The invention pertains to devices for storing gases and fluids under pressure. More particularly, the invention relates to pressure vessels that are formed out of flexible materials and that can be made to conform to a variety of shapes.
Typically, pressure vessels capable of containing liquids or gases at significant pressures have involved fixed shape cylinders or spheres formed of high-strength metals such as steel or aluminum. Such pressure vessels, while successful for their designed applications, involve a number of problems. First, such metallic cylinders are relatively heavy compared to the gases or fluids that they contain. Second, pressure cylinders contain all of the gas or liquid in a single space. Should the vessel rupture, the entire vessel is destroyed, often with a violent explosion sending shards of metal in all directions. Third, metallic cylinders have a definite shape and cannot be adapted to fit readily in many space-constrained applications. The present invention involves a number of small cells linked to each other by small conduits. The cells are collected in a flexible manifold that allows the collection of cells to be arranged in a variety of different configurations. A pressure vessel of this type can be lightweight, adaptable to a variety of spaces and unusual applications, and is inherently safer in rupture situations.
The present invention is easily adapted to a number of valuable applications through the use of modern, high-strength materials and manufacturing techniques. The pressure handling capability of the vessel can be enhanced through the use of braiding, hoop-winding and overlayment with flexible, high-strength fabric and braiding materials. The pressure vessel may then be further strengthened through the use of plastic resin coatings or the addition of external reinforcement rings. The purity of liquids or gases contained in the vessel may be controlled through the use of special lining tubes placed within the vessel cells during construction. The vessel cells may be prevented from collapsing as gasses or liquids are removed by the introduction of special sponges to the cells during fabrication. For certain special applications, the pressure vessel cells may be fitted with removable, resealable ports, permitting the introduction of relatively large matter into the cells.
Various designs have been developed using linked cell technologies. U.S. Pat. No. 6,047,860 issued to Sanders, the present inventor, is directed to a container system for pressurized fluids. The system includes a plurality of ellipsoidal chambers connected by a tubular core. The apertures into each of the chambers are of comparatively small size so that the rate of evacuation may be controlled if a single chamber is ruptured. Thus, the vessels are resistant to explosive rupturing. The container system comprises a plurality of chambers and a tubular core. The size of the apertures in the core are pre-selected so as to control the rate of evacuation of pressurized fluid from chambers. Each of the chambers is generally ellipsoidal and molded of a synthetic material with open front and rear ends. The tubular core is sonically welded to the chamber shells and the exterior of the shells are wrapped with pressure resistant reinforcing filaments. A protective plastic coating is applied to the exterior of the filament wrapped shells.
U.S. Pat. No. 2,222,762 issued to Bebor et al, discloses hollow metal bodies and means for producing them. The hollow bodies described in this invention are particularly adapted for use as pressure vessels and may be produced from tubular bodies by expanding the walls. The zones may comprise spaced spheroids joined together by parts of the initial tube. The hollow bodies described are made by placing a cylindrical tube into a suitable mold and then heating until the metal possesses the plasticity for expanding. By exerting an axially directed compressive force against the ends of the tube and simultaneously applying a high fluid pressure within the tube, the tube ball is axially compressed or upset while portions of the wall are expanded against the walls of the mold surrounding the tube. By suitably adjusting the axial thrust and expanding pressures, the hollow body is formed to possess the same wall thickness and resistivity to pressure yet to have the form of a plurality of spaced spheroids adjoined together by parts of the initial tube.
U.S. Pat. No. 4,946,056, issued to Stannard, is directed to a fabricated pressure vessel that is used for the containment of pressurized fluids. The multi-lobed tank comprises a series of cylindrical lobes connected side by side and separated by a septa. Openings or ports in the septa enable fluid communication between the lobes.
U.S. Pat. No. 2,823,668 issued to Van Court et al. describes an inflatable splint. The wrapper of the splint comprises a double layer of material defining a series of flexible fluid chambers divided into elongated enclosures by cementing or heat sealing. It should be noted that the chamber walls are left open at their upper and lower ends whereby all of the elongated fluid chambers are in fluid communication with one another.
U.S. Pat. No. 5,704,512 issued to Falk et al., discloses a vessel that is used for a pressure vessel and made of plastic. The vessel includes a centered tubular part interconnected to a plurality of interconnected fluid compartments distributed peripherally in an annular fashion and thus enclosing the central compartment. The vessels described in this invention may be used to hold liquefied petroleum gas, compressed air, as well as various fire-fighting materials.
