1. Field of the Invention
This invention relates to an overtube and a medical procedure using the overtube that is performed via a natural orifice.
2. Description of Related Art
Laparoscopic operations are known in which, in performing a medical procedure of observing, treating, etc. an organ of the human body, instead of incising the abdominal wall widely, a plurality of orifices are opened in the abdominal wall and procedures are performed upon inserting a laparoscope, forceps, and other treatment instruments into the orifices. Such procedure provides the benefit of lessening the burden placed on the patient because only small orifices need to be opened in the abdominal wall.
In recent years, methods of performing procedures upon inserting a flexible endoscope via the mouth, nose, anus, or other natural orifice of the patient have been proposed as methods of further reducing the burden on the patient. An example of such procedures is disclosed in U.S. Pat. No. 5,458,131.
With this method, a flexible endoscope is inserted from the mouth of a patient, an opening is formed in the stomach wall, and a distal end part of the endoscope is fed into the abdominal cavity from the opening. Then while using the endoscope as a device for observing the interior of the abdominal cavity, desired procedures are performed inside the abdominal cavity using a treatment instrument inserted through the endoscope or a treatment instrument inserted from another opening.
An object of this invention is to provide a device and a method that enable incision of tissue to be performed more readily in performing a medical procedure using an overtube.
An overtube according to a first aspect of this invention includes: an insertion part, that is inserted into a subject and has a lumen, through which a device insertion part of a device for performing a medical procedure inside a body of the subject is removably inserted, the insertion part being inserted into the subject; and a tissue incising part that is disposed at a distal end side of the insertion part so as to cross the lumen and incises a tissue of the subject.
An overtube according to a second aspect of this invention includes: an insertion part, that is opened at a distal end, inserted into a subject, and has a lumen, through which a device insertion part of a device for performing a medical procedure inside a body of the subject is removably inserted, the insertion part being inserted into the subject; and a tissue incising part that crosses a distal end side of the lumen is disposed at the insertion part so as to allow withdrawing of the crossing state, and incises a tissue of the subject.
A medical procedure through a natural orifice according to a third aspect of this invention includes: inserting a device that extends in an axial direction into a lumen disposed in an insertion part of an overtube and inserting the insertion part into a hollow organ through a natural orifice of a subject; guiding the insertion part to an incision target site while using an observation device to observe the incision target site; using a tissue incising part, disposed at a distal end side of the insertion part, to incise the incision target site and form an opening; and introducing at least one of an operative device and the overtube into an abdominal cavity via the opening.
Embodiments according to the present invention will now be described in detail below. In the following description, components that are the same shall be provided with the same numeric symbol and redundant description shall be omitted.
An overtube 1 according to this embodiment is used as a guide tube for inserting, into a body, an endoscope or other device, for carrying out a medical procedure inside a body and being equipped with an insertion device part that is inserted inside a subject (to simplify the description, the device may be referred to simply as “device” or “endoscope” below). As shown in
As shown in
The incising electrode 6 is, for example, a stainless steel wire to which high-frequency electricity can be energized and is disposed so as to cross a center of the lumen 3 in a direction orthogonal to an axial direction of the insertion part 5. That is, as shown in
The electrode manipulating wires 7A and 7B are inserted through an electrode tube 18. The electrode tube 18 is provided with a single tube at a proximal end side that protrudes outside the insertion part 5. As shown in
As shown in
A connection plate 23 is disposed at the manipulating handle 21. The connection plate 23 is electrically connected to end parts of the electrode manipulating wires 7A and 7B inserted through the manipulating pipe 19. A fixing screw 24 is disposed at the connection plate 23, and by screwing the fixing screw 24 into the connection plate 23, the electrode manipulating wires 7A and 7B are fixed and electrically connected. The connection plate 23 is electrically connected via an electric wiring 25 to a connection terminal 26A disposed in the manipulating handle 21. A connection terminal 26B, disposed at a distal end of a power supply cord 28 that extends from a high-frequency power supply 27, is detachably attached to the connection terminal 26A. The manipulating handle 21 is also provided with finger rings 21A.
