The present invention relates to oxidation resistant alloy and a manufacturing method of oxidation resistant alloy.
Researches of alloys with high oxidation resistance have been conducted. For example, patent literature 1 discloses a method of manufacturing molybdenum alloy with oxidation resistance by adding boride silicide of molybdenum or molybdenum alloy.
Patent literature 2 discloses a technology for forming a coating with molybdenum-silicon-boron (Mo—Si—B) based alloy through a plasma spraying method.
Patent literature 3 discloses a technology for forming a coating with molybdenum-silicon-boron (Mo—Si—B) based alloy through sputtering.
Patent literature 1: JP H10-512329 A
Patent literature 2: JP 2004-115833 A
Patent literature 3: JP 2017-524805 A
In view of the above-described circumstances, one objective is to provide oxidation resistant alloy. Other objectives would be understood from the following recitation and description of embodiments.
In one embodiment for achieving the above-described objectives, a manufacture method of oxidation resistant alloy includes: producing a first formed member by applying compression forming to metal powder; and applying compression forming to the first formed member in a state in which the first formed member is covered with alloy powder different from the metal powder. The oxidation resistance of the major constituent of the alloy powder is higher than the oxidation resistance of the major constituent of the metal powder.
In one embodiment for achieving the above-described objectives, oxidation resistant alloy includes: an inner structure that includes first metal as a main constituent; and an outer structure that includes an element that forms compound with the first metal, the outer structure covering the inner structure. In the outer structure, the distribution of the element that forms the compound with the first metal is even in a thickness direction of the outer structure. The concentration of the compound of the first metal in the outer structure is different from the concentration of the compound of the first metal in the inner structure. The outer structure has a plurality of voids with aspect ratios of 1.3 or less.
The above-described embodiments enable manufacture of oxidation resistant alloy.
A manufacturing method 1 shown in
The first formed member 100 may be produced by applying the compression forming to the metal powder without melting the metal powder. For example, the first formed member 100 may be formed through cold isostatic pressing (CIP). Alternatively, the first formed member 100 may be formed through molding that achieves compression forming in one direction (e.g., the vertical direction) with a metal mold. This may result in that the first formed member 100 is formed as a non-sintered body, which is not yet sintered.
At step 200, oxidation resistant alloy 300 is produced by applying compression forming to the first formed member 100 in the state in which the first formed member 100 is covered with alloy powder. The alloy powder is different from the metal powder contained in the first formed member 100. The main constitute of the alloy powder includes oxidation resistant alloy, for example, metal-silicon-boron-based alloy. The metal contained in the metal-silicon-boron-based alloy may include molybdenum (Mo), niobium (Nb), tungsten (W), or the like, and the metal-silicon-boron-based alloy may include Mo5SiB2, Mo5Si3, Mo3Si, MoB, Mo2B, or the like. The main constitute of the alloy powder may exhibit higher oxidation resistance than the main constitute of the metal powder contained in the first formed member 100.
The oxidation resistance may be measured as the thickness of the formed oxide from the surface or the decrease in the thickness of material (e.g., the amount of the thickness decrease of the material due to sublimation at the surface) when the material is placed in a space with a desired temperature (e.g., 1095° C.) for a desired time duration (e.g., two hours). The oxidation resistance is measured as higher as the thickness of the formed oxide is reduced or as the decrease in the thickness of the material is reduced.
At step S200, as shown in
Oxidation resistant alloy 300 may be produced by sintering the second formed member 200. The second formed member 200 may be sintered by any methods such as spark plasma sintering (SPS) and millimeter wave sintering. For example, the second formed member 200 may be sintered in a reducing atmosphere, for example, in hydrogen gas.
The second formed member 200 is sintered, for example, after being detached from the mold used for the compressing forming. The second formed member 200 is detached from the mold used for the compressing forming and placed on a floor plate jig. The floor plate jig is formed of metal suitable for the main constituent of the alloy powder. When the main constituent of the alloy powder is molybdenum compound, for example, the floor plate jig is formed of molybdenum or molybdenum compound. Further, a support jig is placed depending on the shape of the second formed member 200. The support jig suppresses deformation of the second formed member 200 during the sintering, for example, deformation caused by gravity.
