS-232-Serial-Ethernet/dp/B000YN0N0S, May 31, 2014, 4 pages.
“StarTech.com 1 Port RS232 Serial to IP Ethernet Converter (NETRS2321P),” StarTech, http://www.amazon.com/StarTech-com-Serial-Ethernet-Converter-NETRS232IP/dp/B00FJEHNSO, Oct. 9, 2014, 4 pages.
“TCP/IP Ethernet to Serial RS232 RS485 RS422 Converter,” Atc, http://www.amazon.com/Ethernet-Serial-RS232-RS485-Converter/dp/B00ATV2DX2, Feb. 1, 2014, 2 pages.
“SainSmart TCP/IP Ethernet to Serial RS232 RS485 Intelligent Communication Converter,” SainSmart, http://www.amazon.com/SainSmart-Ethemet-Intelligent-Communication-Converter/dp/B008BGLUHW, Aug. 17, 2014, 4 pages.
“Global Cache iTach, IP to Serial with PoE (IP2SL-P),” Global Cache, https://www.amazon.com/Global-Cache-iTach-Serial-IP2SL-P/dp/B003BFVNS4/, Oct. 30, 2014, 3 pages.
Declaration of Robert Durham, IPR2022-00074, Nov. 8, 2021, 177 pages.
Declaration of Robert Schaaf, IPR2022-00074, Feb. 17, 2022, 36 pages.
U.S. Appl. No. 62/204,331, 22 pages.
Eugene A. Avallone, Marks' Standard Handbook for Mechanical Engineers: 11th Edition, 2007, p. 16-4 and 16-22.
Moxa 802.11 Ethernet to Serial, Moxastore, http://www.moxastore.com/Moxa_802_11_Wi_Fi_Ethernet_to_Serial_s/587.html, May 24, 2016, 1 page.
Project Registration, Moxastore, http://www.moxastore.com, Feb. 15, 2015, 2 pages.
About Us, Moxastore, http://www.moxastore.com/aboutus.asp, Mar. 8, 2015, 1 page.
NPORTIA5250, Moxastore, http://www.moxastore.com/NPORTIA5250_p/nportia5250.htm.
Declaration of Duncan Hall, Internet Archive, Oct. 26, 2021, https://web.archive.org/web/20140531134153/http://www.amazon.com/StarTech-NETRS2321E-RS-232-Serial-Ethernet/dp/B000YB0NOS, 43 pages.
Michael Quentin Morton, Unlocking the Earth: A Short History of Hydraulic Fracturing (2013), GeoExpro, vol. 10, No. 6, 5 pages.
Accommodating Seismic Movement, Victaulic Company, 2015, https://web.archive.org/web/20150412042941/http://www.victaulic.com:80/en/businesses-solutions/solutions/accommoda . . . , 2 pages.
Style W77 AGS Flexible Coupling, Victaulic Company 2015, https://web.archive.org/web/20150423052817/http://www.victaulic.com:80/en/products-services/products/style-w77-ags-f . . . , 1 page.
AGS Large Diameter Solutions, Victaulic Company, 2015, https://web.archive.org/web/20150419063052/http://www.victaulic.com:80/en/businesses-solutions/solutions/advanced-gr . . . , 2 pages.
Chiksan Original Swivel Joints, FMC, 1997, 16 pages.
CoorsTek Flowguard Products, 2012, 8 pages.
Declaration of Sylvia D. Hall-Ellis, IPR2022-00610, Feb. 28, 2022, 98 pages.
Flowline Products and Services, FMC Technologies, http://www.fmctechnologies.com, 80 pages.
Gardner Denver, Well Servicing Pump Model GD-2500Q, GD-2500Q-HD, Quintuplex Pumps, Sep. 2011, 45 pages.
Eugene A. Avallone, Marks' Standard Handbook for Mechanical Engineers: 11th Edition, 2007, Section 14, 18 pages.
Mohinder L. Nayyar, Piping Handbook Seventh Edition, McGraw-Hill Handbook, 2000, 77 pages.
Pulsation Dampers, Coorstek, 2014, https://web.archive.org/web/20140919005733/http://coorstek.com/markets/energy_equip . . . , 2 pages.
M. E. Rahman et al., “Wire rope isolators for vibration isolation of equipment and structures—A review,” IOP Conference Series Materials Science and Engineering, Apr. 2015, 12 pages.
Victaulic Couplings Vibration Attenuation Characteristics, Victaulic, Publication 26.04, Oct. 2014, 5 pages.
Thorndike Saville, The Victaulic Pipe Joint, Journal of American Water Works Association, Nov. 1922, vol. 9, No. 6, pp. 921-927.
J. C. Wachel et al., “Analysis of Vibration and Failure Problems in Reciprocating Triplex Pumps for Oil Pipelines,” The American Society of Mechanical Engineers, Presented at the Energy-Sources and Technology Conference and Exhibition, Dallas, Texas, Feb. 17-21, 1985, 8 pages.
Declaration of Nathaniel E. Frank-White, Internet Archive, Feb. 17, 2022, http://web.archive.org/web/20140329090440/http://www.enidline.com/pdffiles/WR_Catalog_2012.pdf, 82 pages.
Wire Rope Isolator Technologies, Enidine, Dec. 2011, 78 pages.
World's Best Swivel Joints, Flowvalve, 2013, https://web.archive.org/web/20150117041757/http://www.flowvalve.com:80/swivels, 10 pages.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/170,695 dated Jun. 7, 2019.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/268,030 dated May 10, 2019.
Final Office Action issued in corresponding U.S. Appl. No. 16/210,749 dated Jun. 11, 2019.
Canadian Office Action dated May 30, 2019 in corresponding CA Application No. 2,833,711.
Canadian Office Action dated Jun. 20, 2019 in corresponding CA Application No. 2,964,597.
