Oxidation-stabilized tamper-resistant dosage form

Information

  • Patent Grant
  • 10493033
  • Patent Number
    10,493,033
  • Date Filed
    Wednesday, February 21, 2018
    6 years ago
  • Date Issued
    Tuesday, December 3, 2019
    4 years ago
Abstract
A thermoformed pharmaceutical dosage form having a breaking strength of at least 300 N, said dosage form comprising a pharmacologically active ingredient (A),a free physiologically acceptable acid (B) in an amount of from 0.001 wt.-% to 5.0 wt.-%, based on the total weight of the pharmaceutical dosage form, anda polyalkylene oxide (C) having a weight average molecular weight Mw of at least 200,000 g/mol.
Description

The invention relates to a pharmaceutical dosage form which is stabilized towards oxidation.


Many pharmacologically active compounds have a potential of being abused and thus, are advantageously provided in form of tamper resistant pharmaceutical dosage forms. Prominent examples of such pharmacologically active compounds are opioids.


It is known that abusers crush conventional tablets, which contain opioids, to defeat the time-release “micro-encapsulation” and then ingest the resulting powder orally, intra-nasally, rectally, or by injection.


Various concepts for the avoidance of drug abuse have been developed. One concept relies on the mechanical properties of the pharmaceutical dosage forms, particularly an increased breaking strength (resistance to crushing). The major advantage of such pharmaceutical dosage forms is that comminuting, particularly pulverization, by conventional means, such as grinding in a mortar or fracturing by means of a hammer, is impossible or at least substantially impeded.


Such pharmaceutical dosage forms are useful for avoiding drug abuse of the pharmacologically active compound contained therein, as they may not be powdered by conventional means and thus, cannot be administered in powdered from, e.g. nasally. The mechanical properties, particularly the high breaking strength of these pharmaceutical dosage forms renders them tamper resistant. In the context of such tamper resistant pharmaceutical dosage forms it can be referred to, e.g., WO 2005/016313, WO 2005/016314, WO 2005/063214, WO 2005/102286, WO 2006/002883, WO 2006/002884, WO 2006/002886, WO 2006/082097, WO 2006/082099, and WO 2008/107149.


These tamper resistant pharmaceutical dosage forms contain a synthetic or natural polymer, most often a high molecular weight polyethylene oxide, as matrix material.


Polyethylene oxides, like other aliphatic ethers, can undergo autoxidation in presence of oxygen to form hydroperoxides (see for instance C. W. McGary Jr., J. Polymer Sci., 2003, 46, 51-57). Subsequent radical reactions of the resulting peroxides lead to chain scission. These natural aging processes are catalyzed by other oxidation agents and are further accelerated by UV light and/or elevated temperatures. The oxidative degradation process is highly dependent on the molecular weight. High molecular weight polyethylene oxides are especially prone to autoxidation processes and degrade more rapidly than lower molecular weight polyethylene oxides.


Also oxidative sensitive pharmacologically active ingredients, such as opioids like oxymorphone, hydromorphone, and oxycodone, are sensitive towards oxidative degradation and decomposition processes.


As a result of the degradation processes, the properties of a dosage form containing oxidatively degradable matrix material and/or oxidative sensitive pharmacologically active ingredients may seriously be affected. For example, loss of content of the pharmacologically active ingredient as well as discoloration, decreased mechanical strength and accelerated drug release due to shortened polymer chains are likely to occur. Especially the breaking strength is highly dependent on the molecular weight of the polyalkylene oxide contained in the dosage form and thus directly influenced by chain scission processes.


Oxidation may be caused by molecular oxygen or by radicals or peroxides generated by compounds that come into close proximity with these oxidation-sensitive matrix materials and/or pharmacologically active ingredients.


Pharmaceutical excipients as such, e.g. polyethylene glycols, may cause or catalyze oxidative degradation, for example in the course of the process for manufacturing the pharmaceutical dosage forms. Further, molecular oxygen may generate said radicals or peroxides.


Typically, decomposition is monitored in standard storage stability tests e.g. under accelerated storage conditions, such as 40°C./75% rel. humidity. Under these conditions, degradation and decomposition typically proceeds faster than under ambient conditions. The drug approving authorities, such as CHMP and FDA, and international harmonization unions, such as ICH, have set standard storage stability thresholds which have to be met in order to get a pharmaceutical dosage form approved.


Particular problems arise when such pharmaceutical dosage forms comprising oxidative degradable matrix materials and/or oxidation-sensitive pharmacologically active ingredients need to be exposed to elevated temperatures in the course of the manufacturing process, such as hot-melt extrusion, film coating and the like. Under these conditions said compounds are even more sensitive towards oxidation. For example, several known processes for the manufacture of pharmaceutical dosage forms having an increased breaking strength require that a pharmaceutical composition containing the pharmacologically active ingredient is subjected to a specific amount of pressure at a specific elevated temperature for a specific period of time. Depending on the constituents of the pharmaceutical composition and their amounts, temperature, pressure and time may be varied within certain limits. However, if the minimal requirements are not satisfied, the breaking strength of the resultant pharmaceutical dosage form is too low.


In consequence, some conventional processes for the manufacture of pharmaceutical dosage forms, particularly for pharmaceutical dosage forms having an increased breaking strength, require comparatively harsh process conditions and thus, are so far not applicable for oxidation-sensitive matrix materials and/or pharmacologically active ingredients, e. g. opioids. In particular, chain rupture of pharmaceutical excipients such as polyethylene oxide during hot melt extrusion risks the formation of free radicals thereby further increasing the oxidative stress.


Lower dosages of oxidation-sensitive pharmacologically active ingredients often show a higher percentage of oxidative degradation and decomposition than higher dosages. Thus, as far as storage stability is concerned, pharmaceutical dosage forms containing lower dosages of oxidation-sensitive pharmacologically active ingredients need particular attention.


The effect of oxidation mechanisms and chemical interactions on stability of polymeric systems for amorphous Δ9-tetrahydrocannabinol (a non-opioid) produced by a hot-melt method is described in M. Munjal et al., J. Pharm. Sciences, 95(11), 2006, 2473-85. The study demonstrated for this highly unstable drug a complex nature of interactions including drug-excipient compatibility, use of antioxidants, cross-linking in polymeric matrixes, micro environment pH, and moisture effect.


K. C. Waterman et al., Pharm. Develop. Tech. 7(1), 2002, 1-32 reviews the stabilization of pharmaceuticals to oxidative degradation. Various methods for reducing oxidation are recommended. The authors conclude that in the end, every drug presents a unique situation.


WO 2008/107149 discloses oral dosage forms having an increased breaking strength that may contain redox stabilizers such as complexing agents, e.g. EDTA.


WO 2008/086804 relates to controlled release compositions containing a matrix composition comprising a) polymer or a mixture of polymers, b) an active drug substance and optionally c) one or more pharmaceutically acceptable excipients that is without alcohol induced dose dumping and have excellent properties with respect to avoiding drug abuse. Preferably, the composition is resistant to isolate and/or dissolve the active drug substance from the composition by crushing, melting and/or ethanol extraction, whereby the composition is resistant to drug abuse. Citric acid may be present as flavouring agent. Example 2 relates to a composition containing 7 wt.-% of citric acid.


WO 2008/148798 discloses an layered extended release composition for prolonged effect and a way to ensure prolonged effect e.g. once daily administration is to ensure optimal absorption of the active substance though the gastrointestinal tract i.e. from the stomach to rectum.


There is no general concept to successfully suppress oxidative degradation of oxidative degradable matrix materials such as polyethylene oxide and oxidation-sensitive drugs in pharmaceutical dosage forms. The complex individual oxidation mechanisms that are relevant for a particular matrix material or drug as well as the plurality of possible factors that have an influence on oxidation processes require extensive investigations in each particular case taking into account the particular circumstances. Possible methods to defend a dosage form from oxidative degradation processes are the addition of antioxidants, storage under an inert atmosphere or the application of an oxygen barrier film coating. The latter two methods are, however, difficult to apply during all stages of the manufacturing process.


It is further known that the oxidative degradation processes are especially accelerated when the dosage forms are exposed to harsh process conditions, e. g. during the manufacturing process. For example, high molecular weight polyethylene oxide tends to degrade upon hot-melt extrusion. Polymer degradation, however, may result in an uncontrolled release profile, particularly when the active ingredient is embedded in a matrix of the polyethylene oxide, and this might be another cause for oxidative degradation of the pharmacologically active ingredient by radicals. When adding suitable excipients in order to stabilize the high molecular weight polyethylene oxide, such as α-tocopherol, it should be taken into considerations that said excipients in turn may have a detrimental effect on the stability of other ingredients of the pharmaceutical dosage, e.g. of the pharmacologically active compound.


It is an object of the present invention to provide tamper-resistant pharmaceutical dosage forms containing pharmacologically active ingredients, particularly oxidation-sensitive opioids, that have advantages over the pharmaceutical dosage forms of the prior art. The pharmaceutical dosage forms should have improved storage stability, so that they may contain oxidation-sensitive opioids even at comparatively low doses. Further, it should be possible to prepare the pharmaceutical dosage forms by conventional processes under conventional conditions such as elevated temperature and pressure (e.g. in the course of thermoforming by hot-melt extrusion).


This object has been solved by the subject-matter of the patent claims.


The invention relates to a thermoformed pharmaceutical dosage form having a breaking strength of at least 300 N and comprising

    • a pharmacologically active ingredient (A),
    • a free physiologically acceptable acid (B) in an amount of from 0.001 to 5.0 wt.-%, based on the total weight of the pharmaceutical dosage form, and
    • a polyalkylene oxide (C) having a weight average molecular weight Mw of at least 200,000 g/mol.


It has been surprisingly found that pharmaceutical dosage forms containing oxidatively degradable polymers such as high molecular weight polyethylene oxide can be prevented from oxidative degradation and decomposition processes by the presence of suitable amounts of acid (B) in the pharmaceutical dosage forms according to the invention. By means of this method, it has been surprisingly found, that the specific material properties of the dosage form according to the invention such as the breaking strength and the retarded release of the active ingredient may be retained for a longer storage period.


Thus, the increased storage stability of the polymer matrix is reflected by an improved stability of the in vitro release profile upon storage and/or by an improved stability of the mechanical properties of the dosage forms. Both properties essentially rely upon the polymer matrix material.


It has further been surprisingly found that certain morphinan derivatives such as oxymorphone are oxidatively degraded to N-oxides (e.g., oxymorphone-N-oxide, N-oxides in general are often said to be toxic and possibly cancerogenic) upon manufacture and storage of the corresponding dosage forms and that the formation of said N-oxides and other decomposition products can be suppressed by the presence of suitable amounts of acid (B) in the pharmaceutical dosage forms according to the invention.


Thus, the increased storage stability of the pharmacologically active ingredient (A) is reflected by a decrease of impurities, if any, and a reduced decrease of the pharmacologically active ingredient (A) upon storage, if any, respectively.


While it is not intended to be bound to any theory, acid (B) seems to influence the micro-pH value of the pharmaceutical formulation thereby somehow increasing its storage stability. Thus, as far as the storage stability of the pharmacologically active ingredient is concerned, the stabilizing effect of acid (B) might correlate with the pKA-value of the oxidation-sensitive drug. For example the pKA-value of oxymorphone is 8.3. Conventional formulations of oxymorphone, which are tamper resistant due to their increased breaking strength but which do not show the desired shelf life, give a pH value of about 7.5 when being dispersed in water. Under these conditions, a considerable amount of the oxymorphone is present as a free base (i.e., is not protonated), which might be more sensitive towards oxidation than the (protonated) salt form.


This concept is further supported by the fact that in the absence of acid (B), the dosage forms tend to have a yellowish, beige color, while the presence of acid (B) leads to whiter, e.g. colorless tablets. Thus, the presence of acid (B) might decrease the pH value within the dosage form thereby improving drug and/or polymer resistance towards oxidative degradation.


It appears that the acidic nature of acid (B) is responsible for its stabilizing effect but not any other properties. This concept is supported by the fact that inorganic as well as organic acids both enhance the storage stability of the dosage form.


It has been surprisingly found that pharmaceutical excipients which are conventionally used in order to improve drug resistance towards oxidative degradation, particularly certain antioxidants, e.g., α-tocopherol, can be contra-productive and rather deteriorate than improve drug resistance towards oxidative degradation.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 shows the in vitro release profile of pharmaceutical dosage forms according to inventive examples L1 and L3 and comparative examples L2 and L4.





The pharmaceutical dosage form according to the invention is thermoformed, preferably by extrusion, although also other methods of thermoforming may be used in order to manufacture the pharmaceutical dosage form according to the invention such as press-molding at elevated temperature or heating of tablets that were manufactured by conventional compression in a first step and then heated above the softening temperature of the polymer in the tablet in a second step to form hard tablets. In this regards, thermoforming means the forming or molding of a mass after the application of heat. In a preferred embodiment, the pharmaceutical dosage form is thermoformed by hot-melt extrusion.


Preferably, the pharmaceutical dosage form is a monolithic mass. The pharmaceutical dosage form is preferably prepared by hot-melt extrusion. The melt extruded strands are preferably cut into monoliths, which are then preferably formed into tablets. In this regard, the term “tablets” is preferably not to be understood as dosage forms being made by compression of powder or granules (compressi) but rather, as shaped extrudates.


The pharmaceutical dosage form according to the invention contains, as component (A), a pharmacologically active ingredient (A), preferably an oxidation-sensitive pharmacologically active ingredient. For the purpose of the specification, the term pharmacologically active ingredient (A) also includes the free base and the physiologically acceptable salts thereof.


For the purpose of the specification, the term oxidation-sensitive pharmacologically active ingredient includes all pharmacologically active ingredients that contain one or more functional group which is oxidized during the oxidative degradation process. Functional groups whose oxidation may cause a pharmacologically active ingredient to be instable towards oxidation, are double bonds, as well as aldehyde, keto, hydroxyl groups, ether, endiol, phenol and amino groups.


The dosage form according to the invention particularly preferably contains one or more pharmacologically active ingredients (A) selected from the group consisting of

    • agents for the treatment and prevention of diseases of the alimentary system and metabolism [A]; in particular stomatological preparations [A01], agents for the treatment and prevention of acid-related disorders [A02], agents for the treatment and prevention of functional gastrointestinal tract disorders [A03], serotonin 5HT3 antagonists [A04AA], antihistamine preparations [A04AB], agents for bile and liver therapy [A05], laxatives [A06], intestinal antiinfectives [A07A], intestinal adsorbents [A07B], electrolytes with carbohydrates [A07C], intestinal antiinflammatory agents [A07E], microbial antidiarrhoeals [A07F], digestives including enzymes [A09], drugs used in diabetes [A10], vitamins [A11], minerals [A12], anabolic agents for systemic applications [A14] and appetite stimulants [A15];
    • agents for the treatment and prevention of diseases of the blood and the blood forming organs [B]; in particular antithrombotic agents [B01], antihaemorrhagics [B02], antianaemic preparations [B03] and other haematological agents [B06];
    • agents for the treatment and prevention of diseases of the cardiovascular system [C]; in particular agents for cardiac therapy [C01], antihypertensives [C02], diuretics [C03], peripheral vasodilatators [C04], vasoprotectives [C05], antihypotensives [C06A], β-adrenoceptor antagonists [C07], calcium channel blockers [C08], agents acting on the renin-angiotensin system [C09] and lipid reducing agents [C10];
    • dermatologicals [D]; in particular antifungals for systemic use [D01B], antipsoriatics for systemic use [D05B], antiacne preparations for systemic use [D10B];
    • agents for the treatment and prevention of diseases of the genitourinary system and sex hormones [G]; in particular gynaecological antiinfectives and antiseptics [G01], oxytocics [G02A], sympathomimetic labour repressants [G02CA], prolactin inhibitors [G02CB], hormonal contraceptives for systemic use [G03] and urologicals [G04];
    • systemic hormone preparations excluding sex hormones and insulins [H]; in particular pituitary and hypothalamic hormones and analogue [H01], corticosteroids for systemic use [H02], thyroid preparations [H03], pancreatic hormones [H04], and agents for regulating calcium homeostatis [H05];
    • antiinfectives for systemic use [J]; in particular antibiotics for systemic use [J01], antimycotics for systemic use [J02], antimycobacterials [J04], antivirals for systemic use [J05], immune sera and immunoglobulins [J06], and vaccines [J07]);
    • antineoplastic and immunomodulating agents [L] (in particular antineoplastistic agents [L01], agents for endocrine therapy [L02], immunostimulants [L03] and immunosuppressive agents [L04];
    • agents for the treatment and prevention of diseases of the musculo-skeletal system [M]; in particular antiinflammatory and antirheumatic agents [M01], peripherally acting muscle relaxants [M03A], directly acting muscle relaxants [M03C], antigout preparations [M04] and agents for the treatment of bone diseases [M05];
    • agents for the treatment and prevention of diseases of the nervous system [N]; in particular salicylic acid the derivatives thereof [N02BA], pyrazolones [N02BB], anilides [N02BE], ergot alkaloids [N02CA], corticosteroid derivatives [N02CB], selective serotonin-5HT1 agonists [N02CC], hydantoin derivatives [N03AB], oxazolidine derivatives [N03AC], succinimide derivatives [N03AD], carboxamide derivatives [N03AF], fatty acid derivatives [N03AG], antiparkinson drugs [N04]), antipsychotics [N05A], antidepressants [N06A], antidementia drugs [N06D], parasympathomimetics [N07A] and antivertigo preparations [N07C];
    • antiparasitic products, insecticides and repellents [P]; in particular antiprotozoals [P01], anthelmintics [P02] and ectoparasiticides, including scabicides, insecticides and repellents [P03];
    • agents for the treatment and prevention of diseases of the respiratory system [R]; in particular nasal preparations [R01], throat preparations [R02], drugs for obstructive airways diseases [R03], expectorants, excluding combinations with cough suppressants [R05C] and antihistamines for systemic use [R06];
    • agents for the treatment and prevention of diseases of the sensory organs [S]; in particular otologicals [S02]; and
    • general diet products [V06] and therapeutic radiopharmaceuticals [V10],


wherein the abbreviations stated in square brackets here (and hereinafter) correspond to the ATC Index, as used by the WHO for classifying pharmaceutical substances (preferred version: 2010).


In a preferred embodiment, the dosage form according to the invention contains one or more pharmacologically active ingredients (A) selected from the group consisting of agents for cardiac therapy [C01], preferably selected from the group consisting of cardiac glycosides [C01A], antiarrhythmics, class i and iii [C01B], cardiac stimulants excl. cardiac glycosides [C01C], vasodilators used in cardiac diseases [C01D], and other cardiac preparations [C01 E].


In another preferred embodiment, the dosage form according to the invention contains one or more pharmacologically active ingredients (A) selected from the group consisting of antihypertensives [C02], preferably selected from the group consisting of antiadrenergic agents, centrally acting [C02A], antiadrenergic agents, ganglion-blocking [C02B], antiadrenergic agents, peripherally acting [C02C], arteriolar smooth muscle, agents acting on [C02D], other antihypertensives [C02K], antihypertensives and diuretics in combination [C02I], and combinations of antihypertensives in atc-gr. C02 [C02N].


In still another preferred embodiment, the dosage form according to the invention contains one or more pharmacologically active ingredients (A) selected from the group consisting of diuretics [C03], preferably selected from the group consisting of low-ceiling diuretics, thiazides [C03A], low-ceiling diuretics, excl. thiazides [C03B], high-ceiling diuretics [C03C], potassium-sparing agents [C03D], diuretics and potassium-sparing agents in combination [C03E], and other diuretics [C03X].


In yet another preferred embodiment, the dosage form according to the invention contains one or more pharmacologically active ingredients (A) selected from the group consisting of peripheral vasodilatators [C04], preferably selected from the group consisting of peripheral vasodilators [C04A].


In another preferred embodiment, the dosage form according to the invention contains one or more pharmacologically active ingredients (A) selected from the group consisting of vasoprotectives [C05], preferably selected from the group consisting of agents for treatment of hemorrhoids and anal fissures for topical use [C05A], antivaricose therapy [C05B], and capillary stabilizing agents [C05C].


In still another preferred embodiment, the dosage form according to the invention contains one or more pharmacologically active ingredients (A) selected from the group consisting of anti hypotensives [C06A].


In yet another preferred embodiment, the dosage form according to the invention contains one or more pharmacologically active ingredients (A) selected from the group consisting of ⊐⊐ adrenoceptor antagonists [C07], preferably selected from the group consisting of beta blocking agents [C07A], beta blocking agents and thiazides [C07B], beta blocking agents and other diuretics [C07C], beta blocking agents, thiazides and other diuretics [C07D], beta blocking agents and vasodilators [C07E], and beta blocking agents and other antihypertensives [C07F].


In another preferred embodiment, the dosage form according to the invention contains one or more pharmacologically active ingredients (A) selected from the group consisting of calcium channel blockers [C08], preferably selected from the group consisting of selective calcium channel blockers with mainly vascular effects [C08C], selective calcium channel blockers with direct cardiac effects [C08D], non-selective calcium channel blockers [C08E], and calcium channel blockers and diuretics [C08G].