As shown in
The surface of the oxidation resistant alloy 300 exhibits high oxidation resistance. The surface of the oxidation resistant alloy 300 is formed by the outer structure. The main constituent of the outer structure 320 includes oxidation resistant alloy that is the main constituent of the alloy powder. Accordingly, the oxidation resistant alloy 300 exhibits high oxidation resistance. Further, the oxidation resistant alloy 300 may also have ductility when the main constituent of the metal powder has ductility. The main constituent of the alloy (e.g., the main constituent of the outer structure 320) may include the material with the highest concentration (e.g., the highest mass percentage) in the alloy or include five materials with the highest five concentrations.
As thus described, since the oxidation resistant alloy 300 can be manufactured with a single sintering process, the manufacturing cost can be reduced. If oxidation resistant alloy is manufactured with coating, the surface is cleaned before the coating. The coating process and the cleaning process increase the manufacture cost compared to the manufacturing method 1. The cleaning process may involve surface processing for covering the internal structure with alloy powder, for example, removal of a surface denaturation layer.
The manufacturing method 1 allows omitting this cleaning process. In addition, since the oxidation resistant alloy 300 can be manufactured to have a near net shape similar to the product shape, the manufacturing cost can be further reduced.
At step S200, the first formed member 100 may be covered with the alloy powder such that the distribution of an element(s) contained in the main constituent of the alloy powder is even. In this case, the distribution of the element(s) contained in the main constituent of the outer structure 320 of the oxidation resistant alloy 300 manufactured by this method may be even. For example, the distribution of the element(s) contained in the main constituent of the outer structure 320 may be even in the thickness direction of the outer structure 320, not varying depending on the distance from the surface. A similar applies to the inner structure 310; the element(s) contained in the main constituent of the inner structure 310 may be evenly distributed.
Further, as shown in
The above-described structure may distinguish the oxidation resistant alloy 300 manufactured by the present method from alloy manufactured using a coating process. The even distribution may mean that the concentration of an element does not vary 10% or more.
The concentration of an element may be measured by an electron probe micro analyzer (EPMA). For example, element constituents are measured on a plurality of section surfaces of the inner structure 310 or the outer structure 320 with an electron probe micro analyzer. The element distributions may be measured in this way. The shapes of the voids 312 and 322, for example, the aspect ratios, may be measured by capturing images of section surfaces of the inner structure 310 and the outer structure 320.
The main constituent of the alloy powder may include compound of the main constituent of the metal powder. In this case, the metal that forms the main constituent of the outer structure 320 may be the same as the metal that forms the main constituent of the inner structure 310. This enhances the coupling strength between the outer structure 320 and the inner structure 310.
At step S200, the compression forming and sintering may be simultaneously implemented. For example, the oxidation resistant alloy 300 may be produced by applying compression forming to the first formed member 100 through hot isostatic pressing (HIP) in the state in which the first formed member 100 is covered with the alloy powder.
A method shown in
The piece members 220 may be produced by implementing the compression forming without melting the alloy powder. For example, the piece members 220 may be formed through cold isostatic pressing (CIP) or molding.
At step S220, as shown in
At step S230, the oxidation resistant alloy 300 is produced by covering the first formed member 100 with alloy powder and applying compression forming to the first formed member 100 in the state in which the first formed member 100 is covered with the alloy powder. The first formed member 100 is covered with the alloy powder in the state in which the first formed member 100 is supported by the piece members 220. The first formed member 100 covered with the alloy powder is subjected to compression forming.
At step S230, as shown in
As thus described, the piece members 220 may be used to manufacture the oxidation resistant alloy 300. By supporting the first formed member 100 with the piece members 220, the outer structure 320 of the oxidization resistant alloy 300 may have an even thickness. This manufacturing method can reduce exposure of the inner structure 310 of the oxidation resistant alloy 300 onto the surface of the oxidation resistant alloy 300.