International Search Report and Written Opinion dated Jul. 9, 2019 in related PCT Application No. PCT/US2019/027584.
Office Action dated Jun. 7, 2019 in related U.S. Appl. No. 16/268,030.
International Search Report and Written Opinion dated Sep. 11, 2019 in related PCT Application No. PCT/US2019/037493.
Office Action dated Aug. 19, 2019 in related U.S. Appl. No. 15/356,436.
Office Action dated Oct. 2, 2019 in related U.S. Appl. No. 16/152,732.
Office Action dated Sep. 11, 2019 in related U.S. Appl. No. 16/268,030.
Office Action dated Oct. 11, 2019 in related U.S. Appl. No. 16/385,070.
Office Action dated Sep. 3, 2019 in related U.S. Appl. No. 15/994,772.
Office Action dated Sep. 20, 2019 in related U.S. Appl. No. 16/443,273.
Canadian Office Action dated Oct. 1, 2019 in related Canadian Patent Application No. 2,936,997.
International Search Report and Written Opinion dated Nov. 26, 2019 in related PCT Application No. PCT/US19/51018.
Office Action dated Dec. 6, 2019 in related U.S. Appl. No. 16/564,186.
Non-Final Office dated Oct. 26, 2020 in U.S. Appl. No. 15/356,436.
Non-Final Office dated Oct. 5, 2020 in U.S. Appl. No. 16/443,273.
Non-Final Office Action dated Sep. 29, 2020 in U.S. Appl. No. 16/943,727.
Non-Final Office Action dated Sep. 2, 2020 in U.S. Appl. No. 16/356,263.
Non-Final Office Action dated Aug. 31, 2020 in U.S. Appl. No. 16/167,083.
Albone, “Mobile Compressor Stations for Natural Gas Transmission Service,” ASME 67-GT-33, Turbo Expo, Power for Land, Sea and Air, vol. 79887, p. 1-10, 1967.
Canadian Office Action dated Sep. 22, 2020 in Canadian Application No. 2,982,974.
International Search Report and Written Opinion dated Sep. 3, 2020 in PCT/US2020/36932.
“Process Burner” (https://www.cebasrt.com/productsloii-gaslprocess-bumer) 06 Sep. 6, 2018 (Sep. 6, 2018), entire document, especially para (Burners for refinery Heaters].
Water and Glycol Heating Systems⋅ (https://www.heat-inc.com/wg-series-water-glycol-systems/) Jun. 18, 2018 (Jun. 18, 2018), entire document, especially WG Series Water Glycol Systems.
“Heat Exchanger” (https://en.wiklpedia.org/w/index.php?title=Heat_exchanger&oldid=89300146) Dec. 18, 2019 Apr. 2019 (Apr. 18, 2019), entire document, especially para (0001].
Canadian Office Action dated Sep. 8, 2020 in Canadian Patent Application No. 2,928,707.
Canadian Office Action dated Aug. 31, 2020 in Canadian Patent Application No. 2,944,980.
International Search Report and Written Opinion dated Aug. 28, 2020 in PCT/US20/23821.
Non-Final Office Action issued in U.S. Appl. No. 16/871,928 dated Aug. 25, 2021.
Non-Final Office Action issued in U.S. Appl. No. 16/943,727 dated Aug. 3, 2021.
Non-Final Office Action issued in U.S. Appl. No. 14/881,525 dated Jul. 21, 2021.
Non-Final Office Action issued in U.S. Appl. No. 16/404,283 dated Jul. 21, 2021.
Notice of Allowance and Notice of Allowability issued in U.S. Appl. No. 15/829,419 dated Jul. 26, 2021.
Woodbury et al., “Electrical Design Considerations for Drilling Rigs,” IEEE Transactions on Industry Applications, vol. 1A-12, No. 4, Jul./Aug. 1976, pp. 421-431.
Gardner Denver, 3″ 1502 Male Hammer Union Discharge Flange, 2005, 13 pages.
“Services—U.S. Well Services,” http://uswellservices.com/services/, accessed Nov. 13, 2021, 10 pages.
Donald G. Fink, “Standard Handbook for Electrical Engineers—Thirteenth Edition,” 1993, McGraw-Hill Inc., pp. 10-13, 20-21, 20-22, 20-85, 20-20, 20-89, 20-90, 20-91, 22-12, 22-13, 22-14, 22-15 and 22-16.
Email from Michael See on Jun. 10, 2021 regarding API-541 Fourth Edition: Public Availability, 2 pages.
Halliburton, Halliburtion All-Electric Fracturing Reducing Emissions and Cost Brochure, 2021, 6 pages.
IEEE Power Engineering Society, 112 IEEE Standard Test Procedure for Polyphase Induction Motors and Generators, 2004, 87 pages.
U.S. Well Services, LLC v Tops Well Services, LLC, Case No. 3:19-cv-237, Document 135, Order, Sep. 22, 2021, 2 pages.
U.S. Well Services, Inc. and U.S. Well Services, LLC v Halliburton Company and Cimarex Energy Co., Case No. 6:21-cv-00367-ADA, Document 56, Defendants' Opening Claim Construction Brief, Oct. 27, 2021, 46 pages.
“Screenshot of USWS Clean Fleet System Video,” 1 page.
John Daniel, “8.30 DEP Industry Observations: New Flac Fleet; New Fleet Designs Forthcoming,” Daniel Energy Partners, Aug. 30, 2020, 13 pages.
Declaration of Joel N. Broussard, IPR2021-01034, IPR2021-01035, IPR2021-01036, and IPR2021-01037, Oct. 20, 2021, 11 pages.
Declaration of Robert Schaaf, IPR2021-01034, Oct. 20, 2021, 47 pages.
Declaration of Dr. Mark Ehsani, IPR2021-01035, Jun. 18, 2021, 188 pages.