In still another preferred embodiment, the dosage form according to the invention contains one or more pharmacologically active ingredients (A) selected from the group consisting of agents acting on the renin-angiotensin system [C09], preferably selected from the group consisting of ACE inhibitors, plain [C09A], ACE inhibitors, combinations [C09B], angiotensin ii antagonists, plain [C09C], angiotensin ii antagonists, combinations [C09D], and other agents acting on the renin-angiotensin system [C09X].


In yet another preferred embodiment, the dosage form according to the invention contains one or more pharmacologically active ingredients (A) selected from the group consisting of lipid reducing agents [c10], preferably selected from the group consisting of lipid modifying agents, plain [C10A], and lipid modifying agents, combinations [C10B].


In a preferred embodiment, the pharmacologically active ingredient (A) is an angiotensin converting enzyme (ACE) inhibitor, more preferably an ACE-inhibitor selected from the group consisting of benazepril, captopril, cilazapril, enalapril, fosinopril, imidapril, lisinopril, moexipril, perindopril, quinapril, ramipril, spirapril, trandolapril and zofenopril.


In another preferred embodiment, the pharmacologically active ingredient is an opioid, more preferably an oxidation-sensitive opioid, most preferably oxymorphone or oxycodone.


According to the ATC index, opioids are divided into natural opium alkaloids, phenylpiperidine derivatives, diphenylpropylamine derivatives, benzomorphan derivatives, oripavine derivatives, morphinan derivatives and others. Examples of natural opium alkaloids are morphine, opium, hydromorphone, nicomorphine, oxycodone, dihydrocodeine, diamorphine, papaveretum, and codeine. Further opioids (A) are, for example, ethylmorphine, hydrocodone, oxymorphone, and the physiologically acceptable derivatives thereof or compounds, preferably the salts and solvates thereof, preferably the hydrochlorides thereof, physiologically acceptable enantiomers, stereoisomers, diastereomers and racemates and the physiologically acceptable derivatives thereof, preferably ethers, esters or amides.


Further preferred opioids include N-(1-methyl-2-piperidinoethyl)-N-(2-pyridyl)propion-amide, (1 R,2R)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)phenol, (1R,2R,4S)-2-(dimethylamino)methyl-4-(p-fluorobenzyloxy)-1-(m-methoxyphenyl)cyclohexanol, (1R,-2R)-3-(2-dimethylaminomethyl-cyclohexyl)phenol, (1 S,2S)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)phenol, (2R,3R)-1-dimethylamino-3(3-methoxyphenyl)-2-methyl-pentan-3-ol, (1 RS,3RS,6RS)-6-dimethylaminomethyl-1-(3-methoxyphenyl)-cyclohexane-1,3-diol, preferably as racemate, 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)phenyl 2-(4-isobutyl-phenyl)propionate, 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)phenyl 2-(6-methoxy-naphthalen-2-yl)propionate, 3-(2-dimethylaminomethyl-cyclohex-1-enyl)-phenyl 2-(4-isobutyl-phenyl)propionate, 3-(2-dimethylaminomethyl-cyclohex-1-enyl)-phenyl 2-(6-methoxy-naphthalen-2-yl)propionate, (RR-SS)-2-acetoxy-4-trifluoromethyl-benzoic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR-SS)-2-hydroxy-4-trifluoromethyl-benzoic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR-SS)-4-chloro-2-hydroxy-benzoic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR-SS)-2-hydroxy-4-methyl-benzoic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR-SS)-2-hydroxy-4-methoxy-benzoic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR-SS)-2-hydroxy-5-nitro-benzoic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR-SS)-2′,4′-difluoro-3-hydroxy-biphenyl-4-carboxylic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, 1,1-(3-dimethylamino-3-phenylpentamethylen)-6-fluor-1,3,4,9-tetrahydropyrano[3,4-b]indole, in particular its hemicitrate; 1,1-[3-dimethylamino-3-(2-thienyl)pentamethylen]-1,3,4, 9-tetra-hydropyrano[3,4-b]indole, in particular its citrate; and 1,1-[3-dimethylamino-3-(2-thienyl)-pentamethylen]-1,3,4,9-tetrahydropyrano[3,4-b]-6-fluoro-indole, in particular its hemicitrate, and corresponding stereoisomeric compounds, in each case the corresponding derivatives thereof, physiologically acceptable enantiomers, stereoisomers, diastereomers and racemates and the physiologically acceptable derivatives thereof, e.g. ethers, esters or amides, and in each case the physiologically acceptable compounds thereof, in particular the salts thereof and solvates, e.g. hydrochlorides.


Preferred opioids are of general formula (I)




embedded image




    • wherein
      • R1 is —H, —OH or —OC1-6-alkyl;
      • R2 is —H or —C1-6-alkyl;
      • R3 is —H or —OH and R4 is —H; or R3 and R4 together are ═O; and
      • custom character is an optional double bond;

    • or the physiologically acceptable salts thereof.





Particularly preferred opioids include oxymorphone, oxycodone, hydromorphone, and the physiologically acceptable salts thereof.


In another preferred embodiment, however, the pharmaceutical dosage form according to the invention does not contain any opioid, preferably any oxidation-sensitive opioid, as defined above.


The content of the pharmacologically active ingredient (A) in the pharmaceutical dosage form is not limited.


Preferably, its content is within the range of from 0.01 to 80 wt.-%, more preferably 0.1 to 50 wt.-%, still more preferably 1 to 25 wt.-%, based on the total weight of the pharmaceutical dosage form. In a preferred embodiment, the content of pharmacologically active ingredient (A) is within the range of from 7±6 wt.-%, more preferably 7±5 wt.-%, still more preferably 5±4 wt.-%, 7±4 wt.-% or 9±4 wt.-%, most preferably 5±3 wt.-%, 7±3 wt.-% or 9±3 wt.-%, and in particular 5±2 wt.-%, 7±2 wt.-% or 9±2 wt.-%, based on the total weight of the pharmaceutical dosage form. In another preferred embodiment, the content of pharmacologically active ingredient (A) is within the range of from 11±10 wt.-%, more preferably 11±9 wt.-%, still more preferably 9±6 wt.-%, 11±6 wt.-%, 13±6 wt.-% or 15±6 wt.-%, most preferably 11±4 wt.-%, 13±4 wt.-% or 15±4 wt.-%, and in particular 11±2 wt.-%, 13±2 wt.-% or 15±2 wt.-%, based on the total weight of the pharmaceutical dosage form. In a further preferred embodiment, the content of pharmacologically active ingredient (A) is within the range of from 20±6 wt.-%, more preferably 20±5 wt.-%, still more preferably 20±4 wt.-%, most preferably 20±3 wt.-%, and in particular 20±2 wt.-%, based on the total weight of the pharmaceutical dosage form.


Preferably, the total amount of the pharmacologically active ingredient (A) that is contained in the pharmaceutical dosage form is within the range of from 0.01 to 200 mg, more preferably 0.1 to 190 mg, still more preferably 1.0 to 180 mg, yet more preferably 1.5 to 160 mg, most preferably 2.0 to 100 mg and in particular 2.5 to 80 mg.


In a preferred embodiment, the pharmacologically active ingredient (A) is contained in the pharmaceutical dosage form in an amount of 7.5±5 mg, 10±5 mg, 20±5 mg, 30±5 mg, 40±5 mg, 50±5 mg, 60±5 mg, 70±5 mg, 80±5 mg, 90±5 mg, 100±5 mg, 110±5 mg, 120±5 mg, 130±5, 140±5 mg, 150±5 mg, or 160±5 mg. In another preferred embodiment, the pharmacologically active ingredient (A) is contained in the pharmaceutical dosage form in an amount of 5±2.5 mg, 7.5±2.5 mg, 10±2.5 mg, 15±2.5 mg, 20±2.5 mg, 25±2.5 mg, 30±2.5 mg, 35±2.5 mg, 40±2.5 mg, 45±2.5 mg, 50±2.5 mg, 55±2.5 mg, 60±2.5 mg, 65±2.5 mg, 70±2.5 mg, 75±2.5 mg, 80±2.5 mg, 85±2.5 mg, 90±2.5 mg, 95±2.5 mg, 100±2.5 mg, 105±2.5 mg, 110±2.5 mg, 115±2.5 mg, 120±2.5 mg, 125±2.5 mg, 130±2.5 mg, 135±2.5 mg, 140±2.5 mg, 145±2.5 mg, 150±2.5 mg, 155±2.5 mg, or 160±2.5 mg.


In a particularly preferred embodiment, the pharmacologically active ingredient (A), preferably the opioid, is oxymorphone, preferably its HCl salt, and the pharmaceutical dosage form is adapted for administration twice daily. In this embodiment, the opioid (A) is preferably contained in the pharmaceutical dosage form in an amount of from 5 to 40 mg. In another particularly preferred embodiment, pharmacologically active ingredient (A), preferably the opioid is oxymorphone, preferably its HCl, and the pharmaceutical dosage form is adapted for administration once daily. In this embodiment, pharmacologically active ingredient (A), preferably the opioid is preferably contained in the pharmaceutical dosage form in an amount of from 10 to 80 mg.


In another particularly preferred embodiment, the pharmacologically active ingredient (A), preferably the opioid, is oxycodone, preferably its HCl salt, and the pharmaceutical dosage form is adapted for administration twice daily. In this embodiment, the pharmacologically active ingredient (A), preferably the opioid, is preferably contained in the pharmaceutical dosage form in an amount of from 5 to 80 mg. In another particularly preferred embodiment, the pharmacologically active ingredient (A), preferably the opioid, is oxycodone, preferably its HCl salt, and the pharmaceutical dosage form is adapted for administration once daily. In this embodiment, the pharmacologically active ingredient (A), preferably the opioid, is preferably contained in the pharmaceutical dosage form in an amount of from 10 to 320 mg.


In still another particularly preferred embodiment, the pharmacologically active ingredient (A), preferably the opioid, is hydromorphone, preferably its HCl salt, and the pharmaceutical dosage form is adapted for administration twice daily. In this embodiment, the pharmacologically active ingredient (A), preferably the opioid, is preferably contained in the pharmaceutical dosage form in an amount of from 2 to 52 mg. In another particularly preferred embodiment, the pharmacologically active ingredient (A), preferably the opioid, is hydromorphone, preferably its HCl salt, and the pharmaceutical dosage form is adapted for administration once daily. In this embodiment, the pharmacologically active ingredient (A), preferably the opioid, is preferably contained in the pharmaceutical dosage form in an amount of from 4 to 104 mg.


The pharmaceutical dosage form according to the invention is characterized by excellent storage stability.


Preferably, after storage for 4 weeks at 40° C. and 75% rel. humidity, the content of the pharmacologically active ingredient (A), preferably the opioid, amounts to at least 98.0%, more preferably at least 98.5%, still more preferably at least 99.0%, yet more preferably at least 99.2%, most preferably at least 99.4% and in particular at least 99.6%, of its original content before storage. Suitable methods for measuring the content of the pharmacologically active ingredient (A) in the pharmaceutical dosage form are known to the skilled artisan. In this regard it is referred to the Eur. Ph. or the USP, especially to reversed phase HPLC analysis. Preferably, the pharmaceutical dosage form is stored in closed, preferably sealed containers, preferably as described in the experimental section, most preferably being equipped with an oxygen scavenger, in particular with an oxygen scavenger that is effective even at low relative humidity.


Preferably, after storage for 4 weeks at 40° C. and 75% rel. humidity, the content of the matrix material, preferably the polyalkylene oxide (C) amounts to at least 98.0%, more preferably at least 98.5%, still more preferably at least 99.0%, yet more preferably at least 99.2%, most preferably at least 99.4% and in particular at least 99.6%, of its original content before storage. Suitable methods for measuring the content of the polyalkylene oxide (C) in the pharmaceutical dosage form are known to the skilled artisan. In this regard it is referred to the Eur. Ph. or the USP, especially to reversed phase HPLC analysis.


Preferably, after storage for 4 weeks at 40° C. and 75% rel. humidity, the weight average molecular weight of the polyalkylene oxide (C) amounts to at least 70%, more preferably at least 75%, still more preferably at least 80%, yet more preferably at least 85%, most preferably at least 90% and in particular at least 95%, of its original weight average molecular weight before storage.


Suitable methods for determining the weight average molecular weight of the polyalkylene oxide (C) in the pharmaceutical dosage form are known to the skilled artisan. The change of the weight average molecular weight of the polyalkylene oxide (C) can for instance be evaluated by viscosity measurements after swelling of the dosage form.


It has been surprisingly found that acid (B) does not only improve the storage stability of the dosage form but also improves the processability of the pharmaceutical excipients, preferably of the polyalkylene oxide (C) upon manufacture, particularly in the course of thermoforming such as hot-melt extrusion. There is comparative experimental evidence that due to the presence of acid (B) the decrease of viscosity of polymer (C) which typically occurs upon hot-melt extrusion is substantially reduced when acid (B) is present in suitable amounts.


Preferably, the dosage form according to the invention contains acid (B) in an amount so that in the course of hot-melt extrusion of all excipients and ingredients the gel viscosity of a homogeneous gel prepared from the dosage form amounts to at least 50%, more preferably at least 60%, still more preferably at least 70%, yet more preferably at least 80%, even more preferably at least 85%, most preferably at least 90% and in particular at least 95% of the gel viscosity of a homogeneous gel prepared from a mixture of all excipients and ingredients of the dosage form but which has not been hot-melt extruded.


Furthermore, the dosage form according to the invention preferably contains acid (B) in an amount so that after storage of the dosage form for 3 months under accelerated storage conditions the gel viscosity of a homogeneous gel prepared from the dosage form amounts to at least 50%, more preferably at least 60%, still more preferably at least 70%, yet more preferably at least 80%, even more preferably at least 85%, most preferably at least 90% and in particular at least 95% of the gel viscosity of a homogeneous gel prepared from the dosage form prior to storage. Preferably, the conditions of extrusion are defined as in the experimental section. When preparing the homogeneous gel, the dosage form is preferably suspended in a sufficient amount of water so that at ambient conditions (rotational viscosimeter) the viscosity of the resultant homogeneous gel is about 500 mPas at 40 s−1 (linearity range). Once a suitable amount of water has been determined by preliminary tests, all comparative tests are then conducted under identical conditions.


Preferably, the pharmaceutical dosage form is stored in closed, preferably sealed containers, preferably as described in the experimental section, most preferably being equipped with an oxygen scavenger, in particular with an oxygen scavenger that is effective even at low relative humidity.


The pharmaceutical dosage form according to the invention contains, as component (B), a free physiologically acceptable acid in an amount of from 0.001 to 5.0 wt.-%, based on the total weight of the pharmaceutical dosage form.


The acid (B) may be organic or inorganic, liquid or solid. Solid acids are preferred, particularly crystalline organic or inorganic acids.


Acid (B) is free. This means that the acidic functional groups of the acid (B) are not all together constituents of a salt of the pharmacologically active ingredient (A). If the pharmacologically active ingredient (A) is present as a salt of an acid, e.g. as hydrochloride, the pharmaceutical dosage form according to the invention preferably contains as component (B) another, chemically different acid which is not present as a constituent of the salt of the pharmacologically active ingredient (A). In other words, monoacids that form a salt with pharmacologically active ingredient (A) are not to be considered as free acids (B) in the meaning of the present invention. When acid (B) has more than a single acidic functional group (e.g. phosphoric acid), the acid (B) may be present as a constituent of a salt of the pharmacologically active ingredient (A), provided that at least one of the acidic functional groups of the acid (B) is not involved in the formation of the salt, i.e. is free. Preferably, however, each and every acidic functional group of acid (B) is not involved in the formation of a salt with pharmacologically active ingredient (A). It is also possible, however, that free acid (B) and the acid forming a salt with pharmacologically active ingredient (A) are identical. Under these circumstances the acid is preferably present in molar excess compared to pharmacologically active ingredient (A).


In a preferred embodiment, the acid (B) contains at least one acidic functional group (e.g. —CO2H, —SO3H, —PO3H2, —OH and the like) having a pKA value within the range of 2.00±1.50, more preferably 2.00±1.25, still more preferably 2.00±1.00, yet more preferably 2.00±0.75, most preferably 2.00±0.50 and in particular 2.00±0.25. In another preferred embodiment, the acid contains at least one acidic functional group having a pKA value within the range of 2.25±1.50, more preferably 2.25±1.25, still more preferably 2.25±1.00, yet more preferably 2.25±0.75, most preferably 2.25±0.50 and in particular 2.25±0.25. In another preferred embodiment, the acid (B) contains at least one acidic functional group having a pKA value within the range of 2.50±1.50, more preferably 2.50±1.25, still more preferably 2.50±1.00, yet more preferably 2.50±0.75, most preferably 2.50±0.50 and in particular 2.50±0.25. In another preferred embodiment, the acid (B) contains at least one acidic functional group having a pKA value within the range of 2.75±1.50, more preferably 2.75±1.25, still more preferably 2.75±1.00, yet more preferably 2.75±0.75, most preferably 2.75±0.50 and in particular 2.75±0.25. In another preferred embodiment, the acid (B) contains at least one acidic functional group having a pKA value within the range of 3.00±1.50, more preferably 3.00±1.25, still more preferably 3.00±1.00, yet more preferably 3.00±0.75, most preferably 3.00±0.50 and in particular 3.00±0.25. In still another preferred embodiment, the acid (B) contains at least one acidic functional group having a pKA value within the range of 3.25±1.50, more preferably 3.25±1.25, still more preferably 3.25±1.00, yet more preferably 3.25±0.75, most preferably 3.25±0.50 and in particular 3.25±0.25.


In yet another preferred embodiment, the acid (B) contains at least one acidic functional group having a pKA value within the range of 4.50±1.50, more preferably 4.50±1.25, still more preferably 4.50±1.00, yet more preferably 4.50±0.75, most preferably 4.50±0.50 and in particular 4.50±0.25. In yet another preferred embodiment, the acid (B) contains at least one acidic functional group having a pKA value within the range of 4.75±1.50, more preferably 4.75±1.25, still more preferably 4.75±1.00, yet more preferably 4.75±0.75, most preferably 4.75±0.50 and in particular 4.75±0.25. In yet another preferred embodiment, the acid (B) contains at least one acidic functional group having a pKA value within the range of 5.00±1.50, more preferably 5.00±1.25, still more preferably 5.00±1.00, yet more preferably 5.00±0.75, most preferably 5.00±0.50 and in particular 5.00±0.25.


Preferably, the acid (B) is an organic carboxylic or sulfonic acid, particularly a carboxylic acid. Multicarboxylic acids and/or hydroxy-carboxylic acids are especially preferred.


In case of multicarboxylic acids, the partial salts thereof are also to be regarded as multi-carboxylic acids, e.g. the partial sodium, potassium or ammonium salts. For example, citric acid is a multicarboxylic acid having three carboxyl groups. As long as there remains at least one carboxyl group protonated (e.g. sodium dihydrogen citrate or disodium hydrogen citrate), the salt is to be regarded as a multicarboxylic acid. Preferably, however, all carboxyl groups of the multicarboxylic acid are protonated.


Preferably, the acid (B) is of low molecular weight, i.e., not polymerized. Typically, the molecular weight of the acid (B) is below 500 g/mol.


Examples of acids include saturated and unsaturated monocarboxylic acids, saturated and unsaturated bicarboxylic acids, tricarboxylic acids, α-hydroxyacids and β-hydroxyl-acids of monocarboxylic acids, α-hydroxyacids and β-hydroxyacids of bicarboxylic acids, α-hydroxyacids and β-hydroxyacids of tricarboxylic acids, ketoacids, α-ketoacids, β-ketoacids, of the polycarboxylic acids, of the polyhydroxy monocarboxylic acids, of the polyhydroxy bicarboxylic acids, of the polyhydroxy tricarboxylic acids.


Preferably, the acid (B) is selected from the group consisting of benzenesulfonic acid, citric acid, α-glucoheptonic acid, D-gluconic acid, glycolic acid, lactic acid, malic acid, malonic acid, mandelic acid, propanoic acid, succinic acid, tartaric acid (d, I, or dl), tosic acid (toluenesulfonic acid), valeric acid, palmitic acid, pamoic acid, sebacic acid, stearic acid, lauric acid, acetic acid, adipic acid, glutaric acid, 4-chlorobenzenesulfonic acid, ethanedisulfonic acid, ethylsuccinic acid, fumaric acid, galactaric acid (mucic acid), D-glucuronic acid, 2-oxo-glutaric acid, glycerophosphoric acid, hippuric acid, isethionic acid (ethanolsulfonic acid), lactobionic acid, maleic acid, maleinic acid, 1,5-naphthalene-disul-fonic acid, 2-naphthalene-sulfonic acid, pivalic acid, terephthalic acid, thiocyanic acid, cholic acid, n-dodecyl sulfate, 3-hydroxy-2-naphthoic acid, 1-hydroxy-2-naphthoic acid, oleic acid, undecylenic acid, ascorbic acid, (+)-camphoric acid, d-camphorsulfonic acid, dichloroacetic acid, ethanesulfonic acid, formic acid, methanesulfonic acid, nicotinic acid, orotic acid, oxalic acid, picric acid, L-pyroglutamic acid, saccharine, salicylic acid, gentisic acid, and/or 4-acetamidobenzoic acid.