At step S230, the compression forming and the sintering may be simultaneously implemented. For example, compression forming of the first formed member 100 covered with the alloy powder may be achieved through hot isostatic pressing.
A method shown in
The second formed member 200 may be produced by implementing the compression forming without melting the alloy powder. For example, the second formed member 200 may be produced from the first formed member 100 covered with the alloy powder through cold isostatic pressing or molding.
At step S260, oxidation resistant alloy 300 is produced by applying compression forming to the second formed member 200 in the state in which the second formed member 200 is covered with oxide powder. For example, the second formed member 200 is covered with the oxide powder. The oxide powder may include, for example, part of aluminum oxide (Al2O3), yttrium oxide (Y2O3), chromium oxide (Cr2O3), zirconia (ZrO2), yttrium-stabilized zirconia (YSZ), magnesium oxide (MgO), and hafnium oxide (HfO2).
At step S260, as shown in
As shown in
At step S260, the compression forming and the sintering may be simultaneously implemented. For example, compression forming of the second formed member 200 covered with the oxide powder may be achieved through hot isostatic pressing.
A process shown in
A process shown in
The surface piece members 420 may be produced by implementing the compression forming without melting the oxide powder. For example, the surface piece members 420 may be formed through cold isostatic pressing (CIP) or molding.
At step S262, as shown in
At step S263, oxidation resistant alloy 300 is produced by covering the second formed member 200 with oxide powder and applying compression forming to the second formed member 200 covered with the oxide powder. The second formed member 200 is covered with the oxide powder in the state in which the second formed member 200 is supported by the surface piece members 420. The second formed member 200 covered with the oxide powder is subjected to compression forming.
At step S263, a third formed member 250 may be produced by implementing compression forming without melting the oxide powder. The second formed member 200 is covered with surface piece members 420 and oxide powder, where the surface piece members 420 are formed of oxide powder. The third formed member 250 may be produced through cold isostatic pressing or molding. Oxidation resistant alloy 300 may be then produced by sintering the third formed member 250 with a desired method.
As thus described, the oxidation resistant alloy 300 may be manufactured using the surface piece members 420. By supporting the second formed member 200 with the surface piece members 420, the surface layer 330 of the oxidation resistant alloy 300 may have an even thickness. This manufacturing method can reduce exposure of the outer structure 320 and the inner structure 310 of the oxidation resistant alloy 300 onto the surface of the oxidation resistant alloy 300.
At step 263, the compression forming and the sintering may be simultaneously implemented. For example, compression forming of the second formed member 200 covered with the oxide powder may be achieved by hot isostatic pressing.
The oxidization resistant alloy 300 may be manufactured in any shapes achievable with compression forming. For example, the oxidation resistant alloy 300 may be manufactured in a conical shape. In this case, as shown in
The oxidation resistant alloy 300 may include a multi-layered outer structure 320. For example, the outer structure 320 may be configured such that the closer the layers are to the surface of the oxidation resistant alloy 300, the higher oxidation resistances the layers exhibit. Such oxidation resistant alloy 300 may be manufactured by repeating step S200 of
The metal powder may include an element that can reinforce the first metal by doping, for example, titanium (Ti), zirconium (Zr), hafnium (Hf), tungsten (W), tantalum (Ta), carbon (C), or the like. This provides higher strength for the oxidation resistant alloy 300.
The metal powder may include the main constituent of the alloy powder that covers the first formed member 100. This makes it easy to bond the inner structure 310 to the outer structure 320.
The alloy powder or the oxidation powder may include an element that reacts to oxygen more easily than the main constituent of the first formed member 100 (e.g., the element with the highest mass percentage concentration in the first formed member 100), such as, aluminum (Al), magnesium (Mg), calcium (Ca), niobium (Nb), chromium (Cr), titanium (Ti), rare-earth elements, or the like. This provides higher oxidation resistance to the oxidation resistant alloy 300.