Stan Gibilisco, The Illustrated Dictionary of Electronics: Audio/Video Consumer Electronics Wireless Technology—Eighth Edition, 2001, p. 667.
Declaration of Robert Schaaf, IPR2021-01035, Oct. 20, 2021, 51 pages.
Declaration of Dr. L. Brun Hilbert, P.E., IPR2021-01037 and IPR2021-01038, Jun. 21, 2021, 124 pages.
U.S. Appl. No. 62/242,173, 17 pages.
Declaration of Robert Schaaf, IPR2021-01037, Oct. 20, 2021, 52 pages.
Zeus Electric Pumping Unit, Halliburton, http://www.halliburton.com/en/products/zeus-electric-pumping-unit, 2021, 4 pages.
Declaration of Joel N. Broussard, IPR2021-01038, Oct. 20, 2021, 11 pages.
LedComm LLC v Signify North America Corporation, Case No. 6:20-cv-01056-ADA, Civil Docket, accessed Dec. 8, 2021, 11 pages.
U.S. Well Services, Inc. v Halliburton Company, Case No. 6:21-cv-00367-ADA, Civil Docket, accessed Dec. 13, 2021, 14 pages.
Declaration of Robert Schaaf, IPR2021-01038, Nov. 10, 2021, 40 pages.
Transcend Shipping Systems LLC v Mediterranean Shipping Company S.A., Case No. 6:21-cv-00040, Document 27, Order of Dismissal with Prejudice, Dec. 7, 2021, 1 page.
Centers for Disease Control and Prevention, NIOSH Numbered Publications, https://web.archive.org/web/20120721180008/http://www.cdc.org/niosh/pubs/all_date_desc_nopubnumbers.html, 2012, 57 pages.
America Invents Act, H.R. Rep. No. 112-98, Jun. 1, 2011, 165 pages.
Declaration of Joel N. Broussard, IPR2021-01065, Oct. 20, 2021, 11 pages.
Declaration of Dr. Robert Durham, IPR2021-01065, Jun. 18, 2021, 138 pages.
Declaration of Robert Schaaf, IPR2021-01065, Nov. 10, 2021, 33 pages.
U.S. Pat. No. 9,410,410, Excerpt—Response to Non-Final Office Action filed Feb. 3, 2016, 57 pages.
U.S. Pat. U.S. Appl. No. 62/242,566, 34 pages.
Industrial Safety & Hygiene News, OSHA issues hazard alert for fracking and drilling, Jan. 6, 2015, 1 page.
Portfolio Media Inc., A Shift to Sand: Spotlight on Silica Use in Fracking, Law360, https://www.law360.com/articles/366057/print?section=energy, accessed Jun. 10, 2021, 5 pages.
Henry Chajet, “OSHA Issues Alert on Non-Silica Fracking Hazards,” Jan. 30, 2015, National Law Review Newsroom, 2 pages.
U.S. Well Services, LLC, v Voltagrid LLC, Nathan Ough, Certarus (USA) Ltd., and Jared Oehring, Case No. 4:21-cv-3441-LHR, Document 13, Plaintiff U.S. Well Services, LLC's Motion for Preliminary Injunction and Request for Hearing, Nov. 4, 2021, 311 pages.
U.S. Department of Labor—Occupational Safety and Health Administration, Hydraulic Fracturing and Flowback Hazards Other than Respirable Silica, 27 pages.
U.S. Department of Labor—Occupational Safety and Health Administration, Hazard Alert—Worker Exposure to Silica during Hydraulic Fracturing, 2012, 7 pages.
U.S. Department of Labor—Occupational Safety and Health Administration, OSHA and NIOSH issued hazard alert on ensuring workers in hydraulic fracturing operations have appropriate protections from silica exposure, Jun. 21, 2012, 4 pages.
Occupational Safety and Health Administration—Home, United States Department of Labor, https://web.archive.org/web/20120722160756/http://www.osha.gov/, accessed Jun. 13, 2021, 2 pages.
Industry/Hazard Alerts, United States Department of Labor, https://web.archive.org/web/20120801064838/http://www.osha.gov:80/hazardindex.html, accessed Jun. 13, 2021, 1 page.
Hazard Alert—Worker Exposure to Silica during Hydraulic Fracturing, United States Department of Labor, https://web.archive.org/web/20120808200919/http://www.osha.gov/dts/hazardalerts/hydraulic_frac_hazard_alert.html, accessed Jun. 13, 2021, 5 pages.
A. Abbott, Crippling the Innovation Economy: Regulatory Overreach at the Patent Office, Regulatory Transparency Project, Aug. 14, 2017, 35 pages.
D. Heidel, Safety and Health Management Aspects for Handling Silica-based Products and Engineered Nanoparticles in Sequences of Shale Reservoir Stimulations Operations, Society of Petroleum Engineers, 2004, 4 pages.
Testimony of Judge Paul R. Michel (Ret.) United States Court of Appeals for the Federal Circuit Before the Subcommittee on Intellectual Property, U.S. Senate Committee on the Judiciary, Jun. 4, 2019, 8 pages.
Bernard D. Goldstein, The Role of Toxicological Science in Meeting the Challenges and Opportunities of Hydraulic Fracturing, 2014, Toxicological Sciences, vol. 139, No. 2, pp. 271-283.
Mike Soraghan, OSHA issues hazard alert for fracking and drilling, E&E, Dec. 10, 2014, 1 page.
Canadian Office Action dated Aug. 17, 2020 in related CA Patent Application No. 2,944,968.
International Search Report and Written Opinion dated Jun. 23, 2020 in corresponding PCT Application No. PCT/US20/23912.
International Search Report and Written Opinion dated Jul. 22, 2020 in corresponding PCT Application No. PCT/US20/00017.
Office Action dated Aug. 4, 2020 in related U.S. Appl. No. 16/385,070.