The content of the acid (B) is within the range of from 0.001 to 5.0 wt.-%, preferably 0.005 to 2.5 wt-%, more preferably 0.01 to 2.0 wt.-%, still more preferably 0.05 to 1.5 wt.-%, most preferably 0.1 to 1.0 wt.-% and in particular 0.2 to 0.9 wt.-%, based on the total weight of the pharmaceutical dosage form.


Preferably, the acid (B) is a multicarboxylic acid. More preferably, the multicarboxylic acid is selected from the group consisting of citric acid, maleic acid and fumaric acid.


Citric acid is particularly preferred.


The multicarboxylic acid, preferably citric acid, may be present in its anhydrous form or as a solvate and hydrate, respectively, e.g., as monohydrate.


In a preferred embodiment, the content of the acid (B), preferably citric acid, is within the range of 0.2±0.18 wt.-%, more preferably 0.2±0.15 wt.-%, still more preferably 0.2±0.12 wt.-%, yet more preferably 0.2±0.09 wt.-%, most preferably 0.2±0.06 wt.-%, and in particular 0.2±0.03 wt.-%, based on the total weight of the pharmaceutical dosage form.


In another preferred embodiment, the content of the acid (B), preferably citric acid, is within the range of 0.3±0.18 wt.-%, more preferably 0.3±0.15 wt.-%, still more preferably 0.3±0.12 wt.-%, yet more preferably 0.3±0.09 wt.-%, most preferably 0.3±0.06 wt.-%, and in particular 0.3±0.03 wt.-%, based on the total weight of the pharmaceutical dosage form.


In still another preferred embodiment, the content of the acid (B), preferably citric acid, is within the range of 0.4±0.18 wt.-%, more preferably 0.4±0.15 wt.-%, still more preferably 0.4±0.12 wt.-%, yet more preferably 0.4±0.09 wt.-%, most preferably 0.4±0.06 wt.-%, and in particular 0.4±0.03 wt.-%, based on the total weight of the pharmaceutical dosage form.


In yet another preferred embodiment, the content of the acid (B), preferably citric acid, is within the range of 0.5±0.18 wt.-%, more preferably 0.5±0.15 wt.-%, still more preferably 0.5±0.12 wt.-%, yet more preferably 0.5±0.09 wt.-%, most preferably 0.5±0.06 wt.-%, and in particular 0.5±0.03 wt.-%, based on the total weight of the pharmaceutical dosage form.


In yet another preferred embodiment, the content of the acid (B), preferably citric acid, is within the range of 0.6±0.18 wt.-%, more preferably 0.6±0.15 wt-%, still more preferably 0.6±0.12 wt.-%, yet more preferably 0.6±0.09 wt.-%, most preferably 0.6±0.06 wt.-%, and in particular 0.6±0.03 wt.-%, based on the total weight of the pharmaceutical dosage form.


In yet another preferred embodiment, the content of the acid (B), preferably citric acid, is within the range of 0.7±0.18 wt.-%, more preferably 0.7±0.15 wt-%, still more preferably 0.7±0.12 wt.-%, yet more preferably 0.7±0.09 wt.-%, most preferably 0.7±0.06 wt.-%, and in particular 0.7±0.03 wt.-%, based on the total weight of the pharmaceutical dosage form.


In yet another preferred embodiment, the content of the acid (B), preferably citric acid, is within the range of 0.8±0.18 wt.-%, more preferably 0.8±0.15 wt.-%, still more preferably 0.8±0.12 wt.-%, yet more preferably 0.8±0.09 wt.-%, most preferably 0.8±0.06 wt.-%, and in particular 0.8±0.03 wt.-%, based on the total weight of the pharmaceutical dosage form.


In yet another preferred embodiment, the content of the acid (B), preferably citric acid, is within the range of 0.85±0.18 wt.-%, more preferably 0.85±0.15 wt.-%, still more preferably 0.85±0.12 wt.-%, yet more preferably 0.85±0.09 wt.-%, most preferably 0.85±0.06 wt.-%, and in particular 0.85±0.03 wt.-%, based on the total weight of the pharmaceutical dosage form.


In still another preferred embodiment, the content of the acid (B), preferably citric acid, is within the range of 0.9±0.18 wt.-%, more preferably 0.9±0.15 wt.-%, still more preferably 0.9±0.12 wt.-%, yet more preferably 0.9±0.09 wt.-%, most preferably 0.9±0.06 wt.-%, and in particular 0.9±0.03 wt.-%, based on the total weight of the pharmaceutical dosage form.


In a further preferred embodiment, the content of the acid (B), preferably citric acid, is within the range of 1.0±0.18 wt.-%, more preferably 1.0±0.15 wt.-%, still more preferably 1.0±0.12 wt.-%, yet more preferably 1.0±0.09 wt.-%, most preferably 1.0±0.06 wt.-%, and in particular 1.0±0.03 wt.-%, based on the total weight of the pharmaceutical dosage form.


The pharmaceutical dosage form according to the invention comprises, as component (C), a polyalkylene oxide (C) having a weight average molecular weight Mw of at least 200,000 g/mol, preferably at least 500,000 g/mol, more preferably at least 750,000 g/mol, still more preferably at least 1,000,000 g/mol, most preferably at least 2,000,000 g/mol and in particular within the range of from 500,000 to 15,000,000 g/mol.


Preferably, the polyalkylene oxide is selected from the group consisting of polymethylene oxide, polyethylene oxide and polypropylene oxide, the copolymers and mixtures thereof.


Polyalkylene oxide (C) may comprise a single polyalkylene oxide having a particular average molecular weight, or a mixture (blend) of different polymers, such as two, three, four or five polymers, e.g., polymers of the same chemical nature but different average molecular weight, polymers of different chemical nature but same average molecular weight, or polymers of different chemical nature as well as different molecular weight.


For the purpose of the specification, a polyalkylene glycol has a molecular weight of up to 20,000 g/mol whereas a polyalkylene oxide has a molecular weight of more than 20,000 g/mol. In a preferred embodiment, the weight average over all molecular weights of all polyalkylene oxides that are contained in the pharmaceutical dosage form is at least 200,000 g/mol. Thus, polyalkylene glycols, if any, are preferably not taken into consideration when determining the weight average molecular weight of polyalkylene oxide (C).


Preferably, the content of the polyalkylene oxide (C) is within the range of from 20 to 99 wt.-%, more preferably 25 to 95 wt.-%, still more preferably 30 to 90 wt.-%, yet more preferably 30 to 85 wt.-%, most preferably 30 to 80 wt.-% and in particular 30 to 75 wt.-%, based on the total weight of the pharmaceutical dosage form. In a preferred embodiment, the content of the polyalkylene oxide is at least 20 wt.-%, more preferably at least 25 wt.-%, still more preferably at least 30 wt.-%, yet more preferably at least 35 wt.-% and in particular at least 40 wt.-%.


In a preferred embodiment, the overall content of polyalkylene oxide (C) is within the range of 25±20 wt.-%, more preferably 25±15 wt.-%, most preferably 25±10 wt.-%, and in particular 25±5 wt.-%. In another preferred embodiment, the overall content of polyalkylene oxide (C) is within the range of 35±20 wt.-%, more preferably 35±15 wt.-%, most preferably 35±10 wt.-%, and in particular 35±5 wt.-%. In still another preferred embodiment, the overall content of polyalkylene oxide (C) is within the range of 45±20 wt.-%, more preferably 45±15 wt.-%, most preferably 45±10 wt.-%, and in particular 45±5 wt.-%. In yet another preferred embodiment, the overall content of polyalkylene oxide (C) is within the range of 55±20 wt.-%, more preferably 55±15 wt.-%, most preferably 55±10 wt.-%, and in particular 55±5 wt.-%. In a further preferred embodiment, the overall content of polyalkylene oxide (C) is within the range of 65±20 wt.-%, more preferably 65±15 wt.-%, most preferably 65±10 wt.-%, and in particular 65±5 wt.-%. In still a further a preferred embodiment, the overall content of polyalkylene oxide (C) is within the range of 75±20 wt.-%, more preferably 75±15 wt.-%, most preferably 75±10 wt.-%, and in particular 75±5 wt.-%. In a still further a preferred embodiment, the overall content of polyalkylene oxide (C) is within the range of 80±15 wt.-%, more preferably 80±10 wt.-%, and most preferably 80±5 wt.-%.


In a preferred embodiment, polyalkylene oxide (C) is homogeneously distributed in the pharmaceutical dosage form according to the invention. Preferably, polyalkylene oxide (C) forms a matrix in which the opioid (A) is embedded. In a particularly preferred embodiment, the opioid (A) and polyalkylene oxide (C) are intimately homogeneously distributed in the pharmaceutical dosage form so that the pharmaceutical dosage form does not contain any segments where either opioid (A) is present in the absence of polyalkylene oxide (C) or where polyalkylene oxide (C) is present in the absence of opioid (A).


When the pharmaceutical dosage form is film coated, the polyalkylene oxide (C) is preferably homogeneously distributed in the core of the pharmaceutical dosage form, i.e. the film coating preferably does not contain polyalkylene oxide (C). Nonetheless, the film coating as such may of course contain one or more polymers, which however, preferably differ from the polyalkylene oxide (C) contained in the core.


The polyalkylene oxide (C) may be combined with one or more different polymers selected from the group consisting of polyalkylene oxide, preferably polymethylene oxide, polyethylene oxide, polypropylene oxide; polyethylene, polypropylene, polyvinyl chloride, polycarbonate, polystyrene, polyvinylpyrrolidone, poly(alk)acrylate, poly(hydroxy fatty acids), such as for example poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (Biopol®), poly(hydroxyvaleric acid); polycaprolactone, polyvinyl alcohol, polyesteramide, polyethylene succinate, polylactone, polyglycolide, polyurethane, polyamide, polylactide, polyacetal (for example polysaccharides optionally with modified side chains), polylactide/glycolide, polylactone, polyglycolide, polyorthoester, polyanhydride, block polymers of polyethylene glycol and polybutylene terephthalate (Polyactive®), polyanhydride (Polifeprosan), copolymers thereof, block-copolymers thereof, and mixtures of at least two of the stated polymers, or other polymers with the above characteristics.


Preferably, the molecular weight dispersity Mw/Mn of polyalkylene oxide (C) is within the range of 2.5±2.0, more preferably 2.5±1.5, still more preferably 2.5±1.0, yet more preferably 2.5±0.8, most preferably 2.5±0.6, and in particular 2.5±0.4.


The polyalkylene oxide (C) (starting material) preferably has a viscosity at 25° C. of 30 to 17,600 cP, more preferably 55 to 17,600 cP, still more preferably 600 to 17,600 cP and most preferably 4,500 to 17,600 cP, measured in a 5 wt.-% aqueous solution using a model RVF Brookfield viscosimeter (spindle no. 2/rotational speed 2 rpm); of 400 to 4,000 cP, more preferably 400 to 800 cP or 2,000 to 4,000 cP, measured on a 2 wt.-% aqueous solution using the stated viscosimeter (spindle no. 1 or 3/rotational speed 10 rpm); or of 1,650 to 10,000 cP, more preferably 1,650 to 5,500 cP, 5,500 to 7,500 cP or 7,500 to 10,000 cP, measured on a 1 wt.-% aqueous solution using the stated viscosimeter (spindle no. 2/rotational speed 2 rpm).


In a preferred embodiment according to the invention the polyalkylene oxide (C) having a weight average molecular weight of at least 200,000 g/mol is combined with at least one further polymer, preferably but not necessarily also having a weight average molecular weight (Mw) of at least 200,000 g/mol, selected from the group consisting of polyethylene, polypropylene, polyvinyl chloride, polycarbonate, polystyrene, polyacrylate, poly(hydroxy fatty acids), polycaprolactone, polyvinyl alcohol, polyesteramide, polyethylene succinate, polylactone, polyglycolide, polyurethane, polyvinylpyrrolidone, polyamide, polylactide, polylactide/glycolide, polylactone, polyglycolide, polyorthoester, polyanhydride, block polymers of polyethylene glycol and polybutylene terephthalate, polyanhydride, polyacetal, cellulose esters, cellulose ethers and copolymers thereof. Cellulose esters and cellulose ethers are particularly preferred, e.g. methylcellulose, ethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose hydroxy-propylmethylcellulose, carboxymethylcellulose, and the like.


In a preferred embodiment, said further polymer is neither a polyalkylene oxide nor a polyalkylene glycol. Nonetheless, the pharmaceutical dosage form may contain polyalkylene glycol, e.g. as plasticizer, but then, the pharmaceutical dosage form preferably is a ternary mixture of polymers: polyalkylene oxide (C)+further polymer+plasticizer.


In a particularly preferred embodiment, said further polymer is a hydrophilic cellulose ester or cellulose ether, preferably hydroxypropylmethylcellulose (HPMC), hydroxypropylcellulose (HPC) or hydroxyethylcellulose (HEC), preferably having an average viscosity (preferably measured by capillary viscosimetry or rotational viscosimetry) of 1,000 to 150,000 mPas, more preferably 3,000 to 150,000. In a preferred embodiment, the average viscosity is within the range of 110,000±50,000 mPas, more preferably 110,000±40,000 mPas, still more preferably 110,000±30,000 mPas, most preferably 110,000±20,000 mPas, and in particular 100,000±10,000 mPas.


In a preferred embodiment the relative weight ratio of said polyalkylene oxide (C) and said further polymer is within the range of from 20:1 to 1:20, more preferably 10:1 to 1:10, still more preferably 7:1 to 1:5, yet more preferably 5:1 to 1:1, most preferably 4:1 to 1.5:1 and in particular 3:1 to 2:1. In a preferred embodiment, the relative weight ratio of said polyalkylene oxide (C) and said further polymer is within the range of from 10:1 to 5:1, more preferably 8:1 to 5:1, most preferably 7:1 to 5:1.


Preferably, the content of said further polymer amounts to 0.5 to 25 wt.-%, more preferably 1.0 to 20 wt.-%, still more preferably 2.0 to 22.5 wt.-%, yet more preferably 3.0 to 20 wt.-% and most preferably 4.0 to 17.5 wt.-% and in particular 5.0 to 15 wt.-%, based on the total weight of the pharmaceutical dosage form.


In a preferred embodiment, the further polymer is a cellulose ester or cellulose ether, preferably HPMC, having a content within the range of 10±8 wt.-%, more preferably 10±6 wt.-%, still more preferably 10±5 wt.-%, yet more preferably 10±4 wt.-%, most preferably 10±3 wt.-%, and in particular 10±2 wt.-%, based on the total weight of the pharmaceutical dosage form.


In another preferred embodiment, the further polymer is a cellulose ester or cellulose ether, preferably HPMC, having a content within the range of 14±8 wt.-%, more preferably 14±6 wt.-%, still more preferably 14±5 wt.-%, yet more preferably 14±4 wt.-%, most preferably 14±3 wt.-%, and in particular 14±2 wt.-%, based on the total weight of the pharmaceutical dosage form.


All polymers are preferably employed as powders. They can be soluble in water.


Besides the pharmacologically active ingredient (A), the acid (B) and polyalkylene oxide (C) the pharmaceutical dosage form according to the invention may contain further constituents, such as conventional pharmaceutical excipients.


In a preferred embodiment, the pharmaceutical dosage form comprises an antioxidant. Suitable antioxidants include ascorbic acid, α-tocopherol (vitamin E), butylhydroxyanisol, butylhydroxytoluene, salts of ascorbic acid (vitamin C), ascorbylic palmitate, monothioglycerine, coniferyl benzoate, nordihydroguajaretic acid, gallus acid esters, phosphoric acid, and the derivatives thereof, such as vitamin E-succinate or vitamin E-palmitate and/or sodium bisulphite, more preferably butylhydroxytoluene (BHT) or butylhydroxyanisol (BHA) and/or α-tocopherol.


Preferably, the content of the antioxidant is within the range of from 0.001 to 5.0 wt.-%, more preferably 0.002 to 2.5 wt.-%, more preferably 0.003 to 1.5 wt.-%, still more preferably 0.005 to 1.0 wt.-%, yet more preferably 0.01 to 0.5 wt.-%, most preferably 0.05 to 0.4 wt.-% and in particular 0.1 to 0.3 wt.-%, based on the total weight of the pharmaceutical dosage form.


In a preferred embodiment, the content of the antioxidant is at most 5.0 wt.-%, more preferably at most 4.0 wt.-%, still more preferably at most 3.0 wt.-%, yet more preferably at most 2.0 wt.-%, even more preferably at most 1.0 wt.-%, most preferably at most 0.5 wt.-% and in particular at most 0.25 wt.-%, based on the total weight of the pharmaceutical dosage form.


A particularly preferred antioxidant is α-tocopherol. It has been surprisingly found that α-tocopherol stabilizes polyalkylene oxide and simultaneously destabilizes certain opioids (A), such as oxymorphone. Thus, in a preferred embodiment, the content of α-tocopherol is balanced between a sufficient stability of the polyalkylene oxide on the one hand and a sufficient stability of the pharmacologically active ingredient (A), preferably the opioid, on the other hand.


In a preferred embodiment, the content of α-tocopherol is within the range of 0.2±0.18 wt.-%, more preferably 0.2±0.15 wt.-%, still more preferably 0.2±0.12 wt.-%, yet more preferably 0.2±0.09 wt.-%, most preferably 0.2±0.06 wt-%, and in particular 0.2±0.03 wt.-%, based on the total weight of the pharmaceutical dosage form.


In a preferred embodiment, the relative weight ratio of the acid (B), preferably citric acid, and the antioxidant, preferably α-tocopherol, is within the range of from 10:1 to 1:10, more preferably 8:1 to 1:8, still more preferably 6:1 to 1:6, yet more preferably 5:1 to 1:4, most preferably 4:1 to 1:3 and in particular 3:1 to 1:2.


In another preferred embodiment, the pharmaceutical dosage form does not comprise any of the antioxidants as defined above. Preferably, the pharmaceutical dosage form does neither contain butylhydroxytoluene (BHT), nor butylhydroxyanisol (BHA), nor α-tocopherol.


The pharmaceutical dosage form according to the invention may also contain a natural, semi-synthetic or synthetic wax. Waxes with a softening point of at least 50° C., more preferably 60° C. are preferred. Carnauba wax and beeswax are particularly preferred, especially carnauba wax.


Preferably, the release profile of the pharmacologically active ingredient (A), preferably the opioid, is matrix-retarded. Preferably, the pharmacologically active ingredient (A), preferably the opioid, is embedded in a matrix comprising the polyalkylene oxide, said matrix controlling the release of the pharmacologically active ingredient (A), preferably the opioid, from the pharmaceutical dosage form.


Physiologically acceptable materials which are known to the person skilled in the art may be used as supplementary matrix materials. Polymers, particularly preferably cellulose ethers, cellulose esters and/or acrylic resins are preferably used as hydrophilic matrix materials. Ethylcellulose, hydroxypropylmethylcellulose, hydroxypropylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, poly(meth)acrylic acid and/or the derivatives thereof, such as the salts, amides or esters thereof are very particularly preferably used as matrix materials. Matrix materials prepared from hydrophobic materials, such as hydrophobic polymers, waxes, fats, long-chain fatty acids, fatty alcohols or corresponding esters or ethers or mixtures thereof are also preferred. Mono- or diglycerides of C12-C30 fatty acids and/or C12-C30 fatty alcohols and/or waxes or mixtures thereof are particularly preferably used as hydrophobic materials. It is also possible to use mixtures of the above-stated hydrophilic and hydrophobic materials as matrix materials.


Preferably, the relative weight ratio of the polyalkylene oxide to the pharmacologically active ingredient (A), preferably the opioid, is at least 0.5:1, more preferably at least 1:1, at least 2:1, at least 3:1, at least 4:1, at least 5:1, at least 6:1, at least 7:1, at least 8:1 or at least 9:1; still more preferably at least 10:1 or at least 15:1, yet more preferably at least 20:1, most preferably at least 30:1 and in particular at least 40:1. In a preferred embodiment, the relative weight ratio of the polyalkylene oxide to the pharmacologically active ingredient (A), preferably the opioid, is within the range of from 3:1 to 50:1, more preferably 3:1 to 40:1 and in particular 3:1 to 30:1.


The pharmaceutical dosage form according to the invention preferably contains a plasticizer. The plasticizer improves the processability of the polyalkylene oxide. A preferred plasticizer is polyalkylene glycol, like polyethylene glycol, triacetin, fatty acids, fatty acid esters, waxes and/or microcrystalline waxes. Particularly preferred plasticizers are polyethylene glycols, such as PEG 6000.


Preferably, the content of the plasticizer is within the range of from 0.1 to 25 wt.-%, more preferably 0.5 to 22.5 wt.-%, still more preferably 1.0 to 20 wt.-%, yet more preferably 2.5 to 17.5 wt.-%, most preferably 5.0 to 15 wt.-% and in particular 7.5 to 12.5 wt.-%, based on the total weight of the pharmaceutical dosage form.


In a preferred embodiment, the plasticizer is a polyalkylene glycol having a content within the range of 10±8 wt.-%, more preferably 10±6 wt.-%, still more preferably 10±5 wt.-%, yet more preferably 10±4 wt.-%, most preferably 10±3 wt.-%, and in particular 10±2 wt.-%, based on the total weight of the pharmaceutical dosage form.