On an outer surface of the distal end part 15 of the overtube 1, a first outer groove 30 and a second outer groove 31 are formed from a middle portion to the distal end of the distal end part 15 at positions orthogonal to a direction joining the first inner groove 16 and the second inner groove 17. The two puncture needles (hollow needles) 32A and 32B, which advance and retract along the lumen 3, are movably disposed in advancing and retracting directions in the first outer groove 30 and the second outer groove 31, respectively. Two anchors 33A of double T-bars 33, shown in
The double T-bars 33 have two sutures 33C, one end side of each of which is passed through a substantially triangular stopper 33B. At one end, the sutures 33C are bound together to form a large diameter part 33Ca. Each of the other ends of the sutures 33C is fixed to the anchors 33A. Each anchor 33A has a cylindrical shape with a slit formed at an end, and the suture 33C is inserted in the longitudinal direction of the interior of anchor 33A through the slit. The large diameter part 33Ca that has greater diameter than that of the anchor 33A is formed at the other end of the suture 33C. The stopper 33B has a hole, through which the sutures 33C are passed, at a center in the longitudinal direction of an elongated, thin plate member. The respective ends in the longitudinal direction of the stopper 33B are folded obliquely and sandwich the sutures 33C. The respective ends in the longitudinal direction of the stopper 33B are cut to notches of triangular shape. With the stopper 33B, the respective ends are folded back obliquely so that the notches intersect and thereby sandwich the sutures 33C. The sutures 33C thus do not fall off from between the ends. When the large diameter part 33Ca of the sutures 33C is pulled in a direction away from the stopper 33B, the respective end parts of the stopper 33B spread apart slightly. The stopper 33B thus allows movement of the sutures 33C in this direction. Meanwhile, when a large diameter part 33Ca at the anchor 33A side of a suture 33C is pulled, a tendency for the suture 33C to move in the direction indicated by the arrow in
As shown in
The puncture needles 32A and 32B and pushers 35 are respectively accommodated in two outer sheaths 38. Each of the two outer sheaths 38 is inserted through the insertion part 5 and has a distal end connected to the distal end part 15. A slit 32a, through which a suture 33C of the double T-bars 33 is inserted, is formed at a distal end of each of the puncture needles 32A and 32B. A rigid, pushing member 35A is disposed at a distal end of the pusher 35.
As shown in
As shown in
The distal ends of the bending wires 12 are fixed to the distal end part 15, and in the present embodiment, the two bending wires 12 are inserted through the interior of the insertion part 5 and the distal ends thereof are fixed to portions of the distal end part 15 that substantially oppose each other across the center of the lumen 3. Though in this embodiment, two bending wires 12 are provided to enable bending of the bending part 13 in two directions, this invention is not limited thereto, and four bending wires 12 and two bending levers 45 may be provided as in a bending part of a known endoscope to enable bending of the bending part in four directions.
As shown in
The endoscope 2, which is inserted into the overtube 1, is, for example, a flexible endoscope and, as shown in
Actions of the present embodiment shall now be described in line with a medical procedure performed via a natural orifice using the overtube 1 as shown by the flow chart of
First, with the patient PT being made to lie in a supine position, an inserting step (S10) of inserting the endoscope 2 through the lumen 3 in the insertion part 5 of the overtube 1 and inserting the insertion part 5 of the overtube 1 and the endoscope 2 into the stomach (hollow organ) ST from the mouth M of the patient PT while observing the interior of the body cavity by means of an endoscopic image is performed. As shown in
Next, in a distending step (S20), air is supplied from the air/water feeding device 62 via the channel 58 of the insertion part 5 to inflate the stomach ST.
A guiding step (S30) of guiding the insertion part 5 of the overtube 1 to the incision target site T while checking the incision target site T using the endoscope 2, which is also an observation device, is then performed. First, after inserting the endoscope inserting part 51 of the endoscope 2 into the stomach ST, the angle knob 53 is manipulated to bring the distal end of the endoscope inserting part 51 close to the incision target site T while observing the interior of the stomach ST via the objective lens 55, disposed at the endoscope inserting part 51. Then with the incision target site T being specified, the endoscope inserting part 51 is used as a guide to push the insertion part 5 of the overtube 1 and bring the distal end part 15 of the overtube 1 close to the incision target site T as shown in
A needle moving step (S40), of advancing and retracting the puncture needles 32A and 32B, disposed at the distal end side of the insertion part 5, along the lumen 3, is then performed. First, in a suctioning step (S41), a stomach wall that includes the incision target site T is sucked in by the suction device 63 via the channel 58, with the distal end part 15 being put in contact with the stomach wall. In this process, a portion of the stomach wall is sucked into the distal end part 15 as shown in
An abdominal cavity insufflating step (S42) is then performed. First, an injection needle 68 connected to the air/water feeding device 62 is inserted through the channel 60 of the endoscope 2. A distal end of the injection needle 68 is then protruded inside the distal end part 15, and as shown in
The injection needle 68 preferably has a needle length of approximately 12 mm and more preferably has a bendable distal end to enable piercing of the center of the suctioned stomach wall. In this case, a bended injection needle has a bending tendency at a distal end and has a bending wire (not shown) that passes from the distal end toward a proximal side in an inward radial direction of the bending tendency. Here, since the channel 60 of the endoscope 2 is disposed at a position of six o'clock to eight o'clock of the endoscope inserting part 51, the incision site is approached from an upward angle in incising the anterior stomach wall of the stomach ST that is preferable as the incision site. Since the bending wire thus faces the center due to the bending tendency following the bended state of the insertion part 5 of the overtube 1, the center of the stomach wall can be punctured reliably by pulling the bending wire toward the proximal side. In the process of feeding air, the interior of the abdominal cavity AC may be maintained at an appropriate pressure by monitoring and automatic control of the feed air pressure.