Office Action dated Jun. 29, 2020 in related U.S. Appl. No. 16/404,283.
Office Action dated Jun. 29, 2020 in related U.S. Appl. No. 16/728,359.
Office Action dated Jun. 22, 2020 in related U.S. Appl. No. 16/377,861.
Canadian Office Action dated Aug. 18, 2020 in related CA Patent Application No. 2,933,444.
U.S. Well Services, LLC v Tops Well Services, LLC and Honghua America, LLC, Case No. 3:19-cv-00237, Document 72-9, Declaration of Dr. Robert Schaaf, Apr. 24, 2020, 52 pages.
U.S. Well Services, LLC v Tops Well Services, LLC and Honghua America, LLC, Case No. 3:19-cv-00237 Document 72-9, Declaration of Dr. Robert Schaaf—part 2, Apr. 24, 2020, 128 pages.
U.S. Well Services, LLC v Tops Well Services, LLC and Honghua America, LLC, Case No. 3:19-cv-00237, Document 72-9, Declaration of Dr. Robert Schaaf—part 3, Apr. 24, 2020, 47 pages.
U.S. Well Services, LLC v Tops Well Services, LLC and Honghua America, LLC, Case No. 3:19-cv-00237, Document 72, Plaintiffs Opening Claim Construction Brief, Apr. 24, 2020, 37 pages.
U.S. Well Services, LLC v Tops Well Services, LLC and Honghua America, LLC, Case No. 3:19-cv-00237, Document 1, Plaintiffs Original Complaint, 63 pages.
U.S. Well Services, LLC v Tops Well Services, LLC and Honghua America, LLC, Case No. 3:19-cv-00237, Document 90, Plaintiffs Opposition to Defendants' Motion for Summary Judgment of Invalidity under 35 USC 112, 30 pages.
U.S. Well Services, LLC v Tops Well Services, LLC and Honghua America, LLC, Case No. 3:19-cv-00237, Document 116, Hearing on Markman and Summary Judgment via Video Conference before the Honorable Andrew M. Edison Day 1 of 1 Day—Transcript, Jun. 15, 2020, 308 pages.
Kirsch Research and Development, LLC v Tarco Specialty Products, Inc., Case No. 6:20-cv-00318-ADA, Document 62, Memorandum Opinion and Order Granting Defendant's Opposed Motion to Stay Pending Inter Partes Review of the '482 Patent [ECF No. 57], Oct. 4, 2021, 6 pages.
Ledcomm LLC v Signfiy North America Corp., Signify Holding B.V., and Signify N.V., Case No. 6:20-cv-01056-ADA, Document 24, Scheduling Order, Aug. 13, 2021, 4 pages.
Transcend Shipping Systems, LLC and Hapag-Lloyd AG and Hapag-Lloyd (America) LLC, CMA CGM (America) LLC and CMA CGM S.A., Mediterranean Shipping Company S.A., Case Nos. 6:20-cv-1195-ADA, 6:21-cv-0018-ADA, and 6:21-cv-0040-ADA, Document 19, Proposed Amended Scheduling Order, Aug. 13, 2021, 6 pages.
U.S. Well Services, Inc. and U.S. Well Services, LLC v Halliburton Company and Cimarex Energy Co., Case No. 6:21-cv-00367-ADA, Document 51, Agreed Scheduling Order, Sep. 16, 2021, 5 pages.
U.S. Well Services, Inc. and U.S. Well Services, LLC v Halliburton Company and Cimarex Energy Co., Case No. 6:21-cv-00367-ADA, Plaintiffs Disclosure of Asserted Claims and Preliminary Infringement Contentions, Jul. 12, 2021, 9 pages.
U.S. Well Services, Inc. and U.S. Well Services, LLC v Halliburton Company and Cimarex Energy Co., Case No. 6:21-cv-00367-ADA, Plaintiff U.S. Well Services, LLC's Disclosure of Extrinsic Evidence, Oct. 19, 2021, 10 pages.
U.S. Well Services, Inc. and U.S. Well Services, LLC v Halliburton Company and Cimarex Energy Co., Case No. 6:21-cv-00367-ADA, Defendants' Preliminary Invalidity Contentions, Sep. 10, 2021, 193 pages.
U.S. Well Services, Inc. and U.S. Well Services, LLC v Halliburton Company and Cimarex Energy Co., Case No. 6:21-cv-00367-ADA, Document 1-8, Exhibit H, Halliburton—All Electric Fracturing Reducing Emissions and Cost, Apr. 15, 2021, 6 pages.
Bill Lockley and Barry Wood, “What do the API Motor/Generator Features Cost and What Do They Buy You?” 2010 IEEE, Paper No. PCIC-2010-22, 10 pages.
American Petroleum Institute, “Form-wound Squirrel-Cage Induction Motors—500 Horsepower and Larger,” Jun. 2004, Fourth Edition, ANSI/API Standard 541-2003, 88 pages.
Assignment record of U.S. Pat. No. 9,366,114, accessed Aug. 19, 2021, 2 pages.
ASTM International, “Standard Specification for Steel Bars, Carbon and Alloy, Hot-Wrought, General Requirements” Oct. 13, 2006, 16 pages.
“U.S. Well Services Issues $125.5 Million Convertible Senior Secured PIK Notes, Executes License Agreement with ProFrac Manufacturing, LLC and Finalizes Amendment to Senior Secured Term Loan,” Jun. 28, 2021, https://finance.yahoo.com/news/u-well-services-issues-125-203000637.html?guccounter=1, 6 pages.
Declaration of Joel N. Broussard, Case Nos. IPR2021-01032 & IPR2021-01033, Oct. 13, 2021, 9 pages.
Declaration of Dr. Robert Durham, Case Nos. IPR2021-01033, IPR2021-01032 and IPR2021-01034, Jun. 18, 2021, 179 pages.