In another preferred embodiment, the plasticizer is a polyalkylene glycol having a content within the range of 15±8 wt.-%, more preferably 15±6 wt.-%, still more preferably 15±5 wt.-%, yet more preferably 15±4 wt.-%, most preferably 15±3 wt.-%, and in particular 15±2 wt.-%, based on the total weight of the pharmaceutical dosage form.


In a preferred embodiment, the relative weight ratio of the polyalkylene oxide to the polyalkylene glycol is within the range of 4.2±2:1, more preferably 4.2±1.5:1, still more preferably 4.2±1:1, yet more preferably 4.2±0.5:1, most preferably 4.2±0.2:1, and in particular 4.2±0.1:1. This ratio satisfies the requirements of relative high polyalkylene oxide content and good extrudability.


When manufacturing the dosage forms from slices that are obtained by cutting the extrudate strand, the weight of the slices determines the weight of the resulting dosage form. Pronounced variation in weight of these slices results in an accordant weight deviation of dosage forms from the target weight. The weight variation of slices depends strongly on the surface properties of the extrudate strand. A strand with a thoroughly smooth surface allows the generation of slices exhibiting a low weight variation. In contrast, a wavy or shark skinning strand results in slices exhibiting a higher weight variation thereby increasing the number of rejects.


It has now been surprisingly found that the surface properties of the extrudate strand can be triggered by the polyalkylene oxide:polyalkylene glycol weight ratio.


Preferred compositions X1 to X32 of the pharmaceutical dosage form according to the invention are summarized in the tables here below:
















wt. %
X1
X2
X3
X4







pharmacologically
1.50 ± 1.25
1.50 ± 1.00
1.50 ± 0.75
1.50 ± 0.50


active ingredient (A)






(e.g. oxymorphone






HCl)






acid (B) (e.g. citric
 0.5 ± 0.30
 0.5 ± 0.25
 0.5 ± 0.20
 0.5 ± 0.15


acid)






polyalkylene oxide (C)
77 ± 22
77 ± 20
77 ± 15
77 ± 10


cellulose ester or ether
12 ± 10
 12 ± 7.5
12 ± 5 
 12 ± 2.5


(e.g. HPMC)






plasticizer (e.g. PEG)
 10 ± 7.5
10 ± 5 
 10 ± 2.5
 10 ± 1.0


antioxidant (e.g.
 0.2 ± 0.12
0.2 ± 0.1
 0.2 ± 0.05
 0.2 ± 0.03


α-tocopherol)























wt. %
X5
X6
X7
X8







pharmacologically
2.33 ± 1.25
2.33 ± 1.00
2.33 ± 0.75
2.33 ± 0.50


active ingredient (A)






(e.g. oxymorphone






HCl)






acid (B) (e.g. citric
0.85 ± 0.60
0.85 ± 0.50
0.85 ± 0.25
0.85 ± 0.15


acid)






polyalkylene oxide
70 ± 25
70 ± 20
70 ± 15
70 ± 10


(C)






cellulose ester or
 10 ± 9.5
 10 ± 7.5
10 ± 5 
 10 ± 2.5


ether (e.g. HPMC)






plasticizer (e.g. PEG)
16.6 ± 7.5 
16.6 ± 5  
16.6 ± 2.5 
16.6 ± 1.0 


antioxidant (e.g.
 0.2 ± 0.12
0.2 ± 0.1
 0.2 ± 0.05
 0.2 ± 0.03


α-tocopherol)























wt. %
X9
X10
X11
X12







pharmacologically
3.50 ± 1.25
3.50 ± 1.00
3.50 ± 0.75
3.50 ± 0.50


active ingredient (A)






(e.g. oxymorphone






HCl)






acid (B) (e.g. citric
0.85 ± 0.60
0.85 ± 0.50
0.85 ± 0.25
0.85 ± 0.15


acid)






polyalkylene oxide
69 ± 30
69 ± 20
69 ± 15
69 ± 10


(C)






cellulose ester or
 10 ± 9.5
 10 ± 7.5
10 ± 5 
 10 ± 2.5


ether (e.g. HPMC)






plasticizer (e.g. PEG)
16.4 ± 7.5 
16.4 ± 5  
16.4 ± 2.5 
16.4 ± 1.0 


antioxidant (e.g.
 0.2 ± 0.12
0.2 ± 0.1
 0.2 ± 0.05
 0.2 ± 0.03


α-tocopherol)























wt. %
X13
X14
X15
X16







pharmacologically
4.65 ± 1.25
4.65 ± 1.00
4.65 ± 0.75
4.65 ± 0.50


active ingredient (A)






(e.g. oxymorphone






HCl)






acid (B) (e.g. citric
0.85 ± 0.60
0.85 ± 0.50
0.85 ± 0.25
0.85 ± 0.15


acid)






polyalkylene oxide
68 ± 30
68 ± 20
68 ± 15
68 ± 10


(C)






cellulose ester or
 10 ± 9.5
 10 ± 7.5
10 ± 5 
 10 ± 2.5


ether (e.g. HPMC)






plasticizer (e.g. PEG)
16.2 ± 7.5 
16.2 ± 5  
16.2 ± 2.5 
16.2 ± 1.0 


antioxidant (e.g.
 0.2 ± 0.12
0.2 ± 0.1
 0.2 ± 0.05
 0.2 ± 0.03


α-tocopherol)























wt. %
X17
X18
X19
X20







pharmacologically
6.98 ± 1.25
6.98 ± 1.00
6.98 ± 0.75
6.98 ± 0.50


active ingredient (A)






(e.g. oxymorphone






HCl)






acid (B) (e.g. citric
0.85 ± 0.60
0.85 ± 0.50
0.85 ± 0.25
0.85 ± 0.15


acid)






polyalkylene oxide
66 ± 30
66 ± 20
66 ± 15
66 ± 10


(C)






cellulose ester or
 10 ± 9.5
 10 ± 7.5
10 ± 5 
 10 ± 2.5


ether (e.g. HPMC)






plasticizer (e.g. PEG)
15.8 ± 7.5 
15.8 ± 5  
15.8 ± 2.5 
15.8 ± 1.0 


antioxidant (e.g.
 0.2 ± 0.12
0.2 ± 0.1
 0.2 ± 0.05
 0.2 ± 0.03


α-tocopherol)























wt. %
X21
X22
X23
X24







pharmacologically
9.30 ± 1.25
9.30 ± 1.00
9.30 ± 0.75
9.30 ± 0.50


active ingredient (A)






(e.g. oxymorphone






HCl)






acid (B) (e.g. citric
0.85 ± 0.60
0.85 ± 0.50
0.85 ± 0.25
0.85 ± 0.15


acid)






polyalkylene oxide
64 ± 30
64 ± 20
64 ± 15
64 ± 10


(C)






cellulose ester or
 10 ± 9.5
 10 ± 7.5
10 ± 5 
 10 ± 2.5


ether (e.g. HPMC)






plasticizer (e.g. PEG)
15.3 ± 7.5 
15.3 ± 5  
15.3 ± 2.5 
15.3 ± 1.0 


antioxidant (e.g.
 0.2 ± 0.12
0.2 ± 0.1
 0.2 ± 0.05
 0.2 ± 0.03


α-tocopherol)























wt. %
X25
X26
X27
X28







pharmacologically
13.95 ± 1.25
13.95 ± 1.00
13.95 ± 0.75
13.95 ± 0.50


active ingredient






(A) (e.g.






oxymorphone






HCl)






acid (B) (e.g.
 0.85 ± 0.60
 0.85 ± 0.50
 0.85 ± 0.25
 0.85 ± 0.15


citric acid)






polyalkylene
 60 ± 30
 60 ± 20
 60 ± 15
 60 ± 10


oxide (C)






cellulose ester
  10 ± 9.5
  10 ± 7.5
10 ± 5
  10 ± 2.5


or ether (e.g.






HPMC)






plasticizer (e.g.
13.9 ± 7.5
13.9 ± 5  
13.9 ± 2.5
13.9 ± 1.0


PEG)






antioxidant (e.g.
 0.2 ± 0.12
 0.2 ± 0.1
 0.2 ± 0.05
 0.2 ± 0.03


α-tocopherol)























wt. %
X29
X30
X31
X32







pharmacologically
18.60 ± 1.25
18.60 ± 1.00
18.60 ± 0.75
18.60 ± 0.50


active ingredient






(A) (e.g.






oxymorphone






HCl)






acid (B) (e.g.
 0.85 ± 0.60
 0.85 ± 0.50
 0.85 ± 0.25
 0.85 ± 0.15


citric acid)






polyalkylene
 57 ± 30
 57 ± 20
 57 ± 15
 57 ± 10


oxide (C)






cellulose ester
  10 ± 9.5
  10 ± 7.5
 10 ± 5
  10 ± 2.5


or ether (e.g.






HPMC)






plasticizer (e.g.
13.6 ± 7.5
13.6 ± 5  
13.6 ± 2.5
13.6 ± 1.0


PEG)






antioxidant (e.g.
 0.2 ± 0.12
 0.2 ± 0.1
 0.2 ± 0.05
 0.2 ± 0.03


α-tocopherol)









In a preferred embodiment, the pharmaceutical dosage form has a total weight within the range of 100±75 mg, more preferably 100±50 mg, most preferably 100±25 mg. In another preferred embodiment, the pharmaceutical dosage form has a total weight within the range of 200±75 mg, more preferably 200±50 mg, most preferably 200±25 mg. In another preferred embodiment, the pharmaceutical dosage form has a total weight within the range of 250±75 mg, more preferably 250±50 mg, most preferably 250±25 mg. In still another preferred embodiment, the pharmaceutical dosage form has a total weight within the range of 300±75 mg, more preferably 300±50 mg, most preferably 300±25 mg. In yet another preferred embodiment, the pharmaceutical dosage form has a total weight within the range of 400±75 mg, more preferably 400±50 mg, most preferably 400±25 mg.


In a preferred embodiment, the pharmaceutical dosage form has a total weight within the range of 500±250 mg, more preferably 500±200 mg, most preferably 500±150 mg. In another preferred embodiment, the pharmaceutical dosage form has a total weight within the range of 750±250 mg, more preferably 750±200 mg, most preferably 750±150 mg. In another preferred embodiment, the pharmaceutical dosage form has a total weight within the range of 1000±250 mg, more preferably 1000±200 mg, most preferably 1000±150 mg. In still another preferred embodiment, the pharmaceutical dosage form has a total weight within the range of 1250±250 mg, more preferably 1250±200 mg, most preferably 1250±150 mg.


In a preferred embodiment, the pharmaceutical dosage form according to the invention has an overall density within the range of 1.19±0.30 g/cm3, more preferably 1.19±0.25 g/cm3, still more preferably 1.19±0.20 g/cm3, yet more preferably 1.19±0.15 g/cm3, most preferably 1.19±0.10 g/cm3, and in particular 1.19±0.05 g/cm3. Preferably, the overall density of the pharmaceutical dosage form according to the invention is within the range of 1.17±0.02 g/cm3, 1.19±0.02 or 1.21±0.02. Methods for measuring the density of a dosage form are known to a person skilled in the art. The overall density of a dosage form can for example be determined by means of the mercury porosimetry method or the helium pycnometer method, as decribed in Ph. Eur.


Preferably, the pharmaceutical dosage form according to the invention is adapted for oral administration. It is also possible, however, to administer the pharmaceutical dosage form via different routes and thus, the pharmaceutical dosage form may alternatively be adapted for buccal, lingual, rectal or vaginal administration. Implants are also possible.


In a preferred embodiment, the pharmaceutical dosage form according to the invention is adapted for administration once daily. In another preferred embodiment, the pharmaceutical dosage form according to the invention is adapted for administration twice daily. In still another preferred embodiment, the pharmaceutical dosage form according to the invention is adapted for administration thrice daily.


For the purpose of the specification, “twice daily” means equal or nearly equal time intervals, i.e., about every 12 hours, or different time intervals, e.g., 8 and 16 hours or 10 and 14 hours, between the individual administrations.


For the purpose of the specification, “thrice daily” means equal or nearly equal time intervals, i.e., about every 8 hours, or different time intervals, e.g., 6, 6 and 12 hours; or 7, 7 and 10 hours, between the individual administrations.


Preferably, the pharmaceutical dosage form according to the invention causes an at least partially delayed or prolonged release of the pharmacologically active ingredient (A), preferably opioid (A).


Controlled or prolonged release is understood according to the invention preferably to mean a release profile in which the pharmacologically active ingredient (A), preferably the opioid, is released over a relatively long period with reduced intake frequency with the purpose of extended therapeutic action. Preferably, the meaning of the term “prolonged release” is in accordance with the European guideline on the nomenclature of the release profile of pharmaceutical dosage forms (CHMP). This is achieved in particular with peroral administration. The expression “at least partially delayed or prolonged release” covers according to the invention any pharmaceutical dosage forms which ensure modified release of the pharmacologically active ingredients (A), preferably the opioids, contained therein. The pharmaceutical dosage forms preferably comprise coated or uncoated pharmaceutical dosage forms, which are produced with specific auxiliary substances, by particular processes or by a combination of the two possible options in order purposefully to change the release rate or location of release.


In the case of the pharmaceutical dosage forms according to the invention, the release time profile of a controlled release form may be modified e.g. as follows: extended release, repeat action release, prolonged release and sustained release.


For the purpose of the specification “controlled release” preferably means a product in which the release of active compound over time is controlled by the type and composition of the formulation. For the purpose of the specification “extended release” preferably means a product in which the release of active compound is delayed for a finite lag time, after which release is unhindered. For the purpose of the specification “repeat action release” preferably means a product in which a first portion of active compound is released initially, followed by at least one further portion of active compound being released subsequently. For the purpose of the specification “prolonged release” preferably means a product in which the rate of release of active compound from the formulation after administration has been reduced over time, in order to maintain therapeutic activity, to reduce toxic effects, or for some other therapeutic purpose. For the purpose of the specification “sustained release” preferably means a way of formulating a medicine so that it is released into the body steadily, over a long period of time, thus reducing the dosing frequency. For further details, reference may be made, for example, to K. H. Bauer, Lehrbuch der Pharmazeutischen Technologie, 6th edition, WVG Stuttgart, 1999; and Eur. Ph.


The pharmaceutical dosage form according to the invention may comprise one or more pharmacologically active ingredients (A), preferably opioids, at least in part in a further controlled release form, wherein controlled release may be achieved with the assistance of conventional materials and processes known to the person skilled in the art, for example by embedding the substance in a controlled release matrix or by applying one or more controlled release coatings. Substance release must, however, be controlled such that addition of delayed-release materials does not impair the necessary breaking strength. Controlled release from the pharmaceutical dosage form according to the invention is preferably achieved by embedding the substance in a matrix. Preferably, polyalkylene oxide (C) serves as such a matrix. The auxiliary substances acting as matrix materials control release. Matrix materials may, for example, be hydrophilic, gel-forming materials, from which release proceeds mainly by diffusion, or hydrophobic materials, from which release proceeds mainly by diffusion from the pores in the matrix.


Preferably, the release profile is substantially matrix controlled, preferably by embedding pharmacologically active ingredient (A), preferably opioid (A), in a matrix comprising polyalkylene oxide (C) and optionally, further matrix materials. Preferably, the release profile is not osmotically driven. Preferably, release kinetics is not zero order.


Preferably, under physiological conditions the pharmaceutical dosage form according to the invention has released after 30 minutes 0.1 to 75%, after 240 minutes 0.5 to 95%, after 480 minutes 1.0 to 100% and after 720 minutes 2.5 to 100% of the pharmacologically active ingredient (A), preferably opioid (A). Further preferred release profiles R1 to R6 are summarized in the table here below [all data in wt.-% of released pharmacologically active ingredient (A), preferably opioid (A)]:


















time
R1
R2
R3
R4
R5
R6







 60 min
0-30
0-50
0-50
15-25
20-30
20-50


120 min
0-40
0-75
0-75
25-40
35-50
40-75


240 min
3-55
3-95
10-95 
40-70
55-75
60-95


480 min
10-65 
10-100
35-100
60-90
80-95
 80-100


720 min
20-75 
20-100
55-100
 70-100
 90-100
 90-100


960 min
30-88 
30-100
70-100
>80
 95-100



1440 min 
50-100
50-100
>90





2160 min 
>80
>80









Further preferred release profiles R1 to R6 are summarized in the table here below [all data in wt.-% of released pharmacologically active ingredient (A), preferably opioid (A)]:


















time
R7
R8
R9
R10
R11
R12







 30 min
17.5 ± 7.5
17.5 ± 6.5
17.5 ± 5.5
17.5 ± 4.5
17.5 ± 3.5
17.5 ± 2.5


 60 min
27.0 ± 8.0
27.0 ± 7.0
27.0 ± 6.0
27.0 ± 5.0
27.0 ± 4.0
27.0 ± 3.0


120 min
41.5 ± 9.5
41.5 ± 8.5
41.5 ± 7.5
41.5 ± 6.5
41.5 ± 5.5
41.5 ± 4.5


240 min
 64.5 ± 12.5
 64.5 ± 11.5
 64.5 ± 10.5
64.5 ± 9.5
64.5 ± 8.5
64.5 ± 7.5


480 min
 88.0 ± 12.0
 88.0 ± 11.0
 88.0 ± 10.0
88.0 ± 9.0
88.0 ± 8.0
88.0 ± 7.0


720 min
96.0 ± 9.0
96.0 ± 8.0
96.0 ± 7.0
96.0 ± 6.0
96.0 ± 5.0
96.0 ± 4.0


840 min
97.5 ± 7.5
97.5 ± 6.5
97.5 ± 5.5
97.5 ± 4.5
97.5 ± 3.5
97.5 ± 2.5









Preferably, the release profile of the pharmaceutical dosage form according to the present invention is stable upon storage, preferably upon storage at elevated temperature, e.g. 37° C., for 3 months in sealed containers. In this regard “stable” means that when comparing the initial release profile with the release profile after storage, at any given time point the release profiles deviate from one another by not more than 20%, more preferably not more than 15%, still more preferably not more than 10%, yet more preferably not more than 7.5%, most preferably not more than 5.0% and in particular not more than 2.5%.


Preferably, under in vitro conditions the pharmaceutical dosage form has released after 0.5 h 1.0 to 35 wt.-%, after 1 h 5.0 to 45 wt.-%, after 2 h 10 to 60 wt.-%, after 4 h at least 15 wt.-%, after 6 h at least 20 wt.-%, after 8 h at least 25 wt.-% and after 12 h at least 30 wt.-% of the pharmacologically active ingredient (A), preferably the opioid, that was originally contained in the pharmaceutical dosage form.


Suitable in vitro conditions are known to the skilled artisan. In this regard it can be referred to, e.g., the Eur. Ph. Preferably, the release profile is measured under the following conditions: Paddle apparatus equipped with sinker, 50 rpm, 37±5° C., 900 mL simulated intestinal fluid pH 6.8 (phosphate buffer) or pH 4.5. In a preferred embodiment, to rotational speed of the paddle is increased to 100 rpm.


In a preferred embodiment, after preferably oral administration of the pharmaceutical dosage form according to the invention, in vivo the average peak plasma level (Cmax) is on average reached after tmax 4.0±2.5 h, more preferably after tmax 4.0±2.0 h, still more preferably after tmax 4.0±1.5 h, most preferably after tmax 4.0±1.0 h and in particular after tmax 4.0±0.5 h. In another preferred embodiment, after preferably oral administration of the pharmaceutical dosage form according to the invention, in vivo the average peak plasma level (Cmax) is on average reached after tmax 5.0±2.5 h, more preferably after tmax 5.0±2.0 h, still more preferably after tmax 5.0±1.5 h, most preferably after tmax 5.0±1.0 h and in particular after tmax 5.0±0.5 h. In still another preferred embodiment, after preferably oral administration of the pharmaceutical dosage form according to the invention, in vivo the average peak plasma level (Cmax) is on average reached after tmax 6.0±2.5 h, more preferably after tmax 6.0±2.0 h, still more preferably after tmax 6.0±1.5 h, most preferably after tmax 6.0±1.0 h and in particular after tmax 6.0±0.5 h.


In a preferred embodiment, the average value for t1/2 after preferably oral administration of the pharmaceutical dosage form according to the invention in vivo is 4.0±2.5 h, more preferably 4.0±2.0 h, still more preferably 4.0±1.5 h, most preferably 4.0±1.0 h, and in particular 4.0±0.5 h. In another preferred embodiment, the average value for t1/2 after preferably oral administration of the pharmaceutical dosage form according to the invention in vivo is preferably 5.0±2.5 h, more preferably 5.0±2.0 h, still more preferably 5.0±1.5 h, most preferably 5.0±1.0 h, and in particular 5.0±0.5 h. In still another preferred embodiment, the average value for t1/2 after preferably oral administration of the pharmaceutical dosage form according to the invention in vivo is preferably 6.0±2.5 h, more preferably 6.0±2.0 h, still more preferably 6.0±1.5 h, most preferably 6.0±1.0 h, and in particular 6.0±0.5 h.


Preferably, the pharmaceutical dosage form according to the invention contains a coating, preferably a film-coating. Suitable coating materials are known to the skilled person. Suitable coating materials are commercially available, e.g. under the trademarks Opadry® and Eudragit®.


