The invention relates to an oxidation furnace for the oxidative treatment of fibres, in particular for producing carbon fibres, having
In known oxidation furnaces of this type, the different planes of the fibre carpet, which are located above one another, extend horizontally and lie parallel to the flow direction of the hot oxygen-containing air. As a result, the air flow is only involved in the heating and cooling of the fibres in its boundary layers, which are next to the fibre carpet. As a result of the parallel flow, a barrier forms at the surface of the fibres, which reduces the heat transfer. The core of the air flow is not involved in the heat transfer on account of the parallel flow. Substantial differences arise between the air entry and air exit temperature near to the fibres, which in turn leads to substantial temperature differences within the fibre carpet. The fundamental possibility of increasing the heat transfer by increasing the air speed is limited since the increasing movement of the fibres may cause them to become damaged, for example as a result of colliding with one another.
In an alternative construction of the known oxidation furnaces mentioned at the outset, the entire air flow is guided vertically through the different planes of the fibre carpet which are located above one another. This improves the heat transfer. However, the overall height is increased by the air supply system and air suction system.
The object of the present invention is to provide an oxidation furnace of the type mentioned at the outset, in which, with a low overall height, the heat transfer between the air and the fibres is improved and the temperature of the fibres in the process chamber is further homogenised.
This object is achieved according to the invention in that
The resultant angled flow of the air relative to the planes of the fibre carpet results in improved temperature constancy since the fibre carpet is acted upon by the same temperature over the entire length between the blowing device and the suction device. This means better process control with a better process result. All of the circulated air is used for the heat absorption and heat supply; there are no air flows between the planes of the fibre carpet which are not involved. A lower volumetric flow rate is sufficient to achieve the same results. This not only saves on energy but also enables the oxidation furnace to be smaller in size.
In an advantageous embodiment of the invention, the means comprise at least two air deflectors. It is particularly favourable to have a plurality of air deflectors, which each extend in the clearances between the planar regions of the serpentine fibre carpet between the blowing device and the suction device. These air deflectors not only result in the desired direction of the air flow. They moreover act as radiation surfaces which contribute to heating the threads and dissipating the exothermic heat produced during oxidation. The temperature difference between the circulated air and the fibres is therefore reduced. At the same time, the air deflectors assume the function of fibre-guiding profiles, which were previously used to prevent fibres from coming into contact or entangling in the event of fibre breakage.
As a means for achieving the desired relative orientations of the air flow and fibre-carpet planes, it is alternatively or additionally possible to provide an additional airflow which has a vertical directional component and is superimposed on the first air flow extending between the blowing device and the suction device in the process chamber. In this embodiment of the invention, the angle at which the “effective” air flow produced by the superimposition crosses the planes over which the fibre carpet stretches can be controlled by the ratio of the flow speeds in the two flows; this implementation is therefore more variable in this respect than one which operates using air deflectors.
It is again alternatively or additionally possible for the said means to comprise deflection rollers which are tilted with respect to the vertical such that the planes over which the fibre carpet extending between them stretches are tilted with respect to the horizontal.
The concept according to the invention can be used both in situations where the main flow direction of the air is that of the longitudinal direction of the oxidation furnace between the inlet region and the outlet region and in situations where the main flow direction of the air is perpendicular to the longitudinal direction of the oxidation furnace. In the first case, the angle at which the air crosses the planes of the fibre carpet should be between 0.8° and 2°, preferably 1°, and in the second case it should be between 2° and 20°, preferably 4°.
Exemplary embodiments of the invention are explained in more detail below with reference to the drawing, which shows:
Reference is firstly made to
As shown in particular in
Located in the central region of the process chamber 6, there is a blowing device which is provided as a whole with the reference numeral 13 and is explained in more detail below. Suction devices 14, 15 are located in the two outer end regions of the process chamber, respectively adjacent to the passage regions 3, 4.
Two directionally opposed air circuits are maintained in the interior of the housing 2: Starting for example from the suction devices 14, 15, the air is guided respectively in the direction of the arrows shown in
In the wall of the housing 2, two outlets 30a, 30b are provided in the region of the air conducting chambers 8, 11. By way of these outlets, it is possible to discharge those volumes of gas and air which are either produced during the oxidation process or arrive as fresh air into the process chamber 6 by way of the passage regions 3, 4 in order to maintain the air balance in the oxidation furnace 1. The discharged gases, which can also contain toxic constituents, are supplied for thermal afterburning. The heat obtained thereby can be used at least to preheat the fresh air supplied to the oxidation furnace 1.
The blowing device 13 is constructed in detail as follows:
It comprises two “stacks” of blowing boxes 31. Each of these blowing boxes 31 is in the shape of a hollow cuboid, with the longer dimension extending transversely to the longitudinal direction of the process chamber 6 over its entire width. The narrow sides of the blowing boxes 31, which face the process chamber 6 in each case, are constructed as perforated plates 31a. An exception to this is provided by the bottom-most blowing boxes 31, whereof the narrow side facing away from the centre of the oxidation furnace 1 in each case is closed for reasons which will become clear below.