Declaration of Robert Schaaf, Case Nos. IPR2021-01032 and IPR2021-01033, Oct. 12, 2021, 45 pages.
Declaration of Sylvia D. Hall-Ellis, Ph.D., Case Nos. IPR2021-01032, IPR2021-01033, and IPR2021-01034, Jun. 18, 2021, 173 pages.
Stephen Cary et al., “Electric Rotating Machine Standards Part II: Magnetic Wedge Design & Monitoring Methods,” 2011 IEEE, Paper No. PCIC-2011-41, 8 pages.
Janice Hoppe-Spiers, “Deploying Change,” Energy & Mining International, Spring 2017, http://www.emi-magazine.com, 5 pages.
Jim Harris, “U.S. Well Services LLC—Energy and Mining Magazine,” Energy & Mining International, Oct. 12, 2021, https://www.emi-magazine.com/sections/profiles/1221-us-well-services-llc, 3 pages.
“Clean Fleet Reduces Emissions by 99% at Hydraulic Fracturing Sites,” Fluid Power Journal, https://fluidpowerjournal.com/clean-fleet-reduces-emissions/, accessed Sep. 22, 2021, 5 pages.
Gardner Denver, Well Servicing Pump Model GD-2500Q Quintuplex—Operating and Service Manual, Aug. 2005, 46 pages.
“Halliburton Delivers Successful Grid-Powered Frac Operation,” https://www.halliburton.com/en/about-us/press-release/halliburton-delivers-first-successful-grid-powered-fracturing-operation, accessed Sep. 27, 2021, 4 pages.
Hart Energy, Hydraulic Fracturing Techbook, 2015, 99 pages.
R. Mistry et al., “Induction Motor Vibrations in view of the API 541—4th Edition,” IEEE, accessed Jun. 10, 2021, 10 pages.
“Game-changing hydraulic fracturing technology, reduces emissions by 99%,” Intrado Globe News Wire, Oct. 1, 2014, https://www.globenewswire.com/fr/news-release-2014/10/01/670029/10100696/en/Game-changing-hydraulic-facturing-technology-reduces-emissions-by-99.html, 4 pages.
M. Hodowanec et al., “Introduction to API Standard 541, 4th Edition—Form-Wound Squirrel Cage Induction Motors—Larger than 500 Horsepower,” 2003, IEEE, Paper No. PCIC-2003-33, 9 pages.
D. Bogh et al., “A User's Guide to Factory Testing of Large Motors: What Should Your Witness Expect,” IEEE, accessed Jun. 10, 2021, 8 pages.
Ryan Davis, “Albright Says He'll Very Rarely Put Cases On Hold For PTAB,” Law 360, https://www.law360.com/articles/1381597/print?section=ip, 2 pages.
Dani Kass, “Fintiv Fails: PTAB Uses ‘Remarkably Inaccurate’ Trial Dates,” Nov. 2, 2021, Law 360, 1 page.
Eugene A. Avallone et al., “Marks' Standard Handbook for Mechanical Engineers, 11th Edition,” 2007, pp. 3-65, 14-2, 14-3, 14-13, 14-14, 20-91, 22-12, 22-13, 22-14, 22-15, 22-16, 10-3, 20-21, 20-22, 20-85, 20-86, 20-89, and 20-90.
T. W. Pascall et al., “Navigating the Test Requirements of API 541 4th Edition,” 2007, IEEE, Paper No. PCIC-2007-11, 12 pages.
“Kerr Pumps & FlowVale Awards for Excellence in Well Completion, Northeast 2017—Awarded to: U.S. Well Services,” https://www.oilandgasawards.com/winner/northeast-2017-kerr-pumps-flowvale-awards . . . , accessed Oct. 5, 2021, 4 pages.
“New Technology Development Award—General/Products, Northeast 2015—Awarded to: U.S. Well Services, LLC,” https://www.oilandgasawards.com/winner/northeast-2015-new-technology-development-award-generalproducts/#, accessed Aug. 23, 2021, 4 pages.
U.S. Well Services, Inc. v. Halliburton Company, Civil Docket for Case # 6:21-cv-00367-ADA, https://ecf.txwd.uscourts.gov/cgi-bin/DktRpt.pl?190912742001885-L_1_0-1, Accessed Nov. 29, 2021, 13 pages.
A. T. Dufresne, “How reliable are trial dates relied on by the PTAB in the Fintiv analysis?” Perkins Coie, 2021, 3 pages.
J. Malinowski et al., “Petrochemical Standards A Comparison Between IEEE 841-2001, API 541, and API 547,” 2004, IEEE, Paper No. PCIC-2004-22, 8 pages.
“Petroleum Alumnus and Team Develop Mobile Fracturing Unit that Alleviates Environmental Impact,” 2015, LSU, https://www.lsu edu/eng/news/2015/07/20150713-mobile-fracturing-unit.php, accessed Sep. 22, 2021, 2 pages.
Liz Hampton, “Low-cost fracking offers boon to oil producers, headaches for suppliers,” Reuters, Sep. 12, 2019, https://www.reuters.com/article/us-usa-oil-electric-fracturing-focus/low-cost-fracking-offers-boon-to-oil-producers-headaches-for-supplies, 11 pages.
Liz Hampton, “U.S. Well Services files e-frac patent lawsuit against Halliburton, Cimarex Energy,” Reuters, Apr. 15, 2021, https://www.reuters.com/business/energy/us-well-services-files-e-frac-patent-lawsuit-against-halliburton-cimarex-energy, 10 pages.
“VZ Environmental Award of Excellence in Environmental Stewardship, Rocky Mountain 2016—Awarded to: U.S. Well Services, LLC,” Oil & Gas Awards, 2016, https://www.oilandgasawards.com/winner/rocky-mountain-2016-vz-environmental-award-for-excellence-in-environmental-stewardship, accessed Aug. 23, 2021, 4 pages.