A placing step (S43) is then performed. First, the needle manipulating handle 41 is advanced in the direction of the sheath holding part 40 while holding the sheath holding part 40 to make the puncture needles 32A and 32B protrude from the first outer groove 30 and the second outer groove 31, respectively, of the distal end part 15 and pierce the stomach wall as shown in
After the anchors 33A of the double T-bars 33 have been released, the pusher connection part 43 is retracted with respect to the needle manipulating handle 41, and furthermore, the needle manipulating handle 41 is retracted with respect to the sheath holding part 40 to respectively accommodate the puncture needles 32A and 32B inside the first outer groove 30 and the second outer groove 31 again. In this process, the two anchors 33A of the double T-bars 33 are put in a T-like state by the bending tendencies of the sutures 33C. Thereafter, by holding and drawing the sheath holding part 40 towards the proximal side, the puncture needles 32A and 32B are removed from the distal end part 15 and by furthermore drawing the puncture needles out from the overtube 1, the bending property of the bending part 13 is secured.
An incising step (S50) is then performed. First, it is checked whether the connection terminal 26A of the electrode manipulating part 8 is connected to the connection terminal 26B of the power supply cord 28. Then, while supplying the high-frequency power from high-frequency power supply 27, the manipulating handle 21 is advanced with respect to the manipulating body 20 to make the incising electrode 6 protrude from the distal end part 15 and contact the stomach wall. In this process, since the electricity is supplied to the incising electrode 6 via the electrode manipulating wires 7A and 7B, the stomach wall is incised by the incising electrode 6 and the opening SO is formed in the stomach wall as shown in
A removing step (S60) is then performed. Here, in order to remove the incising electrode 6 from inside the insertion part 5, the fixing screw 24 of the manipulating body 20 of the electrode manipulating part 8 is loosened. In this process, the electrode manipulating wires 7A and 7B separate from the connection plate 23 and the electrode manipulating wires 7A and 7B become severed. Then, for example, an end part of the electrode manipulating wire 7A is held and drawn toward the proximal side to move the electrode manipulating wire 7A through the lumen 3 to the proximal end side and move the electrode manipulating wire 7B through the lumen 3 to the distal end side. Eventually, the electrode manipulating wire 7B also moves around the distal end opening of the lumen 3 and toward the proximal end side. The incising electrode 6 is thereby drawn out along with the electrode manipulating wires 7A and 7B.
An introducing step (S70) is then performed. That is, as shown in
When the overtube 1 is introduced into the abdominal cavity AC through the opening SO, the site of placement of the anchors 33A of the double T-bars is set at the proximal side of the position of the hole 37 formed in the insertion part 5. The stopper 33B, accommodated inside the hole 37, is thus pulled in the direction to become detached from the hole 37 in accordance with the orientation of the hole 37 and the stopper 33B falls out of the hole 37.
After positioning, a treating step (S80) of performing observation, incision, cell sampling, suturing, or any of other various treatments (medical procedures) is carried out. After performing the treatment, the overtube 1 and the endoscope 2 are removed from the opening SO of the stomach wall.
In a suturing step (S90), in removing the endoscope 2 from the opening SO, the large diameter part 33Ca of the sutures 33c is held and pulled with respect to the stopper 33B of the double T-bars 33, which had been placed in advance, by a ligating device 69, inserted through the channel 60 of the endoscope 2 as shown in
After suturing, the endoscope 2 is drawn out of the patient, the pressure applied to the abdominal cavity AC is released, and the surgical procedure is ended.