While other variations exist, the above-described designs involving linked cell technologies are typical of those encountered in the prior art. It is an objective of the present invention to provide a flexible pressure vessel that is capable of maintaining gasses or liquids at relatively high pressures. It is a further objective to provide this capability in a vessel that is light in weight and that presents a significantly reduced risk of injury in rupture situations. It is a still further objective of the invention to provide a pressure vessel that may be easily adapted to a variety of space constraints. It is yet a further objective to provide a pressure vessel that is durable, easily serviced, and that may be produced inexpensively. It is still a further objective of the invention to provide means for easily increasing the pressure handling capability of the vessel through the addition of external overwrapping, banding or overlayment with high-strength materials. It is another objective to provide means for controlling the purity of liquids or gasses introduced into the vessel. Finally, it is an objective of the invention to provide means for introducing solid material into the pressure cells of the vessel through resealable ports in the vessel pressure cells.
While some of the objectives of the present invention are disclosed in the prior art, none of the inventions found include all of the requirements identified.
(1) An ovoid flexible pressure vessel providing the desired features may be constructed from the following components. At least one hollow pressure cell is provided. The pressure cell has symmetrical upper and lower cell portions. The pressure cell is formed of resilient material and has an outer surface, an outer perimeter and at least one opening located at the outer perimeter. A passageway is provided. The passageway has a first end and a second end and is attached to the at least one opening at the first end and extends outwardly for connection to either a passageway of another cell or a valve. At least one reinforcing ring is provided. The reinforcing ring has an inner surface, an outer surface, an outer circumference, is formed of high-strength material and is sized and shaped to fit tightly about the outer perimeter of the pressure cell. The reinforcing ring has an aperture. The aperture extends from the inner surface to the outer surface and is sized, shaped and located to accommodate connection of the passageway to the pressure cell. A valving means is provided. The valving means is capable of controlling a flow of either a liquid or a gas through the passageway and is attached to the second end of the passageway. When the reinforcing ring is located about the outer perimeter of the pressure cell, the pressure handling capacity of the cell is increased.
(2) In a variant of the invention, at least one upper dome-shaped cell portion is provided. The upper cell portion is formed from resilient material and has an outer surface, an inner surface, an inner perimeter, an outer perimeter and at least one upper opening portion. The upper opening portion extends outwardly from the inner perimeter. At least one mating lower dome-shaped cell portion is provided. The lower cell portion is formed from resilient material and has an outer surface, an inner surface, an inner perimeter, an outer perimeter and at least one lower opening portion. The lower opening portion extends outwardly from the inner perimeter. The upper cell portion is joined to the mating lower cell portion such that a hollow pressure cell is formed. The cell 15 has at least one opening. A passageway is provided. The passageway has a first end and a second end and is attached to the at least one opening at the first end and extends outwardly for connection to either a passageway of another cell or a valve.
At least one reinforcing ring is provided. The reinforcing ring has an inner surface, an outer surface, an outer circumference, is formed of high-strength material and is sized and shaped to fit tightly about the outer perimeter of the pressure cell. The reinforcing ring has an aperture. The aperture extends from the inner surface to the outer surface and is sized, shaped and located to accommodate connection of the passageway to the pressure cell. A valving means is provided. The valving means is capable of controlling a flow of either a liquid or a gas through the passageway and is attached to the second end of the passageway.
(3) In another variant of the invention, a protruding rim is provided. The protruding rim is located at the outer perimeter of the pressure cell. Upper and lower receiving notches are provided. The upper and lower receiving notches are located above and below the protruding rim. Upper and lower projecting ribs are provided. The upper and lower projecting ribs are located upon the inner surface of the reinforcing ring. A central receiving notch is provided. The central receiving notch is located between the upper and lower projecting ribs. The projecting ribs are sized, shaped and located to fit the upper and lower receiving notches of the pressure cell. The central receiving notch is sized, shaped and located to fit the protruding rim of the pressure cell. When the reinforcing ring is located about the outer perimeter of the pressure cell, the pressure handling capacity of the cell is increased.
(4) In another variant, at least one upper dome-shaped cell portion is provided. The upper cell portion is formed from resilient material and has an outer surface, an inner perimeter, an outer perimeter and at least one upper passageway portion. The upper passageway portion extends outwardly from the inner perimeter. At least one mating lower dome-shaped cell portion is provided. The lower cell portion is formed from resilient material and has an outer surface, an inner perimeter, an outer perimeter and at least one lower passageway portion. The lower passageway portion extends outwardly from the inner perimeter. The upper cell portion is joined to the mating lower cell portion such that a hollow pressure cell is formed. The cell has at least one passageway extending outwardly from the cell for connection to either a passageway of another cell or a valve.
