Brzostowicz et al. (May 2002) Identification of two gene clusters involved in cyclohexanone oxidation in Brevibacterium epidermidis strain HCU. Applied microbiology and biotechnology, 58 (6), 781-9.* |
Brzostowicz et al. (Aug. 2000) Simultaneous identification of two cyclohexanone oxidation genes from an environmental Brevibacterium isolate using mRNA differential display. Journal of bacteriology, 182 (15) 4241-8.* |
John Frost, Chem. Engg. (Rugby, Engl.) Renewable feedstocks; 611, 32-35, 1996. |
Alexander Steinbuechel, CLB Chem. Labor Biotech., Microorganisms for Manufacturing polymers; 56(6), 277-8, 1995. |
Draths et al., ACS Symp. Ser. , Benign by Design, 32-45, 1994 Microbial Biocatalysis, Chapter 3. |
Takeshi et al., Bio. Ind. 8(10), 671-8,1991 (Abstract). |
Hasegawa et al., Biosci., Biotechnol., Biochem., The Metabolism of Cyclohexal by Exophiala jeanselmei; 56(8), 1319-20, 1992. |
Yoshizako et al., J. Ferment. Bioeng. Metabolism of n-Alkylcyclohexanes with an Even No. of Carbon Atoms in the Side Chain by Micrococcus sp. RCO-4M; 67(5), 335-8, 1989. |
Kim et al., Sanop Misaengmul Hakhoechi, 13(1), 71-7, 1985; Utilization of Cyclohexanol and Characterization of Acinetobacter Calcoaceticus C-15. |
Donoghue et al., Eur. J. Biochem The Metabolism of Cyclohexanol by Acinetobacter NCIB 9871; 60(1), 1-7, 1975. |
Tanaka et al., Hakko Kogaku Kaishi, Metabolism of cyclohexanol by Pseudomonas sp.;55(2), 62-7, 1977. |
Chen et al., J. Bacteriol., Acinetobacter Cycohexanone Monooxygenase: Gene Cloning and Sequence Determinaton; 170(2), 781-789, 1988. |
A. Stevens et al. Genes Involved in Production of Plasmidlike Forms by a Bacteroides Conjugal Chromosomal Element Share Amino Acid Homology with Two-Component Regulatory Systems; J. Bacteriol. 174(9), 2935-2942 (1992). |
Redenbach et al, Mol. Microbiol. 21 (1), 77-96 (1996). |
G.E.deVries et al. CloningExpression, and Sequence Analysis of the Bacillus methanolicus C1 Methanol Dehydrogenase Gene; J. Bacteriol. vol. 174 (16), 5346-5353. |
H-P.Klenk et al. Nature; vol. 390, The Complete Genome Sequence of the Hyperthermophilic, Sulphate-reducing Archaeon Archaeoglobus fulgidus, 364-370 (1997). |
K. Nelson et al. Evidence for Lateral Gene Transfer between Archaea and Bacteria from Genome Sequence of Thermotoga maritima; Nature, vol. 399 323-329, (1999). |
R. Cannio et al. Cloning and Overexpression in Escherichia coli of the Genes Encloding NAD-Dependent Alchol Dehydrogenase from Two Sulfolobus Species; J. Bacteriol. 178(1), 301-305 (1996). |
Morii et al, J. Biochem. 126 (3), 624-631 (1999). |
Robert J. Neal et al., Nucleotide Sequence Analysis Reveals Similarities between Proteins Determining Methlenomycin A Resistance in Streptomyces and Tetraycline Resistance in Eubacteria; Gene 58, 229-241 (1987). |