Examples of suitable materials include cellulose esters and cellulose ethers, such as methylcellulose (MC), hydroxypropylmethylcellulose (HPMC), hydroxypropylcellulose (HPC), hydroxyethylcellulose (HEC), sodium carboxymethylcellulose (Na-CMC), ethylcellulose (EC), cellulose acetate phthalate (CAP), hydroxypropylmethylcellulose phthalate (HPMCP); poly(meth)acrylates, such as aminoalkylmethacrylate copolymers, ethylacrylate methylmethacrylate copolymers, methacrylic acid methylmethacrylate copolymers, methacrylic acid methylmethacrylate copolymers; vinyl polymers, such as polyvinylpyrrolidone, polyvinylacetatephthalate, polyvinyl alcohol, polyvinylacetate; and natural film formers, such as shellack.


In a particularly preferred embodiment, the coating is water-soluble. In a preferred embodiment, the coating is based on polyvinyl alcohol, such as polyvinyl alcohol-part. hydrolyzed, and may additionally contain polyethylene glycol, such as macrogol 3350, and/or pigments. In another preferred embodiment, the coating is based on hydroxypropylmethylcellulose, preferably hypromellose type 2910 having a viscosity of 3 to 15 mPas.


The coating of the pharmaceutical dosage form can increase its storage stability.


The coating can be resistant to gastric juices and dissolve as a function of the pH value of the release environment. By means of this coating, it is possible to ensure that the pharmaceutical dosage form according to the invention passes through the stomach undissolved and the active compound is only released in the intestines. The coating which is resistant to gastric juices preferably dissolves at a pH value of between 5 and 7.5. Corresponding materials and methods for the delayed release of active compounds and for the application of coatings which are resistant to gastric juices are known to the person skilled in the art, for example from “Coated Pharmaceutical dosage forms—Fundamentals, Manufacturing Techniques, Biopharmaceutical Aspects, Test Methods and Raw Materials” by Kurt H. Bauer, K. Lehmann, Hermann P. Osterwald, Rothgang, Gerhart, 1st edition, 1998, Medpharm Scientific Publishers.


In a preferred embodiment, the pharmaceutical dosage form according to the invention contains no substances which irritate the nasal passages and/or pharynx, i.e. substances which, when administered via the nasal passages and/or pharynx, bring about a physical reaction which is either so unpleasant for the patient that he/she does not wish to or cannot continue administration, for example burning, or physiologically counteracts taking of the corresponding active compound, for example due to increased nasal secretion or sneezing. Further examples of substances which irritate the nasal passages and/or pharynx are those which cause burning, itching, urge to sneeze, increased formation of secretions or a combination of at least two of these stimuli. Corresponding substances and the quantities thereof which are conventionally to be used are known to the person skilled in the art. Some of the substances which irritate the nasal passages and/or pharynx are accordingly based on one or more constituents or one or more plant parts of a hot substance drug. Corresponding hot substance drugs are known per se to the person skilled in the art and are described, for example, in “Pharmazeutische Biologie—Drogen und ihre Inhaltsstoffe” by Prof. Dr. Hildebert Wagner, 2nd, revised edition, Gustav Fischer Verlag, Stuttgart-N.Y., 1982, pages 82 et seq. The corresponding description is hereby introduced as a reference and is deemed to be part of the disclosure.


The pharmaceutical dosage form according to the invention furthermore preferably contains no antagonists for the pharmacologically active ingredient (A), preferably no opioid antagonists more preferably no antagonists against psychotropic substances, in particular no antagonists against opioids (A). Antagonists suitable for a given pharmacologically active ingredient (A) are known to the person skilled in the art and may be present as such or in the form of corresponding derivatives, in particular esters or ethers, or in each case in the form of corresponding physiologically acceptable compounds, in particular in the form of the salts or solvates thereof. The pharmaceutical dosage form according to the invention preferably contains no antagonists selected from among the group comprising naloxone, naltrexone, nalmefene, nalide, nalmexone, nalorphine or naluphine, in each case optionally in the form of a corresponding physiologically acceptable compound, in particular in the form of a base, a salt or solvate; and no neuroleptics, for example a compound selected from among the group comprising haloperidol, promethacine, fluphenazine, perphenazine, levomepromazine, thioridazine, perazine, chlorpromazine, chlorprothixine, zuclopenthixol, flupentixol, prothipendyl, zotepine, benperidol, pipamperone, melperone and bromperidol.


The pharmaceutical dosage form according to the invention furthermore preferably contains no emetic. Emetics are known to the person skilled in the art and may be present as such or in the form of corresponding derivatives, in particular esters or ethers, or in each case in the form of corresponding physiologically acceptable compounds, in particular in the form of the salts or solvates thereof. The pharmaceutical dosage form according to the invention preferably contains no emetic based on one or more constituents of ipecacuanha (ipecac) root, for example based on the constituent emetine, as are, for example, described in “Pharmazeutische Biologie—Drogen und ihre Inhaltsstoffe” by Prof. Dr. Hildebert Wagner, 2nd, revised edition, Gustav Fischer Verlag, Stuttgart, N.Y., 1982. The corresponding literature description is hereby introduced as a reference and is deemed to be part of the disclosure. The pharmaceutical dosage form according to the invention preferably also contains no apomorphine as an emetic.


Finally, the pharmaceutical dosage form according to the invention preferably also contains no bitter substance. Bitter substances and the quantities effective for use may be found in US-2003/0064099 A1, the corresponding disclosure of which should be deemed to be the disclosure of the present application and is hereby introduced as a reference. Examples of bitter substances are aromatic oils, such as peppermint oil, eucalyptus oil, bitter almond oil, menthol, fruit aroma substances, aroma substances from lemons, oranges, limes, grapefruit or mixtures thereof, and/or denatonium benzoate.


The pharmaceutical dosage form according to the invention accordingly preferably contains neither substances which irritate the nasal passages and/or pharynx, nor antagonists for the pharmacologically active ingredient (A), preferably the opioid (A), nor emetics, nor bitter substances.


The pharmaceutical dosage form according to the invention is preferably adapted for oral administration.


Typically, the pharmaceutical dosage form according to the invention assumes the form of a tablet. Preferably, the pharmaceutical dosage form is neither in film form, nor multi-particulate.


The pharmaceutical dosage form according to the invention is preferably tamper-resistant. Preferably, tamper-resistance is achieved based on the mechanical properties of the pharmaceutical dosage form so that comminution is avoided or at least substantially impeded. According to the invention, the term comminution means the pulverization of the pharmaceutical dosage form using conventional means usually available to an abuser, for example a pestle and mortar, a hammer, a mallet or other conventional means for pulverizing under the action of force. Thus, tamper-resistance preferably means that pulverization of the pharmaceutical dosage form using conventional means is avoided or at least substantially impeded.


Preferably, the mechanical properties of the pharmaceutical dosage form according to the invention, particularly its breaking strength, substantially rely on the presence and spatial distribution of polyalkylene oxide (C), although its mere presence does typically not suffice in order to achieve said properties. The advantageous mechanical properties of the pharmaceutical dosage form according to the invention may not automatically be achieved by simply processing pharmacologically active ingredient (A), acid (B), polyalkylene oxide (C), and optionally further excipients by means of conventional methods for the preparation of pharmaceutical dosage forms. In fact, usually suitable apparatuses must be selected for the preparation and critical processing parameters must be adjusted, particularly pressure/force, temperature and time. Thus, even if conventional apparatuses are used, the process protocols usually must be adapted in order to meet the required criteria.


The pharmaceutical dosage form according to the invention has a breaking strength of at least 300 N, preferably at least 400 N, more preferably at least 500 N, still more preferably at least 750 N, yet more preferably at least 1000 N, most preferably at least 1250 N and in particular at least 1500 N.


The “breaking strength” (resistance to crushing) of a pharmaceutical dosage form is known to the skilled person. In this regard it can be referred to, e.g., W. A. Ritschel, Die Tablette, 2. Auflage, Edition Cantor Verlag Aulendorf, 2002; H Liebermann et al., Pharmaceutical dosage forms: Tablets, Vol. 2, Informa Healthcare; 2 edition, 1990; and Encyclopedia of Pharmaceutical Technology, Informa Healthcare; 1 edition.


For the purpose of the specification, the breaking strength is preferably defined as the amount of force that is necessary in order to fracture the pharmaceutical dosage form (=breaking force). Therefore, for the purpose of the specification the pharmaceutical dosage form does preferably not exhibit the desired breaking strength when it breaks, i.e., is fractured into at least two independent parts that are separated from one another. In another preferred embodiment, however, the pharmaceutical dosage form is regarded as being broken if the force decreases by 25% (threshold value) of the highest force measured during the measurement (see below).


The pharmaceutical dosage forms according to the invention are distinguished from conventional pharmaceutical dosage forms in that, due to their breaking strength, they cannot be pulverized by the application of force with conventional means, such as for example a pestle and mortar, a hammer, a mallet or other usual means for pulverization, in particular devices developed for this purpose (tablet crushers). In this regard “pulverization” means crumbling into small particles that would immediately release the pharmacologically active compound (A), preferably the opioid, in a suitable medium.


Avoidance of pulverization virtually rules out oral or parenteral, in particular intravenous or nasal abuse.


Conventional tablets typically have a breaking strength well below 200 N in any direction of extension. The breaking strength of conventional round tablets may be estimated according to the following empirical formula: Breaking Strength [in N]=10×Diameter Of The Tablet [in mm]. Thus, according to said empirical formula, a round tablet having a breaking strength of at least 300 N would require a diameter of at least 30 mm). Such a tablet, however, could not be swallowed. The above empirical formula preferably does not apply to the pharmaceutical dosage forms of the invention, which are not conventional but rather special.


Further, the actual mean chewing force is about 220 N (cf., e.g., P. A. Proeschel et al., J Dent Res, 2002, 81(7), 464-468). This means that conventional tablets having a breaking strength well below 200 N may be crushed upon spontaneous chewing, whereas the pharmaceutical dosage forms according to the invention may not.


Still further, when applying a gravitational acceleration of about 9.81 m/s2, 300 N correspond to a gravitational force of more than 30 kg, i.e. the pharmaceutical dosage forms according to the invention can preferably withstand a weight of more than 30 kg without being pulverised.


Methods for measuring the breaking strength of a pharmaceutical dosage form are known to the skilled artisan. Suitable devices are commercially available.


For example, the breaking strength (resistance to crushing) can be measured in accordance with the Eur. Ph. 5.0, 2.9.8 or 6.0, 2.09.08 “Resistance to Crushing of Tablets”. The test is intended to determine, under defined conditions, the resistance to crushing of tablets, measured by the force needed to disrupt them by crushing. The apparatus consists of 2 jaws facing each other, one of which moves towards the other. The flat surfaces of the jaws are perpendicular to the direction of movement. The crushing surfaces of the jaws are flat and larger than the zone of contact with the tablet. The apparatus is calibrated using a system with a precision of 1 Newton. The tablet is placed between the jaws, taking into account, where applicable, the shape, the break-mark and the inscription; for each measurement the tablet is oriented in the same way with respect to the direction of application of the force (and the direction of extension in which the breaking strength is to be measured). The measurement is carried out on 10 tablets, taking care that all fragments of tablets have been removed before each determination. The result is expressed as the mean, minimum and maximum values of the forces measured, all expressed in Newton.


A similar description of the breaking strength (breaking force) can be found in the USP. The breaking strength can alternatively be measured in accordance with the method described therein where it is stated that the breaking strength is the force required to cause a tablet to fail (i.e., break) in a specific plane. The tablets are generally placed between two platens, one of which moves to apply sufficient force to the tablet to cause fracture. For conventional, round (circular cross-section) tablets, loading occurs across their diameter (sometimes referred to as diametral loading), and fracture occurs in the plane. The breaking force of tablets is commonly called hardness in the pharmaceutical literature; however, the use of this term is misleading. In material science, the term hardness refers to the resistance of a surface to penetration or indentation by a small probe. The term crushing strength is also frequently used to describe the resistance of tablets to the application of a compressive load. Although this term describes the true nature of the test more accurately than does hardness, it implies that tablets are actually crushed during the test, which is often not the case.


Alternatively, the breaking strength (resistance to crushing) can be measured in accordance with WO 2005/016313, WO 2005/016314, and WO 2006/082099, which can be regarded as a modification of the method described in the Eur. Ph. The apparatus used for the measurement is preferably a “Zwick Z 2.5” materials tester, Fmax=2.5 kN with a maximum draw of 1150 mm, which should be set up with one column and one spindle, a clearance behind of 100 mm and a test speed adjustable between 0.1 and 800 mm/min together with testControl software. Measurement is performed using a pressure piston with screw-in inserts and a cylinder (diameter 10 mm), a force transducer, Fmax. 1 kN, diameter=8 mm, class 0.5 from 10 N, class 1 from 2 N to ISO 7500-1, with manufacturer's test certificate M according to DIN 55350-18 (Zwick gross force Fmax=1.45 kN) (all apparatus from Zwick GmbH & Co. KG, Ulm, Germany) with Order No BTC-FR 2.5 TH. D09 for the tester, Order No BTC-LC 0050N. P01 for the force transducer, Order No BO 70000 S06 for the centring device.


In a preferred embodiment of the invention, the breaking strength is measured by means of a breaking strength tester e.g. Sotax®, type HT100 or type HT1 (Allschwil, Switzerland). Both, the Sotax® HT100 and the Sotax® HT1 can measure the breaking strength according to two different measurement principles: constant speed (where the test jaw is moved at a constant speed adjustable from 5-200 mm/min) or constant force (where the test jaw increases force linearly adjustable from 5-100 N/sec). In principle, both measurement principles are suitable for measuring the breaking strength of the pharmaceutical dosage form according to the invention. Preferably, the breaking strength is measured at constant speed, preferably at a constant speed of 120 mm/min.


In a preferred embodiment, the pharmaceutical dosage form is regarded as being broken if it is fractured into at least two separate pieces.


The pharmaceutical dosage form according to the invention preferably exhibits mechanical strength over a wide temperature range, in addition to the breaking strength (resistance to crushing) optionally also sufficient hardness, impact resistance, impact elasticity, tensile strength and/or modulus of elasticity, optionally also at low temperatures (e.g. below −24° C., below −40° C. or in liquid nitrogen), for it to be virtually impossible to pulverize by spontaneous chewing, grinding in a mortar, pounding, etc. Thus, preferably, the comparatively high breaking strength of the pharmaceutical dosage form according to the invention is maintained even at low or very low temperatures, e.g., when the pharmaceutical dosage form is initially chilled to increase its brittleness, for example to temperatures below −25° C., below −40° C. or even in liquid nitrogen.


The pharmaceutical dosage form according to the invention is characterized by a certain degree of breaking strength. This does not mean that the pharmaceutical dosage form must also exhibit a certain degree of hardness. Hardness and breaking strength are different physical properties. Therefore, the tamper resistance of the pharmaceutical dosage form does not necessarily depend on the hardness of the pharmaceutical dosage form. For instance, due to its breaking strength, impact strength, elasticity modulus and tensile strength, respectively, the pharmaceutical dosage form can preferably be deformed, e.g. plastically, when exerting an external force, for example using a hammer, but cannot be pulverized, i.e., crumbled into a high number of fragments. In other words, the pharmaceutical dosage form according to the invention is characterized by a certain degree of breaking strength, but not necessarily also by a certain degree of form stability.


Therefore, in the meaning of the specification, a pharmaceutical dosage form that is deformed when being exposed to a force in a particular direction of extension but that does not break (plastic deformation or plastic flow) is preferably to be regarded as having the desired breaking strength in said direction of extension.


A particularly preferred embodiment of the invention relates to a tamper-resistant pharmaceutical dosage form having a breaking strength of at least 300 N and being thermoformed by hot-melt extrusion, said pharmaceutical dosage form comprising

    • a pharmacologically active ingredient (A), preferably an opioid, particularly preferred an opioid selected from the group consisting of oxymorphone, oxycodone, hydromorphone, and the physiologically acceptable salts thereof;
    • a free physiologically acceptable multicarboxylic acid (B), preferably citric acid, wherein the content of the acid (B) is within the range of from 0.001 to 5.0 wt.-%, based on the total weight of the pharmaceutical dosage form;
    • an antioxidant, wherein the content of the antioxidant, preferably α-tocopherol, is within the range of from 0.001 to 5.0 wt.-%, based on the total weight of the pharmaceutical dosage form; and
    • a polyalkylene oxide (C) having a weight average molecular weight Mw of at least 200,000 g/mol;


      wherein
    • the pharmacologically active ingredient (A) is embedded in a matrix comprising the polyalkylene oxide (C), said matrix controlling the release of the pharmacologically active ingredient (A) from the pharmaceutical dosage form; and
    • after storage for 4 weeks at 40° C. and 75% rel. humidity, the content of pharmacologically active ingredient (A), preferably opioid (A), amounts to at least 98.0% of its original content before storage.


The pharmaceutical dosage form according to the invention may be produced by different processes, the particularly preferred of which are explained in greater detail below. Several suitable processes have already been described in the prior art. In this regard it can be referred to, e.g., WO 2005/016313, WO 2005/016314, WO 2005/063214, WO 2005/102286, WO 2006/002883, WO 2006/002884, WO 2006/002886, WO 2006/082097, and WO 2006/082099.


The present invention also relates to pharmaceutical dosage forms that are obtainable by any of the processes described here below.


In general, the process for the production of the pharmaceutical dosage form according to the invention preferably comprises the following steps:

  • (a) mixing all ingredients;
  • (b) optionally pre-forming the mixture obtained from step (a), preferably by applying heat and/or force to the mixture obtained from step (a), the quantity of heat supplied preferably not being sufficient to heat the polyalkylene oxide (C) up to its softening point;
  • (c) hardening the mixture by applying heat and force, it being possible to supply the heat during and/or before the application of force and the quantity of heat supplied being sufficient to heat the polyalkylene oxide (C) at least up to its softening point;
  • (d) optionally singulating the hardened mixture;
  • (e) optionally shaping the pharmaceutical dosage form; and
  • (f) optionally providing a film coating.


Heat may be supplied directly, e.g. by contact or by means of hot gas such as hot air, or with the assistance of ultrasound. Force may be applied and/or the pharmaceutical dosage form may be shaped for example by direct tabletting or with the assistance of a suitable extruder, particularly by means of a screw extruder equipped with two screws (twin-screw-extruder) or by means of a planetary gear extruder.


The final shape of the pharmaceutical dosage form may either be provided during the hardening of the mixture by applying heat and force (step (c)) or in a subsequent step (step (e)). In both cases, the mixture of all components is preferably in the plastified state, i.e. preferably, shaping is performed at a temperature at least above the softening point of the polyalkylene oxide (C). However, extrusion at lower temperatures, e.g. ambient temperature, is also possible and may be preferred.


Shaping can be performed, e.g., by means of a tabletting press comprising die and punches of appropriate shape.


A particularly preferred process for the manufacture of the pharmaceutical dosage form of the invention involves hot-melt extrusion. In this process, the pharmaceutical dosage form according to the invention is produced by thermoforming with the assistance of an extruder, preferably without there being any observable consequent discoloration of the extrudate. It has been surprisingly found that acid (B) is capable of suppressing discoloration. In the absence of acid (B), the extrudate tends to develop beige to yellowish coloring whereas in the presence of acid (B) the extrudates are substantially colorless, i.e. white.


This process is characterized in that

    • a) all components are mixed,
    • b) the resultant mixture is heated in the extruder at least up to the softening point of the polyalkylene oxide (C) and extruded through the outlet orifice of the extruder by application of force,
    • c) the still plastic extrudate is singulated and formed into the pharmaceutical dosage form or
    • d) the cooled and optionally reheated singulated extrudate is formed into the pharmaceutical dosage form.


Mixing of the components according to process step a) may also proceed in the extruder.


The components may also be mixed in a mixer known to the person skilled in the art. The mixer may, for example, be a roll mixer, shaking mixer, shear mixer or compulsory mixer.


Before blending with the remaining components, polyalkylene oxide (C) is preferably provided according to the invention with an antioxidant, preferably α-tocopherol. This may proceed by mixing the two components, the polyalkylene oxide (C) and the antioxidant, preferably by dissolving or suspending the antioxidant in a highly volatile solvent and homogeneously mixing this solution or suspension with polyalkylene oxide (C) and removing the solvent by drying, preferably under an inert gas atmosphere.


The, preferably molten, mixture which has been heated in the extruder at least up to the softening point of polyalkylene oxide (C) is extruded from the extruder through a die with at least one bore.


The process according to the invention requires the use of suitable extruders, preferably screw extruders. Screw extruders which are equipped with two screws (twin-screw-extruders) are particularly preferred.


The extrusion is preferably performed so that the expansion of the strand due to extrusion is not more than 30%, i.e. that when using a die with a bore having a diameter of e.g. 6 mm, the extruded strand should have a diameter of not more than 8 mm. More preferably, the expansion of the strand is not more than 25%, still more preferably not more than 20%, most preferably not more than 15% and in particular not more than 10%.


Preferably, extrusion is performed in the absence of water, i.e., no water is added. However, traces of water (e.g., caused by atmospheric humidity) may be present.