A protruding rim is provided. The protruding rim is located at the outer perimeter of the pressure cell. Upper and lower receiving notches are provided. The upper and lower receiving notches are located above and below the protruding rim. Upper and lower reinforcing rings are provided. Each of the reinforcing rings has an inner surface, an outer surface, is formed of high-strength material and is sized and shaped to fit tightly in either the upper or lower receiving notches. At least one of the reinforcing rings has an aperture. The aperture extends from the inner surface to the outer surface and is sized, shaped and located to accommodate connection of the passageway to the pressure cell. When the reinforcing rings are located about the outer perimeter of the pressure cell, the pressure handling capacity of the cell is increased.
(5) In yet a further variant of the invention, means are provided for fastening the upper reinforcing ring to the lower reinforcing ring.
(6) In yet a further variant, at least one upper dome-shaped cell portion is provided. The upper cell portion is formed from resilient material and has an outer surface, an inner perimeter, an outer perimeter and at least one upper passageway portion. The upper passageway portion extends outwardly from the inner perimeter. At least one mating lower dome-shaped cell portion is provided. The lower cell portion is formed from resilient material and has an outer surface, an inner perimeter, an outer perimeter and at least one lower passageway portion. The lower passageway portion extends outwardly from the inner perimeter.
The upper cell portion is joined to the mating lower cell portion such that a hollow pressure cell is formed. The cell has at least one passageway extending outwardly from the cell for connection to either a passageway of another cell or a valve. A protruding rim is provided. The protruding rim is located at the outer perimeter of the pressure cell. At least one groove located about the outer perimeter above the protruding rim is provided. Upper and lower reinforcing rings are provided. Each of the reinforcing rings has an inner surface, an outer surface, is formed of high-strength material and is sized and shaped to fit tightly about the outer perimeter on either side of the protruding rim.
The reinforcing rings have at least one rib located upon the inner surface thereof. The rib is sized, shaped and located to engage the groove. When the reinforcing rings are located about the outer perimeter of the pressure cell, the pressure handling capacity of the cell is increased.
(7) In still a further variant of the invention, means are provided for fastening the upper reinforcing ring to the lower reinforcing ring.
(8) In another variant of the invention, an overwrapping layer is provided. The overwrapping layer is formed of high-strength braiding material wound around the hollow pressure cell. When the hollow pressure cell is overwrapped with high-strength braiding material, the pressure handling capacity of the pressure cell is increased.
(9) In yet a further variant of the invention, hoop winding is provided. The hoop winding is around the hollow pressure cell to increase the pressure handling capacity of the pressure cell.
(10) In still a further variant, a plastic overcoating is provided.
(11) In yet a further variant, a first flexible blanket is provided. The first blanket has an upper surface, a lower surface and is sized and shaped to cover the upper cell portion and extends outwardly beyond the outer perimeter. The first blanket is fixedly attached at its lower surface to the outer surface of the upper cell portion. A second flexible blanket is provided. The second blanket has an upper surface, a lower surface and is sized and shaped to cover the lower cell portion and extends outwardly beyond the outer perimeter. The second blanket is fixedly attached at its upper surface to the outer surface of the lower cell portion.
(12) In another variant, heavy duty stitching is used to attach the first blanket to the second blanket. The stitching penetrates the first and second blankets between the cell portions and serves to further reinforce and increase the pressure-handling capabilities of the pressure cell.
(13) In another variant, the heavy duty stitching is high pressure hoop and lock braiding.
(14) In still a further variant of the invention, a cell-shaped sponge is inserted between the upper cell portion and the lower cell portion prior to joining the upper and lower cell portions. The sponge serves to prevent the cell from collapsing after either gas or liquid is removed from the cell.
(15) In another variant of the invention, the sponge is impregnated with a zeolite compound, a gas or liquid absorbing compound or a reactive fuel cell compound.
(16) In still another further variant, either a heat-reflecting plastic film or a metal foil is inserted between at least one of the first blanket and the upper cell portion or the second blanket and the lower cell portion.
(17) In yet a another variant of the invention, the upper cell portion is joined to the lower cell portion by either radio frequency welding or high strength adhesive.
(18) In still a further variant, either the first and second blankets are formed of high-strength fiber impregnated material.
(19) In still another variant of the invention, the passageway has a cross-section of between 0.025 and 0.250 inches.