With the overtube 1, since the incising electrode 6 is disposed at the distal end side of the insertion part 5 and across the distal end side of the lumen 3, when the insertion part 5 is inserted into the stomach ST, the stomach wall can be incised without requiring a special treatment instrument for incision. Because, in this process, tissue is incised just by an amount corresponding to the length of the incising electrode 6 that crosses the lumen 3, the overtube 1 can be made to pass through with a light force and leakage at the outer periphery of the overtube 1 can be restrained preferably. Also, since the electrode manipulating wires 7A and 7B are removable with respect to the electrode manipulating part 8, the incising electrode 6 can be removed along with the electrode manipulating wires 7A and 7B from the insertion part 5. Thus, in making the endoscope 2 protrude out from the lumen 3, the incising electrode 6 will not be an obstruction, and upon inserting the endoscope 2 through the lumen 3, the endoscope 2 can be advanced into the abdominal cavity AC beyond the incised tissue. Furthermore, in making the device (endoscope 2 in the embodiment) that has been inserted through the lumen 3 protrude and advance from the distal end of the overtube 1 after incising tissue and forming the opening, the task of withdrawing the incising electrode 6 from the path of the device, the task of drawing out the overtube 1 once from within the body to remove the incising electrode 6, etc., can be omitted. Consequently, the surgical procedure time from the forming of the opening in the stomach wall to the introducing of the endoscope 2 into the abdominal cavity AC can be shortened.
Also, since the incising electrode 6 is connected to the electrode manipulating wires 7A and 7B, which can be manipulated to advance and retract with respect to the lumen 3, the incising electrode 6 can be advanced and retracted with respect to the lumen 3 without performing a manipulation of advancing and retracting the entirety of the insertion part 5. That is, by advancing and retracting of the electrode manipulating part 8, the incising electrode 6 can be advanced and retracted with respect to the stomach wall to perform incision. In this process, because the incision is performed by passing high-frequency electricity through the incising electrode 6, the incision can be performed more safely with a small force.
Also, before incising and forming an opening in a wall of a hollow organ (the stomach wall in the embodiment), the double T-bars 33 can be placed, and in inserting the puncture needles 32A and 32B through the stomach wall, puncture can be performed preferably without the stomach wall moving away. Furthermore, the double T-bars 33 can be placed before opening formation (before suturing) to set up a state in which the double T-bars 33 are just constricted in the suturing process, and in suturing the opening after ending the medical procedure inside the abdominal cavity AC, the suturing of the opening can be performed more readily without insufflating the interior of the stomach. The suturing task can thus be performed more readily.
Also, because the direction in which the incising electrode 6 crosses the lumen 3 is orthogonal to the direction of joining the puncture needles 32A and 32B, the positions of puncturing by the puncture needles 32A and 32B can be separated from the incision location, and the double T-bars 33 can be placed at a position separated from the incision location by a distance that is appropriate for binding.
A second embodiment according to this invention shall now be described with reference to the drawings.
A point of difference of the second embodiment with respect to the first embodiment is that an overtube 70 according to this embodiment has a first magnet (magnetic body) 71, disposed on an outer peripheral surface of the insertion part 5 near the proximal end of the bending part 13, a second magnet (magnetic body) 72, disposed on an outer peripheral surface at the distal end of the bending part 13, and a third magnet (magnetic body) 73, disposed more toward the proximal end side (manipulating handle 21 side) of the insertion part 5 than the first magnet 71, as shown in
Each of these magnets 71, 72, and 73 is formed so that all of the outer peripheral surface is of the same magnetic pole and these magnets are arranged so that the magnetic poles alternate along the insertion part 5, for example in a manner such that when the first magnet 71 is of the S pole, the second magnet 72 and the third magnet 73 are of the N pole.
Actions of this embodiment shall now be described in line with a medical procedure performed via a natural orifice using the overtube 70 as shown by the flow chart of
As in the first embodiment, the steps from the inserting step (S10) to the removing step (S60) are carried out in this embodiment as well.
An introducing step (S100) is then performed. That is, as shown in
Then with the distal end part 15 of the overtube 70 being protruded from the opening SO of the stomach ST, a moving magnet 75 is placed on an abdominal wall AW near the opening SO with the magnetic pole that is attracted to the second magnet 72 of the overtube 70 being set at the inner side as shown in
In order to secure a bended state of the bending part 13, a fixing magnet 76 is placed on the abdominal wall AW with the magnetic pole attracted to the first magnet 71 being set at the inner side as shown in
After then carrying out the treating step (S80), the endoscope 2 is returned into the stomach ST from the opening SO of the stomach wall and taken out from the mouth M of the patient PT, and then the suturing step (S90) is performed. The opening SO of the stomach wall is then sutured.
After suturing, the endoscope 2 is drawn out of the patient, the pressure applied to the abdominal cavity AC is released, and the surgical procedure is ended.