The extruder preferably comprises at least two temperature zones, with heating of the mixture at least up to the softening point of the polyalkylene oxide (C) proceeding in the first zone, which is downstream from a feed zone and optionally mixing zone. The throughput of the mixture is preferably from 1.0 kg to 15 kg/hour. In a preferred embodiment, the throughput is from 1 to 3.5 kg/hour. In another preferred embodiment, the throughput is from 4 to 15 kg/hour.


In a preferred embodiment, the die head pressure is within the range of from 25 to 100 bar. The die head pressure can be adjusted inter alia by die geometry, temperature profile and extrusion speed.


The die geometry or the geometry of the bores is freely selectable. The die or the bores may accordingly exhibit a round, oblong or oval cross-section, wherein the round cross-section preferably has a diameter of 0.1 mm to 15 mm and the oblong cross-section preferably has a maximum lengthwise extension of 21 mm and a crosswise extension of 10 mm. Preferably, the die or the bores have a round cross-section. The casing of the extruder used according to the invention may be heated or cooled. The corresponding temperature control, i.e. heating or cooling, is so arranged that the mixture to be extruded exhibits at least an average temperature (product temperature) corresponding to the softening temperature of the polyalkylene oxide (C) and does not rise above a temperature at which the pharmacologically active ingredient (A), preferably the opioid, to be processed may be damaged. Preferably, the temperature of the mixture to be extruded is adjusted to below 180° C., preferably below 150° C., but at least to the softening temperature of polyalkylene oxide (C). Typical extrusion temperatures are 120° C. and 130° C.


In a preferred embodiment, the extruder torque is within the range of from 30 to 95%. Extruder torque can be adjusted inter alia by die geometry, temperature profile and extrusion speed.


After extrusion of the molten mixture and optional cooling of the extruded strand or extruded strands, the extrudates are preferably singulated. This singulation may preferably be performed by cutting up the extrudates by means of revolving or rotating knives, water jet cutters, wires, blades or with the assistance of laser cutters.


Preferably, intermediate or final storage of the optionally singulated extrudate or the final shape of the pharmaceutical dosage form according to the invention is performed under oxygen-free atmosphere which may be achieved, e.g., by means of oxygen-scavengers.


The singulated extrudate may be press-formed into tablets in order to impart the final shape to the pharmaceutical dosage form.


The application of force in the extruder onto the at least plasticized mixture is adjusted by controlling the rotational speed of the conveying device in the extruder and the geometry thereof and by dimensioning the outlet orifice in such a manner that the pressure necessary for extruding the plasticized mixture is built up in the extruder, preferably immediately prior to extrusion. The extrusion parameters which, for each particular composition, are necessary to give rise to a pharmaceutical dosage form with desired mechanical properties, may be established by simple preliminary testing.


For example but not limiting, extrusion may be performed by means of a twin-screw-extruder type ZSE 18 or ZSE 27 (Leistritz, Nurnberg, Germany), screw diameters of 18 or 27 mm. Screws having eccentric ends may be used. A heatable die with a round bore having a diameter of 7, 8, or 9 mm may be used. The extrusion parameters may be adjusted e.g. to the following values: rotational speed of the screws: 120 Upm; delivery rate2 kg/h for a ZSE 18 or 8 kg/h for a ZSE 27; product temperature: in front of die 125 ° C. and behind die 135° C.; and jacket temperature: 110° C.


Preferably, extrusion is performed by means of twin-screw-extruders or planetary-gear-extruders, twin-screw extruders (co-rotating or contra-rotating) being particularly preferred.


The pharmaceutical dosage form according to the invention is preferably produced by thermoforming with the assistance of an extruder without any observable consequent discoloration of the extrudates.


The process for the preparation of the pharmaceutical dosage form according to the invention is preferably performed continuously. Preferably, the process involves the extrusion of a homogeneous mixture of all components. It is particularly advantageous if the thus obtained intermediate, e.g. the strand obtained by extrusion, exhibits uniform properties. Particularly desirable are uniform density, uniform distribution of the active compound, uniform mechanical properties, uniform porosity, uniform appearance of the surface, etc. Only under these circumstances the uniformity of the pharmacological properties, such as the stability of the release profile, may be ensured and the amount of rejects can be kept low.


A further aspect of the invention relates to a packaging containing a pharmaceutical dosage form according to the invention and an oxygen scavenger. Suitable packages include blister packages and bottles, such as glass bottles or bottles made from thermoplastic polymers.


Suitable oxygen scavengers are known to the skilled artisan. The oxygen scavenger can be any scavenger known in the art to scavenge oxygen. Both organic and inorganic oxygen scavengers can be used.


In one embodiment, the oxygen scavenger is any metal complex exhibiting oxygen scavenging activity. Examples include complexes containing one or more of aluminum, aluminum ferrosilicon, antimony, beryllium, calcium silicon, cerium, cobalt, gallium, hafnium, iron, magnesium alloy, nickel catalyst, selenium, silicon, silver, strontium, titanium, zinc, and/or zirconium.


In yet another embodiment, one or more elements from Group IA of the periodic table and their alloys and compounds may be used as oxygen scavengers. Examples of Group IA elements include cesium, lithium, potassium, sodium. Further examples of inorganic oxygen scavengers include one or more of sodium azide (NaN3), sodium sulfite (Na2SO3), hydrazine, and hydroxylamine.


In one embodiment, the oxygen scavenger is an organic compound. Examples include one or more of the polyterpenes, ascorbic acid, amino polycarboxylic acid, cyclohexanedione, tetramethyl piperidone, and heterocyclic compounds with N-substituted amino groups.


Oxygen scavengers and the application thereof in pharmaceutical packaging are known to the skilled artisan. In a preferred embodiment, the oxygen scavenger is selected from the group consisting of metal-catalyzed oxidizable organic polymers and anti-oxidants. Particularly preferred are those oxygen scavengers that are able to perform in a dry environment of below 60% relative humidity, preferably below 30% relative humidity and that are combined with a dessicant. Examples of commercially available oxygen scavengers satisfying these requirements include Pharmakeep® KD10 and KD20.


It has been surprisingly found that the storage stability of the pharmaceutical dosage form can be increased when keeping the oxygen content of the atmosphere within the packaging low. Methods for packaging pharmaceutical dosage forms and the application of suitable oxygen scavengers are known to the skilled artisan. In this regard it can be referred to e.g. D. A. Dean, Pharmaceutical Packaging Technology, Taylor & Francis, 1st ed.; F. A. Paine et al., Packaging Pharmaceutical and Healthcare Products, Springer, 1st ed.; and O. G. Piringer et al., Plastic Packaging: Interactions with Food and Pharmaceuticals, Wiley-VCH, 2nd ed.


As far as the packaging is concerned, round bottles made from polyolefins, preferably from HDPE, are preferred. The thickness of the bottle wall is preferably at least 0.25 mm, more preferably at least 0.5 mm, otherwise the bottle may collapse.


As far as the lid of the packaging is concerned, the packaging is preferably induction or heat-sealed with an aluminium foil.


It has been surprisingly found that by selecting an appropriate shape of the packaging and sealing, the vacuum that is produced by the effect of the oxygen scavenger (underpressure of about 20,000 Pa=2 N/cm2) can be handled without causing a collapse of the packaging. Induction sealing (e.g. 3 seconds energy) is preferred. When sealing a 75 ml bottle having an opening with a diameter of 1 inch with aluminium foil, an underpressure of 20,000 Pa due to oxygen scavenging results in a force of about 10 N corresponding to the force that is exerted by a weight of 1 kg.


The mechanical stability of the sealing can be tested either by introducing an appropriate amount of oxygen scavenger in the bottle, sealing it and waiting for a sufficient period of time, e.g. 2 days, so that the oxygen is scavenged and an underpressure of about 20,000 Pa has been developed. Alternatively, the bottle may be sealed without any oxygen scavenger in its interior and a weight of 1 kg can be placed on the aluminium foil externally thus, simulating the force.


A further aspect of the invention relates to the use of a pharmacologically active ingredient (A), preferably an opioid, for the manufacture of the pharmaceutical dosage form as described above for the treatment of pain.


A further aspect of the invention relates to the use of a pharmaceutical dosage form as described above for avoiding or hindering the abuse of the pharmacologically active ingredient (A), preferably the opioid, contained therein.


A further aspect of the invention relates to the use of a pharmaceutical dosage form as described above for avoiding or hindering the unintentional overdose of the opioid (A) contained therein.


In this regard, the invention also relates to the use of a pharmacologically active ingredient (A), preferably an opioid, as described above and/or a polyalkylene oxide (C) as described above for the manufacture of the pharmaceutical dosage form according to the invention for the prophylaxis and/or the treatment of a disorder, thereby preventing an overdose of the pharmacologically active ingredient (A), preferably the opioid, particularly due to comminution of the pharmaceutical dosage form by mechanical action.


Further, the invention relates to a method for the prophylaxis and/or the treatment of a disorder comprising the administration of the pharmaceutical dosage form according to the invention, thereby preventing an overdose of the pharmacologically active ingredient (A), preferably the opioid, particularly due to comminution of the pharmaceutical dosage form by mechanical action. Preferably, the mechanical action is selected from the group consisting of chewing, grinding in a mortar, pounding, and using apparatuses for pulverizing conventional pharmaceutical dosage forms.


The following examples further illustrate the invention but are not to be construed as limiting its scope.


EXAMPLE 1

Tablets were prepared by hot-melt extrusion of various homogeneous constituent mixtures under the following, identical extrusion conditions:

    • extruder type: Leistritz Extruder ZSEI8PH 40D equipped with high shear screws and
    • a die of 9 mm diameter
    • throughput: 1.0 kg/h
    • revolution velocity: 100 rpm
    • barrel temperature: 100° C.
    • extrudate temperature: 120° C.


The extrudate was cut into slices of 325 mg containing about 5 mg oxymorphone hydrochloride.


The individual constituents of the extruded mixtures as well as the total amount of decomposition products before and after storage under accelerated storage conditions are summarized in the table here below:
















constituents (wt. %)

decomposition products (wt. %)

















ex.
(A)
PEO
PEG
HPMC
α-toc.
further ingredient (wt. %)
oNo1
oNo2
Σ1
Σ2





A1
1.5
76.9
10.0
10.0
1.5
/
0.06
0.58
0.41
1.93


A2
1.5
77.5
10.0
10.0
1.0
/
0.09
0.49
0.58
1.81


A3
1.5
78.0
10.0
10.0
0.5
/
0.08
0.36
0.56
1.64


A4
1.5
78.3
10.0
10.0
0.2
/
0.08
0.26
0.63
1.51


A5
1.5
78.5
10.0
10.0
0.0
/
0.07
0.17
0.81
1.69


B1
1.5
76.9
10.0
10.0
1.5
/
0.06
0.58
0.41
1.93


B2
1.5
40.0
10.0
46.9
1.5
/
0.09
0.55
0.64
1.76


B3
1.5
50.0
10.0
36.9
1.5
/
0.00
0.52
0.29
1.64


B4
1.5
50.0
36.9
10.0
1.5
/
0.11
0.76
0.36
1.74


C1
1.5
76.9
10.0
10.0
1.5
/
0.06
0.58
0.41
1.93


C2
1.5
76.9
/
10.0
1.5
10.00 Lutrol ® F68
0.05
0.53
0.65
1.83


C3
1.5
50.0
10.0
10.0
1.5
26.90 mannitol
0.08
0.82
0.39
2.72


C4
1.5
76.9
/
10.0
1.5
10.00 carnaubawax
0.12
0.53
0.39
1.03


D1
1.5
76.9
10.0
10.0
1.5
/
0.06
0.58
0.41
1.93


D2
1.5
76.8
10.0
10.0
1.5
0.10 fumaric acid
0.05
0.48
0.52
1.70


D3
1.5
76.8
10.0
10.0
1.5
0.10 Na-EDTA
0.07
0.51
0.48
1.77


D4
1.5
76.8
10.0
10.0
1.5
0.10 citric acid
0.07
0.48
0.37
1.45


E1
1.5
76.9
10.0
10.0
1.5
/
0.06
0.58
0.41
1.93


E2
1.5
76.8
10.0
10.0
1.5
0.10 citric acid
0.07
0.48
0.37
1.45


E3
1.5
76.7
10.0
10.0
1.5
0.20 citric acid
0.00
0.40
0.20
1.13


E4
1.5
76.4
10.0
10.0
1.5
0.50 citric acid
0.00
0.06
0.12
0.17





(A): oxymorphone hydrochloride


PEO: polyethylene oxide Mw 7 mio g/mol


PEG: polyethylene glycol 6000


HPMC: hypromellose 100,000 Pa * s


α-toc.: α-tocopherol


oNo: oxymorphone-N-oxide (mixture)


Σ: sum of all impurities



1after extrusion, before storage




2after storage, amber glass bottles, plastic cap, 4 weeks, 40° C., 75% rel. humidity







The decomposition products were analyzed by HPLC-UV. The elution peak for oxymor-phone-N-oxide could not be sufficiently base-line separated from a peak of an unknown degradation product (called “UK 0.83”). Thus, both peaks were jointly integrated. It becomes evident from a comparison of examples A1 to A5 that the content of oxymor-phone-N-oxide before storage (oNo1) is not substantially changed when the content of antioxidant α-tocopherol is decreased from 1.5 wt-% to 1.0 wt.-%, 0.5 wt.-%, 0.2 wt-% and even 0 wt.-%. Upon storage (oNo2), however, the content of oxymorphone-N-oxide is proportional to the content of α-tocopherol. This is most surprising because oxymorphone-N-oxide is an oxidation product and one would expect that antioxidants usually rather suppress than support the formation of oxidation products.


Nonetheless, the complete omission of antioxidant (α-tocopherol) can have disadvantages. It could be shown by viscosity measurements (in the absence of acid (B)) that the high molecular polyethylene oxide is degraded upon extrusion and/or storage in the absence of antioxidant. However, it has now been surprisingly found that to a certain extent the acid (B) in turn can compensate such degradation so that in certain embodiments antioxidants can be omitted or the content thereof can be substantially decreased.


It has been surprisingly found that about 0.2 wt.-% α-tocopherol suffice in order to stabilize the polyethylene oxide; higher contents of α-tocopherol do not result in higher viscosities of the polyalkylene oxide and, thus, do not prevent PEO more pronounced from degradation. Thus, the content of antioxidant (α-tocopherol) is preferably balanced so that on the one side, the high molecular weight polyethylene oxide is sufficiently stabilized and that on the other side, the undesired formation of oxymorphone-N-oxide is kept low during storage.


Further, it becomes evident from a comparison of examples B1 to B4 and examples C1 to C4 that the partial replacement of the high molecular weight polyethylene oxide or the total replacement of the polyethylene glycol by an alternative plasticizer does not result in a substantial decrease of the content of undesired oxymorphone-N-oxide. This is surprising because one would expect that polyethylene oxide and polyethylene glycol are potential peroxide carriers and that a reduction thereof would result in a reduction of oxidative processes such as the oxidation of oxymorphone to oxymorphone-N-oxide.


Still further, it becomes evident from a comparison of examples D1 to D5 and E1 to E4 that the addition of physiologically acceptable acids, particularly citric acid, leads to a reduction of the formation of oxymorphone-N-oxide. This effect is more pronounced when the amount of acid is increased. At a concentration of 0.1 wt.-%, the effect is comparatively weak, but at a concentration of 0.2 wt.-% the effect is stronger and is further enhanced when the concentration of citric acid is increased. Not only the amount of oxymorphone-N-oxide is decreased, but also the total amount of decomposition products, particularly of those having high HPLC retention times.


EXAMPLE 2

Tablets that had been manufactured in analogy to ex. A1, B1, C1, D1 and E1 above were packaged in different packaging materials and stored at 40° C. and 75% rel. humidity. The decomposition products before and after storage under accelerated storage conditions are summarized in the table here below:


















closed HDPE,

closed amber





sealed with
open amber
glass + oxygen
closed amber
closed amber



aluminium foil
glass
scavenger
glass + desiccant
glass + argon



















before
4
8
4
8
4
8
4
8
4
8



storage
weeks
weeks
weeks
weeks
weeks
weeks
weeks
weeks
weeks
weeks



323.64
324.05
325.57
323.56
337.25
325.23
322.65
321.27
322.69
324.62
324.30



mg
mg
mg
mg
mg
mg
mg
mg
mg
mg
mg





















content oxymorphone
96.30%
92.90%
89.40%
93.70%
88.50%
96.70%
94.80%
94.60%
92.50%
94.60%
92.50%


purity oxymorphone
99.18%
97.70%
96.70%
98.03%
94.50%
99.10%
98.62%
98.59%
97.98%
98.36%
98.04%


content α-tocopherol
91.69%
91.51%
90.89%
93.51%
79.94%
94.52%
93.62%
90.56%
88.23%
93.51%
92.18%


oxymorphone-N-oxide
0.09%
0.64%
1.16%
0.19%
0.53%
0.03%
0.04%
0.15%
0.24%
0.17%
0.30%


UK 0.83
0.00%
0.00%
0.00%
0.36%
2.15%
0.06%
0.08%
0.32%
0.77%
0.00%
0.00%


Sum of oxymorphone-N-
0.09%
0.64%
1.16%
0.55%
2.63%
0.09%
0.12%
0.37%
1.01%
0.17%
0.30%


oxide and UK 0.83













main unknown
0.13%
0.38%
0.43%
0.45%
2.15%
0.16%
0.18%
0.32%
0.77%
0.46%
0.34%


Sum of impurities Σ
0.73%
2.22%
3.21%
1.88%
5.44%
0.82%
0.95%
1.33%
1.94%
1.55%
1.88%





HDPE bottles had a volume of 75 ml. The oxygen scavenger was Pharmakeep ® KD20 (Mitsubishi, Japan).






It has been surprisingly found that inclusion of an oxygen scavenger in the packaging results in a further stabilization of the dosage form so that the formation of decomposition products is limited to extremely low values.


EXAMPLE 3

Tablets were manufactured as described in example 1, packed into HDPE bottles of 75 ml volume together with an oxygen scavenger combined with a desiccant (Pharmakeep 20 KD), closed with a plastic cap with induction seal.


The individual constituents of the extruded mixtures, the total amount of decomposition products before and after storage under accelerated storage conditions are summarized in the table here below:















constituents (wt. %)
decomposition products (wt. %)



















ex.
(A)
PEO
PEG
HPMC
α-toc.
Citric acid
oNo1
oNo2
oNo3
Σ1
Σ2
Σ3





F1
1.5
73.8
10.0
14.0
0.2
0.5
nd
nd
nd
nd
nd
0.05


F2
1.5
77.8
10.0
10.0
0.2
0.5
nd
nd
nd
nd
0.05
0.10





(A): oxymorphone hydrochloride


PEO: polyethylene oxide Mw 7 mio g/mol


PEG: polyethylene glycol 6000


HPMC: hypromellose 100,000 Pa * s


α-toc.: α-tocopherol


oNo: oxymorphone-N-oxide (mixture)


Σ: sum of all impurities



1after extrusion, before storage




2after storage, HDPE bottles, plastic cap with induction seal, oxygen scavenger, 4 weeks, 40° C., 75% rel. humidity




3after storage, HDPE bottles, plastic cap with induction seal, oxygen scavenger, 8 weeks, 40° C., 75% rel. humidity







The results reveal that the purity of the product is very high after manufacturing and that the product exhibit stable during 8 weeks storage under accelerated conditions of 40° C./75% rel. humidity.


EXAMPLE 4

Tablets were manufactured as described in example 1 but cut into slices of 215 mg representing 5 mg or 40 mg of oxymorphone HCl, after forming the tablets were coated with about 6.5 mg each of a conventional Opadry II film-coat containing polyvinylalcohol as the film forming excipient, packed into HDPE bottles of 75 ml volume together with an oxygen scavenger combined with a desiccant (Pharmakeep 20 KD), closed with a plastic cap with induction seal.


The individual constituents of the extruded mixtures, the total amount of decomposition products before and after storage under accelerated storage conditions are summarized in the table here below:















constituents (wt. %)
decomposition products (wt. %)

















ex.
(A)
PEO
PEG
HPMC
α-toc.
Citric acid
oNo1
oNo2
Σ1
Σ2




















G1
2.33
70.0
16.63
10.0
0.2
0.84
nd
nd
nd
nd


G2
18.6
56.8
13.56
10.0
0.2
0.84
nd
nd
0.05
0.05





(A): oxymorphone hydrochloride


PEO: polyethylene oxide Mw 7 mio g/mol


PEG: polyethylene glycol 6000


HPMC: hypromellose 100,000 Pa * s


α-toc.: α-tocopherol


oNo: oxymorphone-N-oxide (mixture)


Σ: sum of all impurities



1after extrusion, before storage




2after storage, HDPE bottles, plastic cap with induction seal, oxygen scavenger, 1 month, 40° C., 75% rel. humidity







EXAMPLE 5

The most preferred dosage form according to example 3 is also suitable for the stabilization of oxycodone. This could be demonstrated for a formulation containing 80 mg of oxycodone HCl manufactured analogue to example 1 but, the extrudate was cut into slices of 400 mg:
















constituents (wt. %)

decomposition products (wt. %)

















ex.
(A)
PEO
PEG
HPMC
α-toc.
Citric acid
oNo1
oNo2
Σ1
Σ2





H1
20
54.3
15
10
0.2
0.5
0.06
0.07
0.22
0.13





(A): oxycodone


PEO: polyethylene oxide Mw 7 mio g/mol


PEG: polyethylene glycol 6000


HPMC: hypromellose 100,000 Pa * s


α-toc.: α-tocopherol


oNo: oxycodone-N-oxide (Impurity D + E)



1after extrusion, before storage




2after storage, amber glass bottles, plastic cap, oxygen scavenger with desiccant (Pharmakeep 20KD) 1 month, 40° C., 75% rel. humidity







EXAMPLE 6

In a single dose (40 mg oxymorphone HCl, tablets of example 4), randomized, three-way crossover study with 1 week between treatments subjects were fasted overnight and meals were served 4 and 10 hours after dosing. No water was given within ±1 hour of dosing. All tablets were taken with 240 mL of water (example T).