(20) In yet a further variant, an upper retaining plate is provided. The upper retaining plate has a third inner circumference, an outer circumference and a third pre-determined thickness. The upper retaining plate is sized and shaped to fit over the upper cell portion and surround its outer perimeter when the upper cell portion is covered by the first blanket. The third inner circumference is larger than the outer circumference of the reinforcing ring. A lower retaining plate is provided. The lower retaining plate has a fourth inner circumference, an outer circumference and a fourth pre-determined thickness. The lower retaining plate is sized and shaped to fit over the lower cell portion and surround its outer perimeter when the lower cell portion is covered by the second blanket. The fourth inner circumference is larger than the outer circumference of the reinforcing ring. Means are provided for attaching the upper retaining plate to the lower retaining plate. When the upper retaining plate is attached to the lower retaining plate, surrounding the upper and lower cell portions and the first and second blankets covering the reinforcing ring, the pressure capacity of the cell will be increased.
(21) In another variant, means are provided for attaching the upper retaining plate to the lower retaining plate. A series of holes are provided. The holes penetrate the upper retaining plate between its outer circumference and the third inner circumference. The holes also penetrate the lower retaining plate between its outer circumference and the fourth inner circumference, the first blanket, a border of sheet material surrounding the outer perimeter of the upper cell portion, a border of sheet material surrounding the outer perimeter of the lower cell portion and the second blanket. The holes are outside of the outer circumference of the reinforcing ring. A series of fastening means is provided. The fastening means are sized and shaped to pass through the series of holes and are capable of securing the upper retaining plate to the lower retaining plate.
(22) In yet a further variant of the invention, the fastening means is a series of bolt and locking nuts.
(23) In another variant of the invention, the fastening means is a series of rivets.
(24) In still a further variant, the means for attaching the upper retaining plate to the lower retaining plate further includes a series of holes. The holes penetrate the upper retaining plate between its outer circumference and the third inner circumference, the first blanket, a border of sheet material surrounding the outer perimeter of the upper cell portion, a border of sheet material surrounding the outer perimeter of the lower cell portion and the second blanket. The holes are outside of the outer circumference of the reinforcing ring. A series of pins are provided. The pins are affixed orthogonally along an upper surface of the lower retaining plate and are sized, shaped and located to fit slidably through the series of holes and extends slightly above an upper surface of the upper retaining plate. A series of welds are provided. The welds fixedly attach the pins to the upper retaining plate, thereby securing the upper and lower retaining plates to each other.
(25) In yet a further variant of the invention, a series of cell shaped sponges are provided. A tube is provided. The tube is formed of flexible gas and liquid impervious material and is sized and shaped to surround the sponges. The sponges are inserted in the tube at spaced intervals. The encased sponges are inserted between the upper cell portions and the lower cell portions prior to joining the upper and lower cell portions. The tube extends through the passageways. The sponges serve to prevent the cells from collapsing after either gas or liquid is removed from the cells. The tube serves to prevent contamination of either gas or liquid by the inner surfaces of the upper and lower cell portions.
(26) In another variant of the invention, the sponges are impregnated with a zeolite compound, a gas or liquid absorbing compound or a reactive fuel cell compound.
(27) In another variant, the tube is formed from material selected from the group comprising: thermoplastic polyurethane elastomer, polyurethane polyvinyl chloride, polyvinyl chloride, thermoplastic elastomer, Teflon® and polyethylene.
(28) In still a further variant of the invention, upper and lower reinforcing panels are provided. The reinforcing panels are formed of high-strength woven material and are substantially ovoid in shape with extensions projecting from a perimeter of the ovoid shape. The reinforcing panels are adhered to the outer surfaces of the upper and lower cell portions of the hollow pressure cell, thereby increasing the pressure handling capabilities of the pressure cell.
(29) In another variant of the invention, the method of adhesion is selected from the group comprising: high-strength adhesive, sonic welding, and RF welding.
(30) In another variant, the woven material is prepregnated with either adhesive or laminating material and subjected to heat and pressure.
(31) In yet a further variant of the invention, the passageway is removably attached to the hollow pressure cell.
(32) In another variant of the invention, the passageway is removably attached to the hollow pressure cell by a threaded fitting. The threaded fitting is sized and shaped to fit a threaded opening at the outer perimeter of the hollow pressure cell.
(33) In still a further variant of the invention, an orifice is provided. The orifice penetrates either the upper or lower cell portions. A removable plug is provided. The removable plug is sized and shaped to fit sealably into the orifice, thereby permitting introduction of material into the pressure cell.
