The present invention generally relates to generator control units (GCU), and more particularly, exemplary embodiments of the present invention relate to overvoltage protection during GCU failures.
Conventionally, an aircraft power generating system is controlled by a GCU such that generator output voltage is regulated during normal operations. The GCU may also limit a generator's output current to be within specified limits during fault conditions, such as short circuits at output terminals. In variable frequency generating systems, there may be a potential for significant overvoltage if an associated generator is over-excited due to GCU failure, or multiple smaller failures within a GCU.
According to an exemplary embodiment of the present invention, an overvoltage protection system for a generator of a power generating system includes a generator control relay (GCR) controlling a conduction path through a generator exciter field, a flyback impedance in parallel communication with the generator exciter field, the flyback impedance configured to dissipate energy from the generator exciter field in response to opening of the conduction path, a gate drive configured to open and close the GCR, and an overvoltage prevention unit in signal communication with the gate drive, the overvoltage prevention unit configured to monitor a voltage and a current associated with the generator and selectively open and close the conduction path in response to the monitored voltage and current.
According to another exemplary embodiment of the present invention, a method of overvoltage protection of a generator of a power generating system includes determining if line current of the generator is at or above a design threshold, and modulating a conduction path of an exciter field of the generator between open and closed to reduce the line current in response to the determining
The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
According to exemplary embodiments of the present invention, an overvoltage protection system is provided which reduces the risk of overvoltage in power generating systems, even in the event of a generator control unit (GCU) failure. The technical effects and benefits of exemplary embodiments of the present invention include broader protection for power generating systems under a variety of conditions.
Turning to
The system 100 further includes current processing unit 103. The current processing unit 103 is configured to sense line current(s) for 114 the main generator. Thus, the current processing unit 103 may be in current sensing communication with the generator 114, such that actual line current(s) of the main generator 114 may be sensed. The line current(s) may be a three phase (A,B,C) current(s), depending upon any desired implementation. The current processing unit 103 is further configured to determine a peak value of the line current, and output the same to the current monitor 104. The current monitor 104 is configured to monitor the peak value output from current processing unit 103, and compare the same to a desired range of applicable current, for example, as compared to a target current curve profile for appropriate operation of the generator and/or power generating system. The output of the comparison is provided to current limiter/overvoltage prevention unit 105. The current limiter/overvoltage prevention unit 105 is configured to process the current information received from the current monitor 104 and the average voltage VAVG to determine if an overcurrent condition exists, and is further configured to activate an overcurrent signal, fault, or flag if the monitored current exceeds valid design or desired thresholds.
As illustrated, the current limiter/overvoltage prevention unit 105 provides the fault information to logic unit 106. Furthermore, logic unit 106 receives overvoltage fault information from overvoltage limiter 102. The logic unit 106 outputs a positive (e.g., logical 1) control signal whenever either or both of an overvoltage or an overcurrent fault exists to gate drive 107. Gate drive 107 is configured to drive (e.g., open/close) generator control relay (GCR) 108 depending upon the control signals received from logic unit 106. The GCR 108 is configured to sever a conduction path between the GCU and the exciter field 110 of the generator. Thus, if fault information processed at logic unit 106 is indicative of a fault, the gate drive 107 may open or modulate the GCR 108 to drive down exciter field current or sever the connection entirely. Whenever the conduction path is severed, a shunt flyback impedance 109 is provided to allow power within the exciter field 110 to dissipate relatively quickly. The flyback impedance 109 may include a set of transient voltage suppressors (transorbs) and/or a relatively high resistance in series with a control switch.
Therefore, as described above, a topology for a protective system is provided which operates in unison with a GCU to limit and mitigate the risk of overvoltage even in the event of GCU failure. Hereinafter, a methodology describing the logical execution of the current limiter/overvoltage prevention unit 105 is described with reference to
Turning to
Thereafter, the method 200 includes determining if actual line current of main generator 114 is at or above a design threshold at block 203. If line current is normal or within operating specifications, for example as determined through comparison with a target current curve, the GCR may remain closed and current may be continually monitored at block 203. Alternatively, if the actual line current of the main generator 114 is at or above design thresholds, the method 200 may include modulating the GCR 108 to limit the actual line current.
For example, modulating the GCR may include providing a pulse-width modulated (PWM) control signal to gate drive 107 which provides for the opening and closing of the GCR 108 at predetermined intervals. The PWM control signal may have any desirable duty cycle configured to limit the actual line current of the main generator 114. During modulation, the method 200 includes determining if an overall threshold has been reached at block 205.
According to at least one exemplary embodiment, an overall threshold may be a configurable time period at which a main generator may operate at elevated current or elevated voltage. Thus, if the configurable time period has lapsed, a fault flag may be set and the GCR may be opened and stay opened such that the electrical connection to the excited field 110 is severed at block 206. The time period may be measured through hardware or software based counters enabled within the current limiter/OV prevention unit 105. Alternatively, a clocking system may be integrated to measure time expired during overcurrent conditions.
Turning back to
Turning now to
The method 300 includes performing power-up tests of protection circuitry at block 301. The power-up tests may include injecting a sequence of phase-shifted test signals of varying amplitudes at respective POR voltage and line current inputs of voltage processing and current processing units 101 and 103. The test signals may be used to simulate a fault, short circuit, or other scenario. After testing, the method 300 includes closing a GCR at block 302. For example, closing the GCR may include supplying a control signal to gate drive 107 indicative of a system power-up or by issuing a GCR close request to the gate drive 107.
Thereafter, the method 300 includes determining if actual line current of main generator 114 is at or above a design threshold at block 303. If line current is normal or within operating specifications, for example as determined through comparison with a target current curve, the GCR may remain closed and current may be continually monitored at block 303. Alternatively, if the actual line current of the main generator 114 is at or above design thresholds, the method 300 may include determining if an overall threshold has been reached at block 304.
According to at least one exemplary embodiment, an overall threshold may be a configurable time period at which a main generator may operate at elevated current or elevated voltage. Thus, if the configurable time period has lapsed, a fault flag may be set and the GCR may be opened and stay opened such that the electrical connection to the excited field 110 is severed at block 305. The time period may be measured through hardware or software based counters enabled within the current limiter/OV prevention unit 105. Alternatively, a clocking system may be integrated to measure time expired during overcurrent conditions.
Turning back to
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.