The surface layer 330 may be formed of ceramics. In this case, the oxidation resistant alloy 300 is produced by applying compression forming to the second formed member 200 at step S260 shown in
The above-described embodiments and modification examples are construed as mere examples and may be modified as long as the function is not disturbed. Further, the configurations described in the respective embodiments and modification examples may be arbitrarily modified and/or combined as long as the function is not disturbed.
Manufacturing methods of oxidation resistant alloy described in the respective embodiments can be represented, for example, as follows.
A manufacturing method of oxidation resistant alloy according to a first aspect includes: producing (S100) a first formed member (100) by applying compression forming to metal powder; and applying compression forming (S200) to the first formed member (100) in a state in which the first formed member is covered with alloy powder different from the metal powder. The oxidation resistance of a major constituent of the alloy powder is higher than oxidation resistance of a major constituent of the metal powder.
The oxidation resistant alloy (300) thus manufactured includes an inner structure (310) and an outer structure (320) that covers the inner structure (310) while the oxidation resistance of the outer structure (320) is higher than the oxidation resistance of the inner structure (310). Accordingly, the oxidation resistant alloy (300) thus manufactured exhibits high oxidation resistance.
The manufacturing method according to a second aspect is a variation of the manufacturing method according to the first aspect. In the manufacturing method according to the second aspect, producing the first formed member (100) includes applying the compression forming to the metal powder without melting the metal powder.
Since the first formed member (100) is a non-sintered body formed without being sintered, the manufacturing cost can be reduced.
The manufacturing method according to a third aspect is a variation of the manufacturing method according to the first aspect. In the manufacturing method according to the third aspect, applying the compression forming (S200) to the first formed member (100) includes: producing a second formed member (200) by applying compression forming to the alloy powder without melting the alloy powder; and sintering the second formed member.
The manufacturing method of oxidation resistant alloy according to a fourth aspect is a variation of the manufacturing method according to the first aspect. In the manufacturing method according to the fourth aspect, applying the compression forming (S200) to the first formed member (100) includes: producing (S210) a piece member (220) through compression forming of the alloy powder; and supporting (S220) the first formed member (100) with the piece member (220). Applying the compression forming (S200) to the first formed member (100) further includes covering (S230) the first formed member (100) with the alloy powder.
The manufacturing method of oxidation resistant alloy according to a fifth aspect is a variation of the manufacturing method according to the fourth aspect. In the manufacturing method according to the fifth aspect, supporting (S220) the first formed member (100) includes placing the piece member (220) at a corner of the first formed member (100).
This may allow the outer structure (320) to have an even thickness. Accordingly, it is possible to reduce exposure of the inner structure (310) onto the surface of the oxidation resistant alloy (300).
The manufacturing method according to a sixth aspect is a variation of the manufacturing method according to the fourth aspect. In the manufacturing method according to the sixth aspect, producing the piece member (220) includes implementing the compression forming to the alloy powder without melting the alloy powder.
Since the piece member (220) is formed without being sintered, the manufacture cost can be reduced.
The manufacturing method of oxidation resistant alloy according to a seventh aspect is a variation of the manufacturing method according to the first aspect. In the manufacturing method according to the seventh aspect, the main constituent of the metal powder includes first metal, and the main constituent of the alloy powder includes compound of the first metal.
The manufacturing method of oxidation resistant alloy according to an eighth aspect is a variation of the manufacturing method according to the first aspect. In the manufacturing method according to the eighth aspect, the metal powder includes the main constituent of the alloy powder.
This enhances the coupling strength between the inner structure (310) and the outer structure (320).
The manufacturing method of oxidation resistant metal according to a ninth aspect is a variation of the manufacturing method according to the first aspect. In the manufacturing method according to the ninth aspect, applying compression forming (S200) to the first formed member (100) includes entirely covering the first formed member (100) with the alloy powder.