(34) An apparatus for fabricating an ovoid flexible pressure vessel may be constructed from the following components. An internal core form is provided. The internal core form has the internal shape of a hollow pressure cell, an internal passageway and a plurality of outlet blow holes connected to the passageway. An open top vessel is provided. The vessel contains a solution of liquid plastic. Means are provided for moving the internal core form into and out of the solution. Means are provided for pumping either pressurized gas or liquid into the passageway, thereby causing the liquid plastic to expand about the internal core form to form a hollow pressure cell. The pressure cell has symmetrical upper and lower cell portions, is formed of resilient material and has an outer surface, an outer perimeter and at least one opening located at the outer perimeter. Means are provided for extracting the internal core form from the hollow pressure cell. Means are provided for connecting a passageway to the at least one opening for connection to either a passageway of another cell or a valve. Means are provided for pressing a reinforcing ring onto the outer perimeter. The reinforcing ring has an inner surface, an outer surface, is formed of high-strength material and is sized and shaped to fit tightly about the outer perimeter of the pressure cell. The reinforcing ring has an aperture. The aperture extends from the inner surface to the outer surface and is sized, shaped and located to accommodate connection of the passageway to the pressure cell. Means are provided for attaching a valving means to the passageway. The valving means is capable of controlling a flow of either a liquid or a gas through the passageway and is attached to the second end of the passageway. When the reinforcing ring is located about the outer perimeter of the pressure cell, the pressure handling capacity of the cell is increased.
(35) In a variant of the apparatus for fabricating an ovoid flexible pressure vessel, means are provided for forming a protruding rim at an outer perimeter of the hollow pressure cell. The protruding rim has upper and lower receiving notches located above and below the protruding rim. The reinforcing ring has an outer surface, an inner surface, upper and lower projecting ribs and a central receiving notch located between the upper and lower projecting ribs. The projecting ribs are sized, shape and located to fit the upper and lower receiving notches of the pressure cell. The central receiving notch is sized, shaped and located to fit the protruding rim of the pressure cell.
(36) In yet a further variant of the apparatus for fabricating an ovoid flexible pressure vessel, first and second symmetrical external mold portions are provided. Each of the mold portions has at least one cavity reflecting the external shape of a hollow pressure cell and a connecting internal passageway. The cavity has at least one vacuum passage connecting to an external vacuum source. First and second sheets of moldable thermoplastic material are provided. Means are provided for inserting the sheets of thermoplastic material between the mold portions. Means are provided for heating the mold portions and the sheets. Means are provided for applying vacuum to the vacuum passages, thereby forming a hollow pressure cell. Means are provided for removing the hollow pressure cell from the mold portions. Means are provided for pressing a reinforcing ring onto the outer perimeter. The reinforcing ring has an inner surface, an outer surface, is formed of high-strength material and is sized and shaped to fit tightly about the outer perimeter of the pressure cell. The reinforcing ring has an aperture. The aperture extends from the inner surface to the outer surface and is sized, shaped and located to accommodate connection of the passageway to the pressure cell. Means are provided for attaching a valving means to the passageway. The valving means is capable of controlling a flow of either a liquid or a gas through the passageway and is attached to the second end of the passageway. When the reinforcing ring is located about the outer perimeter of the pressure cell, the pressure handling capacity of the cell 15 is increased.
(37) In another variant of the apparatus for fabricating an ovoid flexible pressure vessel, means are provided for forming a protruding rim at an outer perimeter of the hollow pressure cell. The protruding rim has upper and lower receiving notches located above and below the protruding rim. The reinforcing ring has an outer surface, an inner surface, upper and lower projecting ribs and a central receiving notch located between the upper and lower projecting ribs. The projecting ribs are sized, shaped and located to fit the upper and lower receiving notches of the pressure cell. The central receiving notch is sized, shaped and located to fit the protruding rim of the pressure cell.
(38) In still a further variant of the apparatus for fabricating an ovoid flexible pressure vessel, first and second symmetrical external mold portions are provided. Each of the mold portions has at least one cavity reflecting the external shape of a hollow pressure cell and a connecting internal passageway. Means are provided for extruding a plastic tube between the mold portions and pressurizing the plastic tube to form the hollow pressure cell with attached connecting internal passageway. Means are provided for removing the hollow pressure cell with attached passageway from the mold portions. Means are provided for connecting a passageway to the at least one opening for connection to either a passageway of another cell or a valve. Means are provided for pressing a reinforcing ring onto the outer perimeter. The reinforcing ring has an inner surface, an outer surface, is formed of high-strength material and is sized and shaped to fit tightly about the outer perimeter of the pressure cell. The reinforcing ring has an aperture. The aperture extends from the inner surface to the outer surface and is sized, shaped and located to accommodate connection of the passageway to the pressure cell. Means are provided for attaching a valving means to the passageway. The valving means is capable of controlling a flow of either a liquid or a gas through the passageway and is attached to the second end of the passageway. When the reinforcing ring is located about the outer perimeter of the pressure cell, the pressure handling capacity of the cell is increased.