A respective end face of each blowing box 31 is in communication with the air conducting chamber 9 and air conducting chamber 10 in such a way that the air delivered by the ventilator 21a and 21b is blown into the interior of the respective blowing box 31 and can exit from there by way of the perforated plates 31a.
The different blowing boxes 31 in each of the two stacks are arranged at a slight spacing above one another. The two stacks of blowing boxes 31 are in turn likewise spaced from one another, as seen in the longitudinal direction of the furnace or in the movement direction of the threads 20.
The two suction devices 14, 15 are formed substantially by a respective stack of suction boxes 19 which extend in similar manner to the blowing boxes 31 in the transverse direction through the entire process chamber 6 and are constructed as perforated plates 19a at their narrow sides extending transversely to the longitudinal extent of the process chamber 6. The narrow sides of the respective top-most suction box 19 in the stack provide an exception here for reasons which will become clear below.
Planar air deflectors 33 extend in each case between the upper edges of the outwardly facing narrow sides 31a of the blowing boxes 31 and the lower edges of the narrow sides of the suction boxes 19 which face the centre of the furnace.
The fibres 20 to be treated are supplied to the oxidation furnace 1, extending parallel as a type of “carpet”, by way of a deflection roller 32 and pass through an air-supply device 22 here, which is not of interest in this connection and serves to supply the process with preheated fresh air. The fibres 20 are then guided through the clearances between suction boxes 19 lying above one another, through the process chamber 6, through the clearances between blowing boxes 31 lying above one another in the blowing device 13, through the clearance between suction boxes 19 lying above one another at opposite ends of the process chamber 6 and through a further air-supply device 23.
The outlined passage of the fibres 20 through the process chamber 6 is repeated a plurality of times in serpentine manner, for which a plurality of deflection rollers 24, 25 lying above one another with their axes parallel are provided in both end regions of the oxidation furnace 1. The fibre carpet 20 stretches over a respective plane between the deflection rollers 32, 25, 24, 26. After the uppermost passage through the process chamber 6, the fibres 20 exit the oxidation furnace 1 and are guided during this by way of a further deflection roller 26.
During the serpentine passage of the fibres 20 through the process chamber 6, these are surrounded by hot oxygen-containing air and thereby oxidised. This air passes in each case from the narrow sides 31a of the blowing boxes 31 into the clearance between two parallel air deflectors 33 and arrives in each case at a narrow side 19a of a suction box 19 which faces the centre of the furnace, and more precisely at that narrow side 19a of that suction box 19 which is one “level” lower than the blowing box 31.
The flow of hot oxygen-containing air which is produced in this way crosses the plane of the “fibre carpet” on this path, i.e. it is no longer precisely horizontal but has a vertical component of the flow direction. The barrier which occurs as a result of the parallel flow of air and fibres in oxidation furnaces of a known construction is thus prevented. Instead, the air flow penetrates the carpet of fibres 20 and also reaches the fibres 20 located in the interior of the fibre carpet 20. This results in a better heat transfer, especially to the fibres 20 located within the carpet, which in turn results in a shorter procedural treatment time, less of a temperature difference between the air temperature and fibre temperature, a homogenisation of the fibre temperature within the fibre carpet 20 and therefore ultimately an improved fibre quality.
As a result of the angled flow, the fibres 20 are moreover acted upon by air which comes directly from a blowing box 31 and therefore has substantially the same temperature over the entire length between the respective blowing box 31 and the associated suction box 19.
The air deflectors 33 have further functions: On the one hand, they serve as radiation surfaces when the threads are heated and, on the other, dissipate the exothermic heat produced during the oxidation of the fibres 20 by absorbing the thermal radiation. The temperature difference between the fibres 20 and the circulated air is thus reduced, which enables the process to be controlled more precisely.
Finally, the air deflectors 33 assume the function of guide profiles for the fibres. Separate guide profiles of this type were necessary in known oxidation furnaces. In the event of a fibre breaking, they prevent any contact and entanglement with other fibres. All broken fibres are collected by the air deflectors 33.
In the exemplary embodiment of
Whilst, in the exemplary embodiments of an oxidation furnace 1 and 101 which are described above with the aid of
Reference is firstly made to
On comparing
The manner in which the flow of hot oxygen-containing air proceeds in the exemplary embodiment of
The process chamber 206 is divided by a plurality of parallel air deflectors 233. Contrary to the air deflectors 33 of the exemplary embodiment of
At the opposite side, the clearances between the air deflectors 233 are in communication via a further perforated plate with the air conducting chamber 207, where the air mixes with the air coming from the auxiliary suction devices 214a, 215a as mentioned above. The air conducting chamber 207 in turn communicates as above with the suction side of the ventilator 221 so that the air conducting chamber 207 forms the “main suction device” 214 of this exemplary embodiment.
In the exemplary embodiment of an oxidation furnace 301 which is shown schematically in
A further possibility for generating an air flow which does not flow against the carpet of fibres in a parallel or perpendicular direction is shown in
Finally, the exemplary embodiment of
Number | Date | Country | Kind |
---|---|---|---|
10 2010 044 296.8 | Sep 2010 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/004108 | 8/16/2011 | WO | 00 | 3/1/2013 |