The manufacturing method of oxidation resistant alloy according to a tenth aspect is a variation of the manufacturing method according to the first aspect. In the manufacturing method according to the tenth aspect, applying compression forming (S200) to the first formed member (100) includes: producing a second formed member (200) by applying compression forming to the first formed member (100) in the state in which the first formed member is covered with the alloy powder; and applying compression forming (S260) to the second formed member (200) in a state in which the second formed member is covered with oxide powder or ceramic precursor powder.
The oxidation resistant alloy (300) thus manufactured includes a surface layer (330). Since the surface layer (330), which exhibits high oxidation resistance, covers the outer structure (320), the oxidation resistant alloy (300) can have high oxidation resistance.
Oxidation resistant alloys described in the respective embodiments can be represented, for example, as follows.
Oxidation resistant alloy according to an eleventh aspect includes: an inner structure (310) that includes first metal as a main constituent; and an outer structure (320) containing an element that forms compound with the first metal, the outer structure covering the inner structure. In the outer structure (320), a distribution of the element that forms the compound with the first metal is even in a thickness direction of the outer structure (320). The concentration of the compound of the first metal in the outer structure (320) is different from the concentration of the compound of the first metal in the inner structure (310). The outer structure (320) has a plurality of voids (322) with aspect ratios of 1.3 or less.
With the above-described manufacturing methods, oxidation resistant alloy (300) thus configured is manufactured. The manufactured oxidation resistant alloy (300) exhibits high oxidation resistance.
The present application claims priority to Japanese patent application No. 2020-057413, filed on Mar. 27, 2020, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2020-057413 | Mar 2020 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2021/001863 | 1/20/2021 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/192554 | 9/30/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5595616 | Berczik | Jan 1997 | A |
5693156 | Berczik | Dec 1997 | A |
20030070732 | Lin | Apr 2003 | A1 |
20040071581 | Lim | Apr 2004 | A1 |
20110195265 | Oohira et al. | Aug 2011 | A1 |
20130071627 | Archer | Mar 2013 | A1 |
20140356646 | Schmidt | Dec 2014 | A1 |
20140361208 | Tsuji et al. | Dec 2014 | A1 |
20170088939 | Rachbauer et al. | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
0 538 073 | Apr 1993 | EP |
1 295 657 | Mar 2003 | EP |
43-022484 | Sep 1968 | JP |
61-142672 | Jun 1986 | JP |
62-174302 | Jul 1987 | JP |
3-232906 | Oct 1991 | JP |
05-320717 | Dec 1993 | JP |
05320717 | Dec 1993 | JP |
07-003306 | Jan 1995 | JP |
10-512329 | Nov 1998 | JP |
2002-194474 | Jul 2002 | JP |
2004-115833 | Apr 2004 | JP |
2004-538359 | Dec 2004 | JP |
2010-106311 | May 2010 | JP |
2013-515852 | May 2013 | JP |
2014-531700 | Nov 2014 | JP |
2014-238143 | Dec 2014 | JP |
2017-524805 | Aug 2017 | JP |
2019-210184 | Dec 2019 | JP |
Entry |
---|
International Search Report dated Mar. 23, 2021 in International (PCT) Application No. PCT/JP2021/001863. |
Translation of the International Preliminary Report on Patentability dated Oct. 6, 2022 in International Application No. PCT/JP2021/001863. |
Extended European Search Report dated Aug. 5, 2022 in corresponding European Patent Application No. 21775074.4. |
A. Lange et al., “Oxidation behavior of magnetron sputtered double layer coatings containing molybdenum, silicon and boron”, Intermetallics, Elsevier Science Publishers B.V., GB, vol. 48, Oct. 1, 2013, pp. 19-27. |
Linfen Su et al., “An ultra-high temperature Mo—Si—B based coating for oxidation protection of Nbss/Nb5Si3 composites”, Applied Surface Science, Elsevier, Amsterdam, NL, vol. 337, Feb. 16, 2015, pp. 38-44. |
Number | Date | Country | |
---|---|---|---|
20220274168 A1 | Sep 2022 | US |