The invention relates to an oxidation furnace for the oxidative treatment of fibres, particularly for producing carbon fibres, having
There are various ways of conducting the hot air for treating fibres through an oxidation furnace. The flow direction can be aligned transversely, vertically or even horizontally to the direction of the fibres here. Oxidation furnaces which conduct the air according to the “centre-to-end” principle are gaining increasing acceptance. In this, the hot air is blown out in the central region of the process chamber in both directions, that is in the direction of the opposite ends of the process chamber, and extracted again by suction devices at these two ends of the process chamber. The description below refers to “centre-to-end” air conduction by way of example, although the invention is not restricted to this.
The process chamber can also be seen as a zone which is repeated in the longitudinal direction of the furnace for different temperatures and air flows.
In known oxidation furnaces of the type mentioned at the outset, the suction openings of the suction boxes which communicate with the process chamber are located on that side which faces the centre of the process chamber. As a result, hot air no longer flows through the clearances between the suction boxes, at least not to any notable extent. Therefore, the paths covered by the fibres between the suction boxes are not used for the oxidative treatment. Since the suction boxes need to have considerable dimensions owing to the air distribution, the stretches in which there is no oxidative treatment of the fibres due to a lack of air flow are by no means insignificant.
The object of the present invention is to design an oxidation furnace of the type mentioned at the outset so that a stipulated stretch of the oxidative treatment of the fibres can be accommodated in a relatively small volume of the furnace, and in particular the furnace can be of a lower construction.
This object is achieved according to the invention in that
With the measure according to the invention, at least some of the hot air flows further outwards between the suction boxes to the end of the process chamber and is only then deflected by the suction effect at the inlet openings located on the outer sides of the suction boxes, removed and supplied back to the air circuit. As a result, the fibres can also be surrounded and oxidised by hot air in the clearances between the suction boxes. Overall, this enables a smaller construction of the oxidation furnace since better use is made of the paths covered by the fibres than in the prior art.
It is particularly useful that, with the same furnace length, the furnace can be kept lower. This is linked to a whole range of advantages: since few serpentine passages of the fibres through the process chamber are required, it is possible to save on deflection rollers for the filaments and lock devices which prevent air from escaping in the region where the filaments enter and exit the process chamber. Moreover, the entire furnace is lower in weight, which is favourable in terms of expenditure on a steel structure on which the furnace is constructed. Moreover, the improved air flow around the filaments in the process chamber increases the quality of the resultant product.
It is particularly expedient with “centre-to-end” air conduction if inlet openings communicating with the process chamber are provided in two opposite sides of the suction boxes. The choice of the overall cross-sections of the inlet openings located on opposite sides can be used to specify the proportion of air which is not already extracted at the inwardly facing inlet openings but instead flows outwards through the clearances between the suction boxes.
In a preferred embodiment of the oxidation furnace according to the invention, lock devices, which have an air chamber for each clearance located between the suction boxes, are provided in the inlet regions of the housing, which air chamber communicates with said clearance and is separated from the outer atmosphere by a closing wall, which only has orifices for the fibres, and can be acted upon by pressurised air. This pressurised fresh air reliably ensures that the hot air which originates from the process chamber and flows through the clearances between the suction boxes cannot escape from the furnace. Only the pressurised air in the respective clearances which itself originates from the outer atmosphere ultimately passes through the closing wall into the outer atmosphere.
Exemplary embodiments of the invention are explained in more detail below with reference to the drawing which shows:
Reference is firstly made to
As shown in particular in
A blowing device, which is denoted as a whole by the reference numeral 13 and explained in more detail below, is located in the central region of the process chamber 6. Suction devices 14 and 15, which are likewise described in more detail below, are located in the two outer end regions of the process chamber 6, respectively adjacent to the entry and exit region 3, 4.
Two directionally opposed air circuits are maintained inside the housing 2: Starting for example from the suction devices 14, 15, the air is conducted in the direction of the arrows shown in
Two outlets 30a, 30b are provided in the wall of the housing 2. These can be used to discharge those volumes of gas or air which are either produced during the oxidation process or arrive in the process chamber 6 as fresh air by way of the entry and exit regions 3, 4 so as to maintain the air balance in the oxidation furnace 1.
The discharged gases, which can also contain toxic constituents, are supplied for thermal after-burning. The heat produced thereby can be used at least to pre-heat the fresh air supplied to the oxidation furnace 1.