(39) In yet a further variant of the apparatus for fabricating an ovoid flexible pressure vessel, means are provided for forming a protruding rim at an outer perimeter of the hollow pressure cell. The protruding rim has upper and lower receiving notches located above and below the protruding rim. The reinforcing ring has an outer surface, an inner surface, upper and lower projecting ribs and a central receiving notch located between the upper and lower projecting ribs. The projecting ribs are sized, shaped and located to fit the upper and lower receiving notches of the pressure cell. The central receiving notch is sized, shaped and located to fit the protruding rim of the pressure cell.
(40) In still a further variant of the apparatus for fabricating an ovoid flexible pressure vessel, first and second rolls of planar resilient material are provided. First and second thermal die stamping stations are provided. The stamping stations are capable of forming upper and lower cell portions of a hollow pressure cell and a connecting internal passageway. Means are provided for moving resilient material from the first and second rolls of planar resilient material into the first and second thermal die stamping stations. A radio frequency welder is provided. The welder is capable of joining the upper cell portion to the lower cell portion. Means are provided for moving the upper and lower cell portions into the radio frequency welder, thereby joining the upper and lower cell portions and forming the internal connecting passageway. Means are provided for pressing upper and lower reinforcing rings onto the hollow pressure cell adjacent the outer perimeter. The reinforcing rings have an inner surface, an outer surface, are formed of high-strength material and are sized and shaped to fit tightly about the outer perimeter of the pressure cell. At least one of the reinforcing rings has an aperture. The aperture extends from the inner surface to the outer surface and is sized, shaped and located to accommodate connection of the passageway to the pressure cell. Means are provided for attaching a valving means to the passageway. The valving means is capable of controlling a flow of either a liquid or a gas through the passageway and is attached to the second end of the passageway. When the reinforcing rings are located about the outer perimeter of the pressure cell, the pressure handling capacity of the cell is increased.
(41) In yet a further variant of the apparatus for fabricating an ovoid flexible pressure vessel, means are provided for forming a protruding rim at an outer perimeter of the hollow pressure cell. Means are provided for forming at least one groove located about the outer perimeter above the protruding rim. Means are provided for forming at least one groove located about the outer perimeter below the protruding rim. Each of the upper and lower reinforcing rings has an inner surface, an outer surface, is formed of high-strength material and is sized and shaped to fit tightly about the outer perimeter on either side of the protruding rim. The reinforcing rings have at least one rib located upon the inner surface thereof. The rib is sized, shaped and located to engage the groove.
(42) In another variant of the apparatus for fabricating an ovoid flexible pressure vessel, means are provided for fastening the upper reinforcing ring to the lower reinforcing ring.
(43) In yet a further variant of the apparatus for fabricating an ovoid flexible pressure vessel, first and second rolls of high-strength fiber impregnated blanket material are provided. Means are provided for attaching the first and second blankets over upper and lower surfaces of the hollow pressure cell.
(44) In still a further variant of the apparatus for fabricating an ovoid flexible pressure vessel, means are provided for overwrapping the hollow pressure cell and reinforcing ring with high-strength braiding material, thereby increasing the pressure handling capability of the hollow pressure cell.
(45) In yet a further variant of the apparatus for fabricating an ovoid flexible pressure vessel, means are provided for hoop winding the hollow pressure cell and reinforcing ring, thereby increasing the pressure handling capacity of the pressure cell.
(46) In another variant of the apparatus for fabricating an ovoid flexible pressure vessel, means are provided for applying a plastic overcoating.
(47) In still a further variant of the apparatus for fabricating an ovoid flexible pressure vessel, a series of cell-shaped sponges are provided. Means are provided for inserting the cell-shaped sponges between the upper and lower cell portions prior to joining the upper and lower cell portions.
(48) In yet a further variant of the apparatus for fabricating an ovoid flexible pressure vessel, first and second rolls of either heat-reflecting plastic film or metal foil are provided. Means are provided for attaching either heat-reflecting plastic film or metal foil to the outer surface of at least one of the upper cell portion and the lower cell portion.