With the overtube 70, the same actions and effects as those of the first embodiment can be exhibited. In particular, since the first magnet 71, the second magnet 72, and the third magnet 73 are disposed at the outer portions of the insertion part 5, these can be attracted to the moving magnet 75, the fixing magnet 76, and the supporting magnets 77A and 77B to thereby support the insertion part 5 on the abdominal wall AW. The endoscope 2 that has been inserted into the overtube 70 can thus be restrained preferably from moving away during treatment. Also, by movement of the moving magnet 75, the distal end direction of the endoscope 2 that has been inserted into the overtube 70 can be moved readily and the direction of endoscope 2 can be controlled readily by the magnets. Also, movement, fixing, and supporting of the overtube 70 can be performed from outside the body by using the moving magnet 75, the fixing magnet 76, and the supporting magnets 77A and 77B to further facilitate orientation of the overtube 70.
The scope of the art of this invention is not restricted to the embodiments described above, and various changes can be added within a range that does not fall outside the spirit of this invention.
For example, though in each of the above-described embodiments, a flexible endoscope is used as the observation device, this invention is not restricted thereto and, for example, a so-called capsule endoscope may be placed inside the body, and while observing the interior of the body using the endoscope, an insertion part of a treatment device that does not have an observation device may be inserted through the overtube to perform the desired surgical procedure.
Though in the first embodiment, the incision electrode 6 is set to a length such that it is accommodated inside the lumen 3 in a bended state as shown in
An overtube 82, having four puncture needles 81A, 81B, 81C, and 81D disposed at a distal end part 80, may be arranged as shown in
Likewise, an overtube 86, having six puncture needles 85A, 85B, 85C, 85D, 85E, and 85F disposed at a distal end part 83, may be arranged as shown in
As shown in
As shown in
When housing the anchor 33A for the double T-bar 33 in the puncture needles 93A,93B, the anchor 33A is housed inside the puncture needles 93A, 93B, and stopper 33B is housed in the hole 37 by taking the suture 33C around the outer peripheral surface of the distal end part 90. Here, one end of the suture 33C is inserted into the anchor 33A, and is made to extend out so as to fold over from the slit 33Aa, with the stopper 33B being disposed at the other end. Since the suture 33C is formed, for example, of a resin such as nylon which is more highly elastic than thread or silk, the anchor 33A and the suture 33C are connected such that, in the natural state where there is no external force being applied, the suture 33C does not extend out in a perpendicular direction from the slit 33Aa of the anchor 33A, but rather forms an acute angle with respect to one end of the anchor 33A and forms an obtuse angle with respect to the other end of the anchor 33A. For this reason, when housing the anchor 33A in the puncture needles 93A, 93B, the direction of the anchor 33A is disposed so that the large diameter part 33Ca is directed toward the distal end of the puncture needles 93A, 93B, as shown in
Theoretically, in the case where there is no first slit 98, then suture 33C is exposed from the opening 95A of the lumen for needle 95, and extends out toward the outer surface of the distal end part 90, and the suture 33C is folded over inside the lumen for needle 95 at an acute angle. In this case, an undesirable bending tendency in the suture 33C may arise depending on the suture material used. When this bending tendency arises in the penetrating direction of the puncture needles 93A, 93B, then, as shown in
In contrast, by means of the present overtube 96, the opening 95A from which puncture needles 93A, 93B project out is formed to the same side as the outside of the distal end part 90. Thus, even if the tissue is drawn toward the distal end surface 90a, the suture 33C is not disposed between the distal end surface 90a and the tissue. Accordingly, the puncturing action can be carried out smoothly. Furthermore, since a first slit 98 is provided, it is possible to reduce the occurrence of undesirable bending in the suture 33C. Accordingly, the puncture operation can be carried out with greater certainty. In addition, by disposing the anchor 33A in puncture needles 93A, 93B as described above, the angle formed by the suture 33C and the tissue when puncturing the tissue is small, i.e., the angle formed between the direction of extension of the suture 33C and the lumen for needle 95 becomes closer to parallel. Accordingly, when puncturing, it is possible to limit the resistance of the suture 33C with respect to the tissue, and to carry out the puncturing operation with greater certainty.
In addition, as shown in
The present application is a continuation of U.S. patent application Ser. No. 11/435,182, filed on May 16, 2006 which is a continuation-in-part application of U.S. patent application Ser. No. 11/331,938, filed on Jan. 13, 2006, the contents of which were entirely incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11435182 | May 2006 | US |
Child | 12958867 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11331938 | Jan 2006 | US |
Child | 11435182 | US |