Austin H. Bonnett, “Root Cause Failure Analysis for AC Induction Motors in the Petroleum and Chemical Industry,” 2010, IEEE, Paper No. PCIC-2010-43, 13 pages.
Carolyn Davis, “Natural Gas Finding Niche in E-Fracking, But Diesel Still Rules,” Sep. 6, 2019, Natural Gas Intel, https://www.naturalgasintel.com/natural-gas-finding-niche-in-e-fracking-but-diesel-still-rules, 9 pages.
Tim Rahill and Michael C. Fousha, “Sorting Out the Overlap,” Jan./Feb. 2009, IEEE Industry Applications Magazine, 12 pages.
Jodi Shafto, “Growth in electric-fracking fleets stunted by tight producer budgets,” Aug. 6, 2019, S&P Global Market Intelligence, https://wwww.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/growth-in-electric-fracking-fleets-stunted-by-tight-producer-budgets, accessed Sep. 16, 2021, 4 pages.
A. H. Bonnett et al., “Squirrel Cage Rotor Options for A.C. Induction Motors,” IEEE, accessed May 18, 2021, 4 pages.
U.S. Well Services Investor and Analyst Update: Second Quarter 2021 in Review, 2021, 7 pages.
Standing Order Governing Proceedings—Patent Cases, in the United States District Court for the Western District of Texas, Waco Division, filed Nov. 17, 2021, 11 pages.
U.S. Well Services—Services, http://uswellservices.com/services/, accessed Nov. 13, 2021, 10 pages.
Elsevier, “Variable Speed Pumping—A Guide to Successful Applications,” 2019, 186 pages.
U.S. Well Services, Inc., and U.S. Well Services, LLC v Halliburton Company, Cimarex Energy Co., Halliburton Energy Services, Inc., and Halliburton US Techologies, Inc., Case No. WA:21-CV-00367-ADA, Document 61, Order Setting Markman Hearing, Nov. 29, 2021, 1 page.
U.S. Well Services, Inc., and U.S. Well Services, LLC v Halliburton Company, Cimarex Energy Co., Halliburton Energy Services, Inc., and Halliburton US Techologies, Inc., Case No. WA:21-CV-00367-ADA, Document 61, Order Resetting Markman Hearing, Dec. 8, 2021, 1 page.
Affidavit of Duncan Hall, Internet Archives on Jun. 7, 2021, https://web.archive.org/web/20120917102614/http:/www.quincieoilfield.com/pdf/3.0%20Gardner%20Denver/2500/GD2500Q%200p%20&%20Service%20Manual.pdf, 76 pages.
UK Power Networks—Transformers to Supply Heat to Tate Modern—from Press Releases May 16, 2013.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/293,681 dated Feb. 16, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/294,349 dated Mar. 14, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated Jan. 20, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,443 dated Feb. 7, 2017.
Notice of Allowance issued in corresponding U.S. Appl. No. 15/217,040 dated Mar. 28, 2017.
Notice of Allowance issued in corresponding U.S. Appl. No. 14/622,532 dated Mar. 27, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/291,842 dated Jan. 6, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated Dec. 7, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated May 17, 2016.
Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated Dec. 21, 2015.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated Aug. 5, 2015.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated Sep. 12, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/217,040 dated Nov. 29, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/235,788 dated Dec. 14, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated May 15, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/486,970 dated Jun. 22, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/487,656 dated Jun. 23, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/487,694 dated Jun. 26, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 15/294,349 dated Jul. 6, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/884,363 dated Sep. 5, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated Sep. 6, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/881,535 dated Oct. 6, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,414 dated Nov. 29, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/644,487 dated Nov. 13, 2017.
Canadian Office Action dated Mar. 2, 2018 in related Canadian Patent Application No. 2,833,711.
Office Action dated Apr. 10, 2018 in related U.S. Appl. No. 15/294,349.
Office Action dated Apr. 2, 2018 in related U.S. Appl. No. 15/183,387.
Office Action dated May 29, 2018 in related U.S. Appl. No. 15/235,716.
Candian Office Action dated Apr. 18, 2018 in related Canadian Patent Application No. 2,928,711.
Canadian Office Action dated Jun. 22, 2018 in related Canadian Patent Application No. 2,886,697.
Office Action dated Jul. 25, 2018 in related U.S. Appl. No. 15/644,487.
Office Action dated Oct. 4, 2018 in related U.S. Appl. No. 15/217,081.
International Search Report and Written Opinion dated Sep. 19, 2018 in related PCT Patent Application No. PCT/US2018/040683.
Canadian Office Action dated Sep. 28, 2018 in related Canadian Patent Application No. 2,945,281.
Office Action dated Dec. 12, 2018 in related U.S. Appl. No. 16/160,708.
International Search Report and Written Opinion dated Jan. 2, 2019 in related PCT Patent Application No. PCT/US18/54542.
International Search Report and Written Opinion dated Jan. 2, 2019 in related PCT Patent Application No. PCT/US18/54548.
International Search Report and Written Opinion dated Dec. 31, 2018 in related PCT Patent Application No. PCT/US18/55913.
International Search Report and Written Opinion dated Jan. 4, 2019 in related PCT Patent Application No. PCT/US18/57539.
Non-Final Office Action dated Feb. 12, 2019 in related U.S. Appl. No. 16/170,695.
International Search Report and Written Opinion dated Feb. 15, 2019 in related PCT Patent Application No. PCT/US18/63977.
International Search Report and Written Opinion dated Mar. 5, 2019 in related PCT Patent Application No. PCT/US18/63970.
Non-Final Office Action dated Feb. 25, 2019 in related U.S. Appl. No. 16/210,749.
Non-Final Office Action dated Mar. 6, 2019 in related U.S. Appl. No. 15/183,387.