(49) In still a further variant of the apparatus for fabricating an ovoid flexible pressure vessel, means are provided for moving blanketed cells to a high-pressure hoop and lock braiding machine.
(50) In yet a further variant of the apparatus for fabricating an ovoid flexible pressure vessel, a series of cell-shaped sponges are provided. A tube is provided. The tube is formed of flexible gas and liquid impervious material and is sized and shaped to surround the sponges. Means are provided for inserting the sponges in the tube at spaced intervals. Means are provided for inserting the encased sponges between the upper cell portions and the lower cell portions prior to joining the upper and lower cell portions. The tube extends through the passageway.
(51) In still a further variant of the apparatus for fabricating an ovoid flexible pressure vessel, means are provided for positioning an upper retaining plate to fit over the upper cell portion and surround its outer perimeter when the upper cell portion is covered by the first blanket. Means are provided for positioning a lower retaining plate to fit over the lower cell portion and surround its outer perimeter when the lower cell portion is covered by the second blanket. Means are provided for producing a series of holes. The holes penetrate the upper retaining plate between its outer circumference and the third inner circumference, the lower retaining plate between its outer circumference and the fourth inner circumference and the first blanket, a border of sheet material surrounding the outer perimeter of the upper cell portion, a border of sheet material surrounding the outer perimeter of the lower cell portion and the second blanket. The holes are outside of the outer circumference of the reinforcing ring. Means are provided for inserting and securing fastening means through the holes, thereby securing the upper and lower retaining plates to each other.
(1) An ovoid flexible pressure vessel 10, as shown in
(2) In a variant of the invention, as shown in
At least one reinforcing ring 55 is provided. The reinforcing ring 55 has an inner surface 60, an outer surface 65, an outer circumference 76, is formed of high-strength material 70 and is sized and shaped to fit tightly about the outer perimeter 110 of the pressure cell 15. The reinforcing ring 55 has an aperture 75. The aperture 75 extends from the inner surface 60 to the outer surface 65 and is sized, shaped and located to accommodate connection of the passageway 36 to the pressure cell 15. A valving means 80 is provided. The valving means 80 is capable of controlling a flow of either a liquid or a gas through the passageway 36 and is attached to the second end 45 of the passageway 36.
(3) In another variant of the invention, a shown in
(4) In another variant, as shown in
A protruding rim 145 is provided. The protruding rim 145 is located at the outer perimeter 110 of the pressure cell 15. Upper 150 and lower 155 receiving notches are provided. The upper 150 and lower 155 receiving notches are located above and below the protruding rim 145. Upper 181 and lower 185 reinforcing rings are provided. Each of the reinforcing rings 181, 185 has an inner surface 190, an outer surface 195, is formed of high-strength material 70 and is sized and shaped to fit tightly in either the upper 150 or lower 155 receiving notches. At least one of the reinforcing rings 181, 185 has an aperture (not shown). The aperture extends from the inner surface 190 to the outer surface 195 and is sized, shaped and located to accommodate connection of the passageway 36 to the pressure cell 15. When the reinforcing rings 181, 185 are located about the outer perimeter 30 of the pressure cell 15, the pressure handling capacity of the cell 15 is increased.
(5) In yet a further variant of the invention, as shown in
(6) In yet a further variant, as shown in
The upper cell portion 95 is joined to the mating lower cell portion 120 such that a hollow pressure cell 15 is formed. The cell 15 has at least one passageway 36 extending outwardly from the cell 15 for connection to either a passageway 36 of another cell 15 or a valve 50. A protruding rim 145 is provided. The protruding rim 145 is located at the outer perimeter 110 of the pressure cell 15. At least one groove 205 located about the outer perimeter 110 above the protruding rim 145 is provided. Upper 181 and lower 185 reinforcing rings are provided. Each of the reinforcing rings 181, 185 has an inner surface 190, an outer surface 195, is formed of high-strength material 70 and is sized and shaped to fit tightly about the outer perimeter 110 on either side of the protruding rim 145.
The reinforcing rings 181, 185 have at least one rib 210 located upon the inner surface 190 thereof. The rib 210 is sized, shaped and located to engage the groove 205. When the reinforcing rings 181, 185 are located about the outer perimeter 110 of the pressure cell 15, the pressure handling capacity of the cell 15 is increased.