PK samples were taken for oxymorphone and 6-OH-oxymorphone predose and up through 48 hours after dosing.


Bioequivalence was compared to Opana ER® (reference R).


The results are summarized in the tables here below:

















Treatment
Mean
SD
CV





















Cmax [pg/mL]
T
2147
989
46%




R
2671
1163
44%



AUCT [pg * h/mL]
T
38695
13836
36%




R
38171
14652
38%



AUC [pg * h/mL]
T
42575
15836
37%




R
41296
15242
37%























Point
Lower Limit
Upper Limit



Estimate T/R
90% CI
90% CI




















Cmax
79.37
71.69
87.87



AUCT
101.98
95.17
109.29



AUC
102.24
95.48
109.48





CI = confidence interval






It becomes evident that the dosage forms according to the invention having an increased breaking strength are bioequivalent to conventional dosage forms (Opana ER®).


EXAMPLE 7

Tablets were prepared under identical conditions by hot-melt extrusion of two homogeneous constituent mixtures I1 and I2:















I1
I2



















Oxymorphone HCl [%]
11.1
11.1



PEO [%]
68.2
63.2



PEG [%]
10.0
15.0



HPMC Shin Etsu [%]
10.0
10.0



α-tocopherol [%]
0.2
0.2



Citric acid, anhydrous [%]
0.5
0.5



Tablet weight [mg]
360
360



PEO:PEG
6.82:1
4.21:1









under the following, identical extrusion conditions:

    • extruder type: Leistritz Extruder type Micro 27 GL 40 D equipped with medium shear
    • screws and a die of 8 mm diameter
    • throughput: 10 kg/h
    • revolution velocity: 120 rpm
    • manufacturing time: 30 min
    • temperature of hottest heating zone: 100° C.
    • die temperature: 130° C.


The extrudate was cut into slices of 360 mg containing about 40 mg oxymorphone hydrochloride.


100 slices were weighed individually and the standard deviation of weight was calculated. Slices of composition I1 (PEO:PEG=6.82:1) showed a standard deviation of 2.3%, whereas slices of composition I2 (PEO:PEG=4.21:1) showed a standard deviation of 1.6% only.


It becomes evident from these comparative tests that surprisingly, the processability of the extruded mass can be improved by adjusting the ratio of PEO to PEG.


EXAMPLE 8

In order to investigate if also multicarboxylic acids other than citric acid could hamper the formation of oxymorphone-N-oxide, tablets containing maleinic acid or fumaric acid were manufactured as described in example 1. For comparison, also tablets containing the inorganic salt NaH2PO4 were manufactured. The samples were stored in open dishes at 40° C. and 75% relative humidity for 4 weeks.


The individual constituents of the extruded mixtures as well as the total amount of decomposition products before and after storage under accelerated storage conditions are summarized in the table here below:
















constituents (wt. %)

decomposition products (wt. %)

















ex.
(A)
PEO
PEG
HPMC
α-toc.
further ingredient (wt. %)
oNo1
oNo2
Σ1
Σ2





J1
1.5
76.0
10.0
10.0
1.5
Maleinic acid 1.0%
nd
nd
0.20
0.22


J2
1.5
76.0
10.0
10.0
1.5
Fumaric acid 1.0%
nd
nd
0.17
0.30


J3
1.5
76.0
10.0
10.0
1.5
NaH2PO4 1.0%*
nd
0.18
0.06
0.75





(A): oxymorphone hydrochloride


PEO: polyethylene oxide Mw 7 mio g/mol


PEG: polyethylene glycol 6000


HPMC: hypromellose 100,000 Pa * s


α-toc.: α-tocopherol


*NaH2PO4: Used in form of 1.3% of the di-hydrate


oNo: oxymorphone-N-oxide (mixture)


Σ: sum of all impurities; maleinic acid, fumaric acid and related compounds subtracted from sum of impurities



1after extrusion, before storage




2after storage, open dish, 4 weeks, 40° C., 75% rel. humidity







In case of maleinic and fumaric acid these compounds and for maleinic acid another related compound were detected during the purity tests as impurities (up to about 40%). Their values have been subtracted from the sum of impurities.


It becomes evident from a comparison of examples J1 and J2 to A1 and B1 that the presence of maleinic and fumaric acid protected oxymorphone totally against oxidation to N-oxide and to a large extent against other degradation although the samples were stored in open dishes and not in closed bottles. These results are comparable to those obtained with citric acid (example 1, D4 and E2-E4). Samples containing NaH2PO4 (J3) exhibited protection against N-oxide formation and other degradation when compared to the formulations without any acidic compound (A1 and B1) but to a less extent than the multicarboxylic acids like citric, maleinic and fumaric acid.


EXAMPLE 9

In order to investigate if the presence of citric acid also protects oxidation sensitive opioids other than oxymorphone against N-oxidation, tablets containing oxycodone hydrochloride were manufactured as described in example 1.


For comparison, also tablets containing smaller amounts of α-tocopherol were manufactured. The samples were stored in open dishes at 40° C. and 75% relative humidity for 4 weeks.


The individual constituents of the extruded mixtures as well as the total amount of decomposition products before and after storage under accelerated storage conditions are summarized in the table here below:
















constituents (wt. %)

decomposition products (wt. %)

















ex.
(A)
PEO
PEG
HPMC
α-toc.
further ingredient (wt. %)
oNo1
oNo2
Σ1
Σ2





K1
1.5
77.0
10.0
10.0
1.5
/
0.05
0.58
0.31
1.63


K2
1.5
78.3
10.0
10.0
0.2
/
0.05
0.28
0.58
0.69


K3
1.5
76.0
10.0
10.0
1.5
Citric acid 1.0
nd
nd
0.19
0.22


K4
1.5
77.3
10.0
10.0
0.2
Citric acid 1.0
nd
nd
0.18
0.23





(A): oxycodone hydrochloride


PEO: polyethylene oxide Mw 7 mio g/mol


PEG: polyethylene glycol 6000


HPMC: hypromellose 100,000 Pa * s


α-toc.: α-tocopherol


oNo: oxycodone-N-oxide


Σ: sum of all impurities



1after extrusion, before storage




2after storage, open dish, 4 weeks, 40° C., 75% rel. humidity







These results show that citric acid protected oxycodone totally against oxidation to the N-oxide and to a large extent against other degradation although the samples were stored in open dishes rather than in closed bottles. Reducing the amount of α-tocopherol resulted in reduced degradation, when formulations were employed not containing citric acid. These results are comparable to those obtained with oxymorphone.


EXAMPLE 10

In accordance with Example 1, tablets containing tramadol HCL were manufactured from the following compositions:

















L1
L2
L3
L4



















Tramadol HCl [%]
13.3
13.3
13.3
13.3


PEO [%]
61.0
61.7
61.2
61.5


PEG [%]
15.0
15.0
15.0
15.0


HPMC [%]
10.0
10.0
10.0
10.0


a-tocopherol [%]
0.2


0.2


Citric acid, anhydrous [%]
0.5

0.5



Tablet weight [mg]
600
600
600
600


PEO:PEG
4.07:1
4.11:1
4.08:1
4.10:1









The dissolution profile of the tablets was investigated under the following conditions: Paddle apparatus equipped with sinker, 75 rpm, 37° C., 600 mL simulated intestinal fluid pH 6.8 (phosphate buffer). The release profile of tramadol was detected spectrometrically at 271 nm.


The results are displayed in FIG. 1.


The tablets according to example L2 show the fastest dissolution which is about 20% faster than that of the slow releasing tablets according to examples L1 and L4 after 480 minutes. The release from tablets according to L3 is faster than those two batches, but still about 6% slower than from tablets according to L2 after 480 minutes.


This is surprising as a big influence of the presence of α-tocopherol on the dissolution profile is observed. This particularly surprising given that the role of the α-tocopherol in the formulation is to act as an antioxidant for the prevention of polymer degradation. Interestingly the presence of citric acid compensates for a small part of this effect.


EXAMPLE 11

By swelling of a tablet according to examples L1 (Example 10) in an appropriate amount of water, a homogeneous gel was obtained. Accordingly, tablets according to examples L2 to L4 were swelled in the same amount of water, i.e. under identical conditions, to obtain the respective gels. The viscosity of each gel was measured next as an indirect measure for the polymer chain length of the ethylene oxide contained therein. The viscosity measurements were conducted by means of a rotational viscometer at a shear rate of 40 s−1.
















α-Tocopherol
Citric acid
Viscosity (mPas)




















L1
+
+
381



L2


67



L3

+
154



L4
+

337









Compared to the dissolution profiles of example 10, the same ranking was obtained: The formulation according to example L2 exhibited the lowest viscosity, while the formulations according to examples L1 and L4 exhibited the highest viscosity. The formulation according to example L3 exhibited a significantly lower viscosity than the two high viscosity formulations but is still superior to formulation L2.


The higher viscosity of the formulations L1 and L4 is an indication for a higher average polymer chain length of the polyethylene oxide contained therein. Apparently, the polyethylene oxide contained in formulations L1 and L4 has less been affected by oxidative degradation in the course of manufacture of the dosage form than formulations L2 and L3.


Summarizing the results of the dissolution profile (Example 10) measurements and the viscosity determinations, it can be concluded that the increase in dissolution velocity is based on more pronounced polymer degradation during the manufacturing for the batches without α-tocopherol (examples L2 and L3).


These results show that acid (B), e.g. citric acid, also has a protective effect on the polymer during manufacturing. Formulation L3 which does not contain any a-tocopherol but citric acid shows a higher viscosity and lower acceleration of dissolution in comparison to the formulation L2 which contains neither α-tocopherol nor citric acid.

Claims
  • 1. A tamper-resistant pharmaceutical dosage form in form of a tablet having a breaking strength of at least 300 N thermoformed by hot-melt extrusion of a mixture comprising the following components: a pharmacologically active ingredient (A), wherein the pharmacologically active ingredient (A) is selected from the group consisting of oxycodone and physiologically acceptable salts thereof;citric acid in an amount of from 0.5 wt.-% to 5.0 wt.-%, based on the total weight of the pharmaceutical dosage form;α-tocopherol in an amount of from 0.001 wt.-% to 5.0 wt.-%, based on the total weight of the pharmaceutical dosage form; wherein the weight ratio of citric acid to α-tocopherol being in a range of from 4.2:1 to 1:3; anda polyalkylene oxide (C) having a weight average molecular weight Mw of at least 500,000 to 15,000,000 g/mol, the polyalkylene oxide (C) being present in the pharmaceutical dosage form in an amount of 56.8-77.8 wt.-% based on the total weight of the pharmaceutical dosage form and wherein the polyalkylene oxide (C) is polyethylene oxide.
  • 2. The pharmaceutical dosage form according to claim 1, wherein after storage for 4 weeks at 40° C. and 75% rel. humidity, the content of pharmacologically active ingredient (A) amounts to at least 98.0% of its original content before storage.
  • 3. The pharmaceutical dosage form according to claim 1, wherein after storage for 4 weeks at 40° C. and 75% rel. humidity, the content of the polyethylene oxide (C) amounts to at least 98.0% of its original content before storage.
  • 4. The pharmaceutical dosage form according to claim 1, wherein the pharmacologically active ingredient (A) is embedded in a matrix comprising the polyalkylene oxide (C), said matrix controlling the release of the pharmacologically active ingredient (A) from the pharmaceutical dosage form.
  • 5. The pharmaceutical dosage form according to claim 1, wherein the relative weight ratio of the polyalkylene oxide (C) to the pharmacologically active ingredient (A) is at least 1:1.
  • 6. The pharmaceutical dosage form according to claim 1, which is adapted for administration once daily or twice daily.
  • 7. The pharmaceutical dosage form according to claim 1, which has a breaking strength of at least 500 N.
  • 8. A packaging containing a pharmaceutical dosage form according to claim 1 and an oxygen scavenger.
  • 9. A process for the production of the pharmaceutical dosage form according to claim 1 comprising the steps: a) mixing all components to form a resultant mixture;b) heating the resultant mixture in an extruder at least up to the softening point of the polyalkylene oxide (C) and extruding extrudate through the outlet orifice of the extruder by application of force,c) singulating the still plastic extrudate and forming into the pharmaceutical dosage form ord) cooling and optionally reheating the singulated extrudate and forming it into the pharmaceutical dosage form.
  • 10. A method of treating pain in a patient in need of such treatment, said method comprising administering to said patient a pharmaceutical dosage form according to claim 1.
Priority Claims (1)
Number Date Country Kind
09009480 Jul 2009 EP regional
Parent Case Info

This application is a division of U.S. patent application Ser. No. 14/841,829, filed Sep. 1, 2015, pending, which is a continuation of U.S. patent application Ser. No. 14/192,916, filed Feb. 28, 2014, abandoned, which is a continuation of U.S. patent application Ser. No. 13/343,846, filed Jan. 5, 2012, abandoned, which is, in turn, a continuation of International Patent Application No. PCT/EP2010/004461, filed Jul. 21, 2010, which claims priority of European Patent Application No. 09009480.6, filed Jul. 22, 2009, the contents of both of which applications are incorporated herein by reference.