The detailed construction of the blowing device 13 is described as follows:
It comprises two “stacks” of blowing boxes 18. Each of these blowing boxes 18 is in the shape of a hollow cuboid, with the longer dimension extending transversely to the longitudinal direction of the process chamber 6 over its entire width. The narrow sides of the blowing boxes 18, which each face the process chamber 6, are constructed as perforated plates 18a. A respective end face of each blowing box 18 is in communication with the air-conducting chamber 9 and air-conducting chamber 10 so that the air delivered by the ventilator 20 and 21 is blown into the interior of the respective blowing box 18 and can exit from there by way of the perforated plates 18a.
The various blowing boxes 18 in each of the two stacks are arranged at a slight spacing above one another; the two stacks of blowing boxes 18, as seen in the longitudinal direction of the furnace or the movement direction of the filaments 20, are in turn likewise spaced from one another. Ideally (and deviating from the relationships shown in
The two suction devices 14, 15, of which the left-hand suction device in
The air flows in the region of the suction device 14 are shown by arrows in
The fibres 20 to be treated are supplied to the oxidation furnace 1 by way of a deflection roller 21 and pass through a lock device 22 here, which is not yet shown in precise detail in
The outlined passage of the fibres 20 through the process chamber 6 is repeated a plurality of times in serpentine manner, for which a plurality of deflection rollers 24 and 25 with their axes arranged parallel above one another are provided in both end regions of the oxidation furnace 1. After the uppermost passage through the process chamber 6, the fibres 20 exit the oxidation furnace 1 and are guided here by way of a further deflection roller 26. During the serpentine passage of the fibres 20 through the process chamber 6, these are surrounded by hot, oxygen-containing air and thereby oxidised. The exit from the oxidation furnace substantially completes at least one oxidation stage. Further oxidation stages can follow.
As a result of the perforated plates 19a provided on both narrow longitudinal sides of the suction boxes 19, the hot air can enter the interior of the suction boxes 19 at their two opposite sides. This means that, contrary to the prior art, air also flows through the clearances between the suction boxes 19 located above one another and the portions of the fibres 20 which are located here are surrounded by air. Contrary to the prior art, these paths are therefore effective for the oxidation procedure. Therefore, with the same furnace length, it is possible to reduce the furnace height compared to oxidation furnaces according to the prior art as outlined at the outset. The advantages linked to this have already been referred to above.
Whilst the above-described exemplary embodiment of an oxidation furnace is specifically designed for “centre-to-end” air conduction, the exemplary embodiment described below with reference to
In a manner similar to
Angle profiles 125, which extend transversely to the flow direction of the air (indicated by arrows) are mounted on the top and bottom sides of the suction boxes 119. These angle profiles 125 have the task of increasing the air resistance and ensuring uniform suction. An individually adjustable throttle valve (not illustrated) can be provided for each suction box 119 in the air path between the suction boxes 119 and the air-conducting chambers 7 and 12 of
The lock device 123 comprises an outer, folded, profiled plate 126 as a closing wall against the outer atmosphere, which is provided with corresponding through openings 127 at those points in which the filaments 120 pass through. An air channel 128, which can be supplied with pressurised fresh air in the direction of the arrow 129, is mounted at the height of each suction box 119. Air-deflector plates 130 which are angled at the air channel 128 are integrally moulded or mounted at the end adjacent to the plate 126. As illustrated in the drawing and symbolised by small arrows, narrow passages for the air are produced between these air-deflector plates 130 and the plate 126 and thus reach particularly into the region of the openings 127 in the plate 126.
A further proportion of the air flows in the direction of the process chamber 106, arrives in a respective air chamber 131 and then meets the air flowing outwards through the clearances between the suction boxes 119. As a result, both air flows deviate upwards and downwards and now arrive in the region of the open narrow sides of the suction boxes 119. From there, they are extracted through the interior spaces of the various suction boxes 119.
Owing to the overpressure of the air introduced into the air channels 128 and therefore into the air chambers 131, it is not possible for potentially harmful gases from the interior of the oxidation furnace 1 to escape out of the oxidation furnace 101.
Number | Date | Country | Kind |
---|---|---|---|
10201007481.0 | Feb 2010 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/000318 | 1/26/2011 | WO | 00 | 8/7/2012 |