Office Action dated Jan. 30, 2019 in related Canadian Patent Application No. 2,936,997.
Office Action dated Mar. 1, 2019 in related Canadian Patent Application No. 2,943,275.
International Search Report and Written Opinion dated Apr. 10, 2019 in corresponding PCT Application No. PCT/US2019/016635.
Notice of Allowance dated Apr. 23, 2019 in corresponding U.S. Appl. No. 15/635,028.
International Search Report and Written Opinion dated Jul. 9, 2019 in corresponding PCT Application No. PCT/US2019/027584.
International Search Report and Written Opinion mailed in PCT/US20/67526 dated May 6, 2021.
International Search Report and Written Opinion mailed in PCT/US20/67608 dated Mar. 30, 2021.
International Search Report and Written Opinion mailed in PCT/US20/67528 dated Mar. 19, 2021.
International Search Report and Written Opinion mailed in PCT/US20/67146 dated Mar. 29, 2021.
International Search Report and Written Opinion mailed in PCT/US20/67523 dated Mar. 22, 2021.
International Search Report and Written Opinion mailed in PCT/US2020/066543 dated May 11, 2021.
U.S. Well Services, Inc. files suit against Halliburton Company and Cimarex Energy Co. for patent infringement, Apr. 15, 2021, PR Newswire, https://www.prnewswire.com/news-releases/us-well-services-inc-files-suit-against-halliburton-company-and-cimarex-energy-co-for-patent-infringement-301270118.html, 2 pages.
Publications, U.S. Department of Labor—Occupational Safety and Health Administration, https://web.archive.org/web/20150626140537/https://www.osha.gov/pls/publications/publication.html, 47 pages.
OSHA Publications, U.S. Department of Labor—Occupational Safety and Health Administration, https://web.archive.org/web/20150406054914/https://www.osha.gov/pls/publications/publication.AthruZ?pType=Industry, Jun. 13, 2021, 3 pages.
U.S. Department of Labor—Occupational Safety and Health Administration, https://web.archive.org/web/20150406152927/https://www.osha.gov/, 4 pages.
Steven C. Carlson, Weaponizing IPRs, Landslide, Sep. 22, 2019, 10 pages.
Declaration of Dr. Mark Ehsani, IPR2021-01066, Jul. 2, 2021, 213 pages.
Declaration of Robert Schaaf, IPR2021-01066, Nov. 17, 2021, 43 pages.
U.S. Appl. No. 62/323,303.
Amazon.com purchase page for Electrical Engineering Reference Manual for the Electrical and Computer PE Exam, Sixth Edition, https://web.archive.org/web/20070103124447/https:/www.amazon.com/Electrical-Engineering-Reference-Manual-Computer/dp/1888577568/, accessed Jul. 23, 2021, 7 pages.
Public Catalog of the U.S. Copyright Office for search result: electrical engineering reference manual, https://cocatalog.loc.gov/cgi-bin/Pwebrecon.cgi?v1=6&ti=1, 6&Search_Arg=electrical engineering reference manual&Search_Code=TALL&CNT=25&PI . . . , accessed Jul. 21, 2021, 2 pages.
Declaration of Robert Schaaf, IPR2021-01238, Nov. 17, 2021, 38 pages.
John A. Camera, PE, Electrical Engineering Reference Manual for the Electrical and Computer PE Exam, Sixth Edition, 2002, 102 pages.
U.S. Appl. No. 62/180,289.
IEEE 100 The Authoritative Dictionary of IEEE Standards Terms Seventh Edition, 2000, 7 pages.
National Electrical Manufacturers Association, NEMA ICS 61800-4 Adjustable Speed Electrical Power Drive Systems, Part 4: General Requirements—Rating Specifications for A.C. Power Drive Systems above 1000 V a.c. and Not Exceeding 35 kV, 2004 22 pages.
Professional Publications, Inc., FE Exam, PE Exam, ARE Exam, and NCIDQ Exam Review / Professional Engineering Licensing, About PPI, https://web.archive.org/web/20031219231426/http://ppi2pass.com:80/catalog/servlet/MyPpi_pg_aboutppi.html, accessed Jul. 22, 2021, 1 page.
Professional Publications, Inc., FE Exam, PE Exam, ARE Exam, and NCIDQ Exam Review / Professional Engineering Licensing, What PPI Customers Say, https://web.archive.org/web/20031226130924/http://ppi2pass.com:80/catalog/servlet/MyPpi_pg_comments-EEcomments.html, accessed Jul. 22, 2021, 2 pages.
Professional Publications, Inc., FE Exam, PE Exam, ARE Exam, and NCIDQ Exam Review / Professional Engineering Licensing, Homepage, https://web.archive.org/web/20040209054901/http://ppi2pass.com:80/catalog/servlet/MyPpi, accessed Jul. 19, 2021, 1 page.
Professional Publications, Inc., FE Exam, PE Exam, ARE Exam, and NCIDQ Exam Review / Professional Engineering Licensing, The PPI Online Catalog, https://web.archive.org/web/20040215142016/http://ppi2pass.com:80/catalog/servlet/MyPpi_ct_MAIN, accessed Jul. 19, 2021, 2 pages.
Professional Publications, Inc., FE Exam, PE Exam, ARE Exam, and NCIDQ Exam Review / Professional Engineering Licensing, Electrical PE Exam Review Products, https://web.archive.org/web/20040214233851/http://ppi2pass.com:80/catalog/servlet/MyPpi_ct_ELECTRICAL, accessed Jul. 19, 2021, 7 pages.
Professional Publications, Inc., FE Exam, PE Exam, ARE Exam, and NCIDQ Exam Review / Professional Engineering Licensing, Instructor's Corner, https://web.archive.org/web/20031219232547/http://ppi2pass.com:80/catalog/servlet/MyPpi_pg_corner-corner.html, accessed Jul. 19, 2021, 2 pages.
Professional Publications, Inc., FE Exam, PE Exam, ARE Exam, and NCIDQ Exam Review / Professional Engineering Licensing, Teaching an Electrical and Computer Engineering PE Exam Review Course, https://web.archive.org/web/20031223100101/http://ppi2pass.com:80/catalog/servlet/MyPpi_pg_corner-teachee.html, accessed Jul. 19, 2021, 2 pages.
Professional Publications, Inc., Electrical Engineering Reference Manual, 12 pages.
Professional Publications, Inc., Books for the FE, PE, FLS and PLS Exams, Spring 2004, http://www.ppi2pass.com/corner/catalog.pdf, 16 pages.
Lionel B. Roe, Practices and Procedures of Industrial Electrical Design, 1972, McGraw-Hill, Inc., Chapter 2: The Basic Electric System, 11 pages.
Declaration of Duncan Hall, Jul. 23, 2021, https://web.archive.org/web/20031219231426/http://ppi2pass.com:80/catalog/servlet/MyPpi_pg_aboutppi.html, 12 pages.
Declaration of Robert Durham, IPR2021-01315, Aug. 12, 2021, 209 pages.
Declaration of Robert Schaaf, IPR2021-01315, Nov. 19, 2021, 39 pages.
U.S. Appl. No. 62/323,168.
U.S. Well Services, Inc. and U.S. Well Services, LLC v Halliburton Company and Cimarex Energy Co., Case No. 6:21-cv-00367-ADA, Document 63, Defendants' Claim Construction Brief in Reply to U.S. Well Services, LLC's Responsive Brief, Dec. 2, 2021, 30 pages.
U.S. Well Services, Inc. v Halliburton Company, Case No. 6:21-cv-00367-ADA, Civil Docket, accessed Dec. 17, 2021, 14 pages.
U.S. Well Services, Inc. v Halliburton Company, Case No. 6:21-cv-00367-ADA, Document 64, Order Resetting Markman Hearing, Dec. 8, 2021, 1 page.
Approved American National Standard, ANSI/NEMA MG Jan. 2011, American National Standard Motors and Generators, Dec. 9, 2021, 636 pages.
Comprehensive Power: Power it Up, Feb. 27, 2013, 28 pages.
Comprehensive Power: Power it Up, Brochure, 26 pages.
Declaration of Robert Schaaf, IPR2021-01316, Nov. 19, 2021, 33 pages.
Declaration of Robert Durham, IPR2021-01316, Aug. 13, 2021, 75 pages.
Declaration of Robert Schaaf, IPR2021-01538, Dec. 28, 2021, 40 pages.
Declaration of Dr. L. Brun Hilbert, Jr., P.E., IPR2021-01538, Sep. 22, 2021, 99 pages.
Maxwell James Clerk 1868, On Governors, Proc. R. Soc. Lond., pp. 16270-16283.
Katsuhiko Ogata, Modern Control Engineering: Third Edition, 1997, 2 pages.
49 C.F.R. Part 393 (Oct. 1, 2006), 36 pages.
Non-Final Office Action issued in U.S. Appl. No. 14/881,535 dated May 20, 2020.
Non-Final Office Action issued in U.S. Appl. No. 15/145,443 dated May 8, 2020.
Non-Final Office Action issued in U.S. Appl. No. 16/458,696 dated May 22, 2020.
International Search Report and Written Opinion issued in PCT/US2020/023809 dated Jun. 2, 2020.
Karin, “Duel Fuel Diesel Engines,” (2015), Taylor & Francis, pp. 62-63, Retrieved from https://app.knovel.com/hotlink/toc/id:kpDFDE0001/dual-fueal-diesel-engines/duel-fuel-diesel-engines (Year 2015).
Goodwin, “High-voltage auxilliary switchgear for power stations,” Power Engineering Journal, 1989, 10 pg. (Year 1989).
Kroposki et al., Making Microgrids Work, 6 IEEE Power and Energy Mag. 40, 41 (2008).
Dan T. Ton & Merrill A. Smith, The U.S Department of Energy's Microgrid Initiative, 25 The Electricity J. 84 (2012), pp. 84-94.
Non-Final Office Action issued in U.S. Appl. No. 16/871,328 dated Dec. 9, 2021.
Non-Final Office Action issued in U.S. Appl. No. 16/943,935 dated Oct. 21, 2021.
Non-Final Office Action issued in U.S. Appl. No. 16/564,186, dated Oct. 15, 2021.
Final Office Action issued in U.S. Appl. No. 16/356,263 dated Oct. 7, 2021.
Non-Final Office Action issued in U.S. Appl. No. 17/060,647 dated Sep. 20, 2021.
Non-Final Office Action issued in U.S. Appl. No. 16/901,774 dated Sep. 14, 2021.
Canadian Office Action issued in Canadian Application No. 3,094,768 dated Oct. 28, 2021.
International Search Report and Written Opinion dated Jan. 2, 2020 in related PCT Application No. PCT/US19/55325.
Notice of Allowance dated Jan. 9, 2020 in related U.S. Appl. No. 16/570,331.
Non-Final Office Action dated Dec. 23, 2019 in related U.S. Appl. No. 16/597,008.
Non-Final Office Action dated Mar. 3, 2020 in related U.S. Appl. No. 16/152,695.
Non-Final Office Action dated Dec. 6, 2019 in related U.S. Appl. No. 16/564,186.
International Search Report and Written Opinion dated Feb. 11, 2020 in related PCT Application No. PCT/US2019/055323.
Final Office Action dated Mar. 31, 2020 in related U.S. Appl. No. 15/356,436.
Related Publications (1)
Number Date Country
20200300073 A1 Sep 2020 US
Provisional Applications (1)
Number Date Country
62821138 Mar 2019 US