(7) In still a further variant of the invention, as shown in
(8) In another variant of the invention, as shown in
(9) In yet a further variant of the invention, as shown in
(10) In still a further variant, as shown in
(11) In yet a further variant, as shown in
(12) In another variant, as shown in
(13) In another variant, the heavy duty stitching 265 is high pressure hoop and lock braiding 270.
(14) In still a further variant of the invention, as shown in
(15) In another variant of the invention, as shown in
(16) In still another further variant, as shown in
(17) In yet a another variant of the invention, the upper cell portion 95 is joined to the lower cell portion 120 by either radio frequency welding or high strength adhesive.
(18) In still a further variant, as shown in
(19) In still another variant of the invention, the passageway 36 has a cross-section of between 0.025 and 0.250 inches.
(20) In yet a further variant, as shown in
(21) In another variant, as shown in
(22) In yet a further variant of the invention, as shown in
(23) In another variant of the invention, as shown in
(24) In still a further variant, as shown in
(25) In yet a further variant of the invention, as shown in
(26) In another variant of the invention, as shown in
(27) In another variant, the tube 400 is formed from material selected from the group comprising: thermoplastic polyurethane elastomer, polyurethane polyvinyl chloride, polyvinyl chloride, thermoplastic elastomer, Teflon® and polyethylene.
(28) In still a further variant of the invention, as shown in
(29) In another variant of the invention, the method of adhesion is selected from the group comprising: high-strength adhesive, sonic welding, and RF welding.
(30) In another variant, the woven material 420 is prepregnated with either adhesive or laminating material 422 and subjected to heat and pressure.
(31) In yet a further variant of the invention, the passageway 36 is removably attached to the hollow pressure cell 15.
(32) In another variant of the invention, as shown in
(33) In still a further variant of the invention, as shown in
(34) An apparatus for fabricating an ovoid flexible pressure vessel 10, as shown in
(35) In a variant of the apparatus for fabricating an ovoid flexible pressure vessel 10, as shown in
(36) In yet a further variant of the apparatus for fabricating an ovoid flexible pressure vessel 10, as shown in
(37) In another variant of the apparatus for fabricating an ovoid flexible pressure vessel 10, as shown in
(38) In still a further variant of the apparatus for fabricating an ovoid flexible pressure vessel 10, as shown in
(39) In yet a further variant of the apparatus for fabricating an ovoid flexible pressure vessel 10, as shown in
(40) In still a further variant of the apparatus for fabricating an ovoid flexible pressure vessel 10, as shown in
(41) In yet a further variant of the apparatus for fabricating an ovoid flexible pressure vessel 10, as shown in
(42) In another variant of the apparatus for fabricating an ovoid flexible pressure vessel 10, as shown in
(43) In yet a further variant of the apparatus for fabricating an ovoid flexible pressure vessel 10, as shown in
(44) In still a further variant of the apparatus for fabricating an ovoid flexible pressure vessel 10, as shown in
(45) In yet a further variant of the apparatus for fabricating an ovoid flexible pressure vessel 10, as shown in
(46) In another variant of the apparatus for fabricating an ovoid flexible pressure vessel 10, as shown in
(47) In still a further variant of the apparatus for fabricating an ovoid flexible pressure vessel 10, as shown in
(48) In yet a further variant of the apparatus for fabricating an ovoid flexible pressure vessel 10, as shown in
(49) In still a further variant of the apparatus for fabricating an ovoid flexible pressure vessel 10, as shown in
(50) In yet a further variant of the apparatus for fabricating an ovoid flexible pressure vessel 10, as shown in
(51) In a final variant of the apparatus for fabricating an ovoid flexible pressure vessel 10, as shown in
Number | Name | Date | Kind |
---|---|---|---|
2222762 | Debor et al. | Nov 1940 | A |
2823668 | Van Court et al. | Feb 1958 | A |
4040284 | Fuchs, Jr. | Aug 1977 | A |
4133442 | Wiltshire et al. | Jan 1979 | A |
4219125 | Wiltshire et al. | Aug 1980 | A |
4932546 | Stannard | Jun 1990 | A |
4946056 | Stannard | Aug 1990 | A |
5072851 | Wilkes | Dec 1991 | A |
5127399 | Scholley | Jul 1992 | A |
5323953 | Adderley et al. | Jun 1994 | A |
5704512 | Falk et al. | Jan 1998 | A |
6047860 | Sanders | Apr 2000 | A |
6345730 | Izuchukwu et al. | Feb 2002 | B1 |
6412484 | Izuchukwu et al. | Jul 2002 | B1 |
6412801 | Izuchukwu et al. | Jul 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20040094556 A1 | May 2004 | US |