US Referenced Citations (490)
Number Name Date Kind
2524855 Schnider et al. Oct 1950 A
2806033 Lewenstein et al. Sep 1957 A
2987445 Levesque Jun 1961 A
3332950 Blumberg et al. Jul 1967 A
3370035 Ogura et al. Feb 1968 A
3652589 Flick et al. Mar 1972 A
3658259 Ledergerber et al. Apr 1972 A
3806603 Gaunt et al. Apr 1974 A
3865108 Hartop Feb 1975 A
3941865 Miller et al. Mar 1976 A
3966747 Monkovic et al. Jun 1976 A
3980766 Shaw et al. Sep 1976 A
4002173 Manning et al. Jan 1977 A
4014965 Stube et al. Mar 1977 A
4070494 Hoffmeister et al. Jan 1978 A
4070497 Wismer et al. Jan 1978 A
4175119 Porter Nov 1979 A
4200704 Stanley et al. Apr 1980 A
4207893 Michaels Jun 1980 A
4262017 Kuipers et al. Apr 1981 A
4343789 Kawata et al. Aug 1982 A
4353887 Hess et al. Oct 1982 A
4404183 Kawata et al. Sep 1983 A
4427681 Munshi et al. Jan 1984 A
4427778 Zabriskie Jan 1984 A
4457933 Gordon et al. Jul 1984 A
4462941 Lee et al. Jul 1984 A
4473640 Combie et al. Sep 1984 A
4483847 Augart Nov 1984 A
4485211 Okamoto Nov 1984 A
4529583 Porter Jul 1985 A
4599342 La Hann Jul 1986 A
4603143 Schmidt Jul 1986 A
4612008 Wong et al. Sep 1986 A
4629621 Snipes Dec 1986 A
4667013 Reichle May 1987 A
4690822 Uemura Sep 1987 A
4711894 Wenzel Dec 1987 A
4713243 Schiraldi et al. Dec 1987 A
4744976 Snipes et al. May 1988 A
4764378 Keitn et al. Aug 1988 A
4765989 Wong et al. Aug 1988 A
4774074 Snipes Sep 1988 A
4774092 Hamilton Sep 1988 A
4783337 Wong et al. Nov 1988 A
4806337 Snipes et al. Feb 1989 A
RE33093 Schiraldi et al. Oct 1989 E
4880585 Klimesch et al. Nov 1989 A
4892778 Theeuwes et al. Jan 1990 A
4892889 Kirk Jan 1990 A
4940556 MacFarlane et al. Jul 1990 A
4954346 Sparta et al. Sep 1990 A
4957668 Plackard et al. Sep 1990 A
4957681 Klimesch et al. Sep 1990 A
4960814 Wu et al. Oct 1990 A
4992278 Khanna Feb 1991 A
4992279 Palmer et al. Feb 1991 A
5004601 Snipes Apr 1991 A
5051261 McGinity Sep 1991 A
5073379 Klimesch et al. Dec 1991 A
5082668 Wong et al. Jan 1992 A
5126151 Bodor et al. Jun 1992 A
5139790 Snipes Aug 1992 A
5145944 Steinmann Sep 1992 A
5149538 Granger et al. Sep 1992 A
5169645 Shukla et al. Dec 1992 A
5190760 Baker Mar 1993 A
5198226 MacFarlane et al. Mar 1993 A
5200194 Edgren et al. Apr 1993 A
5200197 Wright et al. Apr 1993 A
5211892 Gueret May 1993 A
5225417 Dappen Jul 1993 A
5227157 McGinity et al. Jul 1993 A
5229164 Pins et al. Jul 1993 A
5273758 Royce Dec 1993 A
5326852 Fujikake Jul 1994 A
5350741 Takada Sep 1994 A
5378462 Boedecker et al. Jan 1995 A
5387420 Mitchell Feb 1995 A
5427798 Ludwig et al. Jun 1995 A
RE34990 Khanna et al. Jul 1995 E
5458887 Chen et al. Oct 1995 A
5460826 Merrill et al. Oct 1995 A
5472943 Crain et al. Dec 1995 A
5508042 Oshlack et al. Apr 1996 A
5552159 Mueller et al. Sep 1996 A
5556640 Ito et al. Sep 1996 A
5562920 Demmer et al. Oct 1996 A
5591452 Miller et al. Jan 1997 A
5593694 Hayashida et al. Jan 1997 A
5601842 Bartholomaeus Feb 1997 A
5620697 Tormala et al. Apr 1997 A
5679685 Cincotta et al. Oct 1997 A
5681517 Metzger Oct 1997 A
5707636 Rodriguez et al. Jan 1998 A
5741519 Rosenberg et al. Apr 1998 A
5792474 Rauchfuss Aug 1998 A
5801201 Gradums et al. Sep 1998 A
5811126 Krishnamurthy Sep 1998 A
5849240 Miller et al. Dec 1998 A
5866164 Kuczynski et al. Feb 1999 A
5900425 Kanikanti et al. May 1999 A
5908850 Zeitlin et al. Jun 1999 A
5914132 Kelm et al. Jun 1999 A
5916584 O'Donoghue et al. Jun 1999 A
5928739 Pophusen et al. Jul 1999 A
5939099 Grabowski et al. Aug 1999 A
5945125 Kim Aug 1999 A
5948787 Merrill et al. Sep 1999 A
5962488 Lang Oct 1999 A
5965161 Oshlack et al. Oct 1999 A
5968925 Knidlberger Oct 1999 A
6001391 Zeidler et al. Dec 1999 A
6009390 Gupta et al. Dec 1999 A
6009690 Rosenberg et al. Jan 2000 A
6051253 Zettler et al. Apr 2000 A
6071970 Mueller et al. Jun 2000 A
6077538 Merrill et al. Jun 2000 A
6090411 Pillay et al. Jul 2000 A
6093420 Baichwal Jul 2000 A
6096339 Ayer et al. Aug 2000 A
6117453 Seth et al. Sep 2000 A
6120802 Breitenbach et al. Sep 2000 A
6133241 Bok et al. Oct 2000 A
6183781 Burke Feb 2001 B1
6235825 Yoshida et al. Feb 2001 B1
6228863 Palermo et al. May 2001 B1
6238697 Kumar et al. May 2001 B1
6245357 Edgren et al. Jun 2001 B1
6248737 Buschmann et al. Jun 2001 B1
6251430 Zhang et al. Jun 2001 B1
6254887 Miller et al. Jul 2001 B1
6261599 Oshlack Jul 2001 B1
6290990 Grabowski et al. Sep 2001 B1
6306438 Oshlack et al. Oct 2001 B1
6309668 Bastin et al. Oct 2001 B1
6318650 Breitenbach et al. Nov 2001 B1
6322811 Verma et al. Nov 2001 B1
6322819 Burnside et al. Nov 2001 B1
6326027 Miller et al. Dec 2001 B1
6335035 Drizen et al. Jan 2002 B1
6337319 Wang Jan 2002 B1
6340475 Shell et al. Jan 2002 B2
6344215 Bettman et al. Feb 2002 B1
6344535 Timmermann et al. Feb 2002 B1
6348469 Seth Feb 2002 B1
6355656 Zeitlin et al. Mar 2002 B1
6375957 Kaiko et al. Apr 2002 B1
6375963 Repka et al. Apr 2002 B1
6387995 Sojka May 2002 B1
6384020 Flanner et al. Jun 2002 B1
6399100 Clancy et al. Jun 2002 B1
6419954 Chu et al. Jul 2002 B1
6436441 Sako et al. Aug 2002 B1
6455052 Marcussen et al. Sep 2002 B1
6461644 Jackson et al. Oct 2002 B1
6488939 Zeidler et al. Dec 2002 B1
6488962 Berner et al. Dec 2002 B1
6488963 McGinity et al. Dec 2002 B1
6534089 Ayer et al. Mar 2003 B1
6547977 Yan et al. Apr 2003 B1
6547997 Breithenbach et al. Apr 2003 B1
6562375 Sako et al. May 2003 B1
6569506 Jerdee et al. May 2003 B1
6572889 Guo Jun 2003 B1
6592901 Durig et al. Jul 2003 B2
6623754 Guo et al. Sep 2003 B2
6635280 Shell et al. Oct 2003 B2
6696088 Oshlack et al. Feb 2004 B2
6699503 Sako et al. Mar 2004 B1
6723340 Gusler et al. Apr 2004 B2
6723343 Kugelmann Apr 2004 B2
6733783 Oshlack et al. May 2004 B2
6753009 Luber et al. Jun 2004 B2
6821588 Hammer et al. Nov 2004 B1
6946146 Mulye Sep 2005 B2
6979722 Hamamoto et al. Dec 2005 B2
7074430 Miller et al. Jul 2006 B2
7129248 Chapman et al. Oct 2006 B2
7141250 Oshlack et al. Nov 2006 B2
7157103 Sackler Jan 2007 B2
7176251 Bastioli et al. Feb 2007 B1
RE39593 Buschmann et al. Apr 2007 E
7201920 Kumar et al. Apr 2007 B2
7214385 Gruber May 2007 B2
7230005 Shafer et al. Jun 2007 B2
7300668 Pryce et al. Nov 2007 B2
7332182 Sackler Feb 2008 B2
7388068 Falk et al. Jun 2008 B2
7399488 Hirsh et al. Jul 2008 B2
7510726 Kumar et al. Mar 2009 B2
7674799 Chapman et al. Mar 2010 B2
7674800 Chapman et al. Mar 2010 B2
7683072 Chapman et al. Mar 2010 B2
7776314 Bartholomaus et al. Aug 2010 B2
7842307 Oshlack et al. Nov 2010 B2
7851482 Dung et al. Dec 2010 B2
7932258 Petereit et al. Apr 2011 B2
7939543 Kupper May 2011 B2
7968119 Farrell Jun 2011 B2
7994364 Fischer et al. Aug 2011 B2
8075872 Arkenau-Maric Dec 2011 B2
8101630 Kumar et al. Jan 2012 B2
8114383 Bartholomaeus et al. Feb 2012 B2
8114384 Arkenau et al. Feb 2012 B2
8114838 Marchionni Feb 2012 B2
8192722 Arkenau-Maric et al. Jun 2012 B2
8202542 Mehta et al. Jun 2012 B1
8309060 Bartholomeus et al. Nov 2012 B2
8309122 Kao et al. Nov 2012 B2
8323889 Arkenau-Maric et al. Dec 2012 B2
8329216 Kao et al. Dec 2012 B2
8337888 Wright et al. Dec 2012 B2
8383152 Jans et al. Feb 2013 B2
8420056 Arkenau-Maric et al. Apr 2013 B2
8445023 Guimberteau et al. May 2013 B2
8722086 Arkenau-Maric et al. May 2014 B2
8858963 Devarakonda et al. Oct 2014 B1
8901113 Leech et al. Dec 2014 B2
9044758 Niwa et al. Jun 2015 B2
9192578 McGinity et al. Nov 2015 B2
9463165 Shimatani et al. Oct 2016 B2
9629807 Arkenau-Maric et al. Apr 2017 B2
9675610 Bartholomaeus et al. Jun 2017 B2
9737490 Barnscheid et al. Aug 2017 B2
9750701 Jans et al. Sep 2017 B2
9855263 Wening et al. Jan 2018 B2
9884022 Deshmukh et al. Feb 2018 B2
9925146 Barnscheid et al. Mar 2018 B2
20010038852 Kolter et al. Nov 2001 A1
20020012701 Kolter et al. Jan 2002 A1
20020015730 Hoffmann et al. Feb 2002 A1
20020051820 Shell et al. May 2002 A1
20020114838 Ayer et al. Aug 2002 A1
20020132359 Waterman Sep 2002 A1
20020132395 Iyer Sep 2002 A1
20020176888 Bartholomaeus et al. Nov 2002 A1
20020187192 Joshi et al. Dec 2002 A1
20020192277 Oshlack et al. Dec 2002 A1
20030008409 Spearman et al. Jan 2003 A1
20030015814 Krull et al. Jan 2003 A1
20030017532 Biswas et al. Jan 2003 A1
20030021546 Sato Jan 2003 A1
20030044458 Wright et al. Mar 2003 A1
20030044464 Ziegler et al. Mar 2003 A1
20030059397 Hughes Mar 2003 A1
20030064099 Oshlack et al. Apr 2003 A1
20030068276 Hughes et al. Apr 2003 A1
20030068370 Sackler et al. Apr 2003 A1
20030068371 Oshlack et al. Apr 2003 A1
20030068375 Wright et al. Apr 2003 A1
20030068392 Sackler Apr 2003 A1
20030069263 Breder et al. Apr 2003 A1
20030077297 Chen et al. Apr 2003 A1
20030077327 Durig et al. Apr 2003 A1
20030091630 Louie-Helm et al. May 2003 A1
20030092724 Huaihung et al. May 2003 A1
20030104052 Berner et al. Jun 2003 A1
20030104053 Gusler et al. Jun 2003 A1
20030118641 Maloney et al. Jun 2003 A1
20030124185 Oshlack et al. Jul 2003 A1
20030125347 Anderson et al. Jul 2003 A1
20030129230 Baichwal et al. Jul 2003 A1
20030133985 Louie-Helm et al. Jul 2003 A1
20030143269 Oshlack et al. Jul 2003 A1
20030152622 Louie-Helm et al. Aug 2003 A1
20030158242 Kugelmann Aug 2003 A1
20030158265 Radhakrishnan et al. Aug 2003 A1
20030175326 Thombre Sep 2003 A1
20030198677 Pryce Lewis et al. Oct 2003 A1
20030215508 Davis et al. Nov 2003 A1
20030224051 Fink et al. Dec 2003 A1
20030232895 Omidian et al. Dec 2003 A1
20040010000 Ayer et al. Jan 2004 A1
20040011806 Luciano et al. Jan 2004 A1
20040049079 Murray et al. Mar 2004 A1
20040052731 Hirsh et al. Mar 2004 A1
20040052844 Hsiao et al. Mar 2004 A1
20040081694 Oshlack Apr 2004 A1
20040091528 Rogers et al. May 2004 A1
20040126428 Hughes et al. Jul 2004 A1
20040131671 Zhang et al. Jul 2004 A1
20040156899 Louie-Helm et al. Aug 2004 A1
20040170567 Sackler Sep 2004 A1
20040170680 Oshlack et al. Sep 2004 A1
20040185105 Berner et al. Sep 2004 A1
20040213845 Sugihara Oct 2004 A1
20040213848 Li et al. Oct 2004 A1
20040253310 Fischer et al. Dec 2004 A1
20050015730 Gunturi et al. Jan 2005 A1
20050031546 Bartholomaeus et al. Feb 2005 A1
20050058706 Bartholomaeus et al. Mar 2005 A1
20050063214 Takashima Mar 2005 A1
20050079138 Chickering, III et al. Apr 2005 A1
20050089475 Gruber Apr 2005 A1
20050089569 Bar-Shalom Apr 2005 A1
20050095291 Oshlack et al. May 2005 A1
20050106249 Hwang et al. May 2005 A1
20050112067 Kumar et al. May 2005 A1
20050127555 Gusik et al. Jun 2005 A1
20050152843 Bartholomaeus et al. Jul 2005 A1
20050181046 Oshlack et al. Aug 2005 A1
20050186139 Bartholomaeus et al. Aug 2005 A1
20050191244 Bartholomaeus et al. Sep 2005 A1
20050191352 Hayes Sep 2005 A1
20050192333 Hinze et al. Sep 2005 A1
20050214223 Bartholomaeus et al. Sep 2005 A1
20050220877 Patel Oct 2005 A1
20050222188 Chapman et al. Oct 2005 A1
20050236741 Arkenau et al. Oct 2005 A1
20050245556 Brogmann et al. Nov 2005 A1
20050266084 Li et al. Dec 2005 A1
20050271594 Groenewoud Dec 2005 A1
20060002859 Arkenau et al. Jan 2006 A1
20060002860 Bartholomaus et al. Jan 2006 A1
20060004034 Hinze et al. Jan 2006 A1
20060009478 Friedmann et al. Jan 2006 A1
20060017916 Clarke et al. Jan 2006 A1
20060039864 Bartholomaus et al. Feb 2006 A1
20060073102 Huaihung et al. Apr 2006 A1
20060099250 Tian et al. May 2006 A1
20060104909 Vaghefi May 2006 A1
20060182801 Breder et al. Aug 2006 A1
20060188447 Arkenau-Maric et al. Aug 2006 A1
20060193782 Bartholomaus et al. Aug 2006 A1
20060193914 Ashworth et al. Aug 2006 A1
20060194759 Eidelson Aug 2006 A1
20060194826 Oshlack et al. Aug 2006 A1
20060204575 Feng et al. Sep 2006 A1
20060240105 Devane et al. Oct 2006 A1
20060240110 Kiick et al. Oct 2006 A1
20060269603 Brown Miller et al. Nov 2006 A1
20070003616 Arkenau-Maric et al. Jan 2007 A1
20070003617 Fischer et al. Jan 2007 A1
20070020188 Sackler Jan 2007 A1
20070020335 Chen et al. Jan 2007 A1
20070042044 Fischer et al. Feb 2007 A1
20070048228 Arkenau-Maric Mar 2007 A1
20070048373 Chastain et al. Mar 2007 A1
20070065365 Kugelmann et al. Mar 2007 A1
20070092573 Joshi et al. Apr 2007 A1
20070183979 Arkenau-Maric et al. Aug 2007 A1
20070183980 Arkenau-Maric et al. Aug 2007 A1
20070184117 Gregory et al. Aug 2007 A1
20070190142 Breitenbach et al. Aug 2007 A1
20070196396 Pilgaonkar et al. Aug 2007 A1
20070196481 Amidon et al. Aug 2007 A1
20070224129 Guimberteau et al. Sep 2007 A1
20070231268 Emigh et al. Oct 2007 A1
20070259045 Mannion et al. Nov 2007 A1
20070264326 Guimberteau et al. Nov 2007 A1
20070264327 Kumar et al. Nov 2007 A1
20070269505 Flath et al. Nov 2007 A1
20070292508 Szamosi et al. Dec 2007 A1
20080014228 Darmuzey et al. Jan 2008 A1
20080020032 Crowley et al. Jan 2008 A1
20080063725 Guimberteau et al. Mar 2008 A1
20080069871 Vaughn et al. Mar 2008 A1
20080075669 Soscia et al. Mar 2008 A1
20080075768 Vaughn et al. Mar 2008 A1
20080081290 Wada et al. Mar 2008 A1
20080085304 Baichwal et al. Apr 2008 A1
20080131503 Holm et al. Jun 2008 A1
20080145429 Leyendecker et al. Jun 2008 A1
20080152595 Emigh et al. Jun 2008 A1
20080181932 Bortz et al. Jul 2008 A1
20080207757 Mickle Aug 2008 A1
20080220079 Chen Sep 2008 A1
20080233178 Reidenberg et al. Sep 2008 A1
20080234352 Fischer et al. Sep 2008 A1
20080247959 Bartholomaus et al. Oct 2008 A1
20080248113 Bartholomaus et al. Oct 2008 A1
20080260836 Boyd Oct 2008 A1
20080280975 Badul Nov 2008 A1
20080311049 Arkenau-Maric et al. Dec 2008 A1
20080311187 Ashworth et al. Dec 2008 A1
20080311197 Arkenau-Maric et al. Dec 2008 A1
20080311205 Habib et al. Dec 2008 A1
20080312264 Arkenau-Maric et al. Dec 2008 A1
20080317695 Everaert et al. Dec 2008 A1
20080317854 Arkenau et al. Dec 2008 A1
20090004267 Arkenau-Maric et al. Jan 2009 A1
20090005408 Arkenau-Maric et al. Jan 2009 A1
20090011016 Cailly-Dufestel et al. Jan 2009 A1
20090017121 Berner et al. Jan 2009 A1
20090022798 Rosenberg et al. Jan 2009 A1
20090081287 Wright et al. Mar 2009 A1
20090081290 McKenna et al. Mar 2009 A1
20090087486 Krumme Apr 2009 A1
20090117191 Brown Miller et al. May 2009 A1
20090143478 Richardson et al. Jun 2009 A1
20090202634 Jans et al. Aug 2009 A1
20090215808 Yum et al. Aug 2009 A1
20090232887 Odidi et al. Sep 2009 A1
20090253730 Kumar et al. Oct 2009 A1
20090258066 Venkatesh et al. Oct 2009 A1
20090317355 Roth et al. Dec 2009 A1
20090318395 Schramm et al. Dec 2009 A1
20100015223 Cailly-Dufestel et al. Jan 2010 A1
20100035886 Cincotta et al. Feb 2010 A1
20100047345 Crowley et al. Feb 2010 A1
20100092553 Guimberteau et al. Apr 2010 A1
20100098758 Bartholomaus et al. Apr 2010 A1
20100099696 Soscia et al. Apr 2010 A1
20100104638 Dai et al. Apr 2010 A1
20100151028 Ashworth et al. Jun 2010 A1
20100168148 Wright et al. Jul 2010 A1
20100172989 Roth et al. Jul 2010 A1
20100203129 Andersen et al. Aug 2010 A1
20100221322 Bartholomaus et al. Sep 2010 A1
20100239667 Hemmingsen et al. Sep 2010 A1
20100249045 Babul Sep 2010 A1
20100260833 Bartholomaus et al. Oct 2010 A1
20100280047 Kolter et al. Nov 2010 A1
20100291205 Downie et al. Nov 2010 A1
20100297229 Sesha Nov 2010 A1
20100316712 Nangia et al. Dec 2010 A1
20110020451 Bartholomaus et al. Jan 2011 A1
20110020454 Lamarca Casado Jan 2011 A1
20110038930 Barnscheid et al. Feb 2011 A1
20110077238 Leech et al. Mar 2011 A1
20110082214 Faure et al. Apr 2011 A1
20110092515 Qiu et al. Apr 2011 A1
20110097404 Oshlack et al. Apr 2011 A1
20110129535 Mantelle Jun 2011 A1
20110159100 Andersen et al. Jun 2011 A1
20110187017 Haupts Aug 2011 A1
20110223244 Liversidge et al. Sep 2011 A1
20110245783 Stinchcomb et al. Oct 2011 A1
20110262496 Desai Oct 2011 A1
20120034171 Arkenau-Maric et al. Feb 2012 A1
20120059065 Barnscheid et al. Mar 2012 A1
20120065220 Barnscheid et al. Mar 2012 A1
20120077879 Vasanthavada et al. Mar 2012 A1
20120107250 Bartholomaus et al. May 2012 A1
20120108622 Wright et al. May 2012 A1
20120135071 Bartholomaus et al. May 2012 A1
20120136021 Barnscheid et al. May 2012 A1
20120141583 Mannion et al. Jun 2012 A1
20120202838 Ghosh et al. Aug 2012 A1
20120225901 Leyendecker et al. Sep 2012 A1
20120231083 Carley et al. Sep 2012 A1
20120251637 Bartholomaus et al. Oct 2012 A1
20120277319 Steigerwald et al. Nov 2012 A1
20120321716 Vachon et al. Dec 2012 A1
20130017262 Mullen et al. Jan 2013 A1
20130028970 Schwier et al. Jan 2013 A1
20130028972 Schwier et al. Jan 2013 A1
20130059010 Henry et al. Mar 2013 A1
20130090349 Geißler et al. Apr 2013 A1
20130129825 Billoet May 2013 A1
20130129826 Geißler et al. May 2013 A1
20130171075 Arkenau-Maric et al. Jul 2013 A1
20130209557 Barnscheid Aug 2013 A1
20130225625 Barnscheid Aug 2013 A1
20130251643 Bartholomäus et al. Sep 2013 A1
20130289062 Kumar et al. Oct 2013 A1
20130303623 Barnscheid Nov 2013 A1
20130330409 Mohammad Dec 2013 A1
20140010874 Sackler Jan 2014 A1
20140034885 Leech Feb 2014 A1
20140079780 Arkenau Maric et al. Mar 2014 A1
20140080858 Bartholomäus et al. Mar 2014 A1
20140080915 Bartholomäus et al. Mar 2014 A1
20140094481 Fleischer et al. Apr 2014 A1
20140112984 Arkenau-Maric et al. Apr 2014 A1
20140112989 Bartholomäus et al. Apr 2014 A1
20140170079 Arkenau Maric et al. Jun 2014 A1
20140186440 Han et al. Jul 2014 A1
20140275143 Devarakonda et al. Sep 2014 A1
20140356426 Barnscheid et al. Dec 2014 A1
20140356428 Barnscheid et al. Dec 2014 A1
20140378498 Devarakonda et al. Dec 2014 A1
20150017250 Wening et al. Jan 2015 A1
20150030677 Adjei et al. Jan 2015 A1
20150064250 Ghebre-Sellassie et al. Mar 2015 A1
20150079150 Fischer et al. Mar 2015 A1
20150118300 Haswani et al. Apr 2015 A1
20150118302 Haswani et al. Apr 2015 A1
20150118303 Haswani et al. Apr 2015 A1
20150196348 Haksar et al. Jul 2015 A1
20150374630 Arkenau Maric et al. Dec 2015 A1
20160089439 Rajagopalan Mar 2016 A1
20160175256 Bartholomaeus et al. Jun 2016 A1
20160184297 Arkenau-Maric et al. Jun 2016 A1
20160256456 Caruso et al. Sep 2016 A1
20160263037 Arkenau-Maric et al. Sep 2016 A1
20160361308 Bartholomaeus et al. Dec 2016 A1
20160367549 Bartholomaeus et al. Dec 2016 A1
20170027886 Bartholomaeus et al. Feb 2017 A1
Foreign Referenced Citations (539)
Number Date Country
046994 Dec 2004 AR
045353 Oct 2005 AR
049562 Aug 2006 AR
049839 Sep 2006 AR
053304 May 2007 AR
054222 Jun 2007 AR
054328 Jun 2007 AR
769807 Mar 2001 AU
2003237944 Dec 2003 AU
2003274071 May 2004 AU
2003278133 May 2004 AU
2003279317 May 2004 AU
2004264666 Feb 2005 AU
2004264667 Feb 2005 AU
2004308653 Apr 2005 AU
2005259476 Jan 2006 AU
2005259478 Jan 2006 AU
2006210145 Aug 2006 AU
2006210145 Aug 2006 AU
2009207796 Jul 2009 AU
2009243691 Nov 2009 AU
2009299810 Apr 2010 AU
2006311116 Jan 2013 AU
P10413318 Oct 2006 BR
P10413361 Oct 2006 BR
P10513300 May 2008 BR
P10606145 Feb 2009 BR
0722109 Nov 1965 CA
2082573 May 1993 CA
2577233 Oct 1997 CA
2650637 Oct 1997 CA
2229621 Mar 1998 CA
2317747 Jul 1999 CA
2343234 Mar 2000 CA
2352874 Jun 2000 CA
2414349 Jan 2002 CA
2456322 Feb 2003 CA
2502965 May 2004 CA
2503155 May 2004 CA
2534925 Feb 2005 CA
2534932 Feb 2005 CA
2489855 Apr 2005 CA
2551231 Jul 2005 CA
2572352 Jan 2006 CA
2572491 Jan 2006 CA
2595954 Jul 2006 CA
2229650 Aug 2006 CA
2594713 Aug 2006 CA
2595979 Aug 2006 CA
2625055 Apr 2007 CA
2713128 Jul 2009 CA
2723438 Nov 2009 CA
2595954 Jan 2011 CA
689109 Oct 1998 CH
20162004 May 2005 CL
20172004 May 2005 CL
200403308 Sep 2005 CL
200500952 Nov 2005 CL
200501624 Dec 2005 CL
200501625 Jun 2006 CL
424-2013 Mar 2012 CL
437-2013 Mar 2012 CL
87102755 Oct 1987 CN
1135175 Nov 1996 CN
1473562 Feb 2004 CN
1980643 Apr 2005 CN
101010071 Jun 2005 CN
1671475 Sep 2005 CN
101022787 Jan 2006 CN
1863513 Nov 2006 CN
1863514 Nov 2006 CN
1917862 Feb 2007 CN
1942174 Apr 2007 CN
101011395 Aug 2007 CN
101027044 Aug 2007 CN
101057849 Oct 2007 CN
101484135 Nov 2007 CN
101091721 Dec 2007 CN
101111232 Jan 2008 CN
101175482 Feb 2008 CN
101370485 Feb 2009 CN
101394839 Mar 2009 CN
101578096 Nov 2009 CN
101652128 Feb 2010 CN
102413835 Apr 2012 CN
102821757 Dec 2012 CN
2530563 Jan 1977 DE
4229085 Mar 1994 DE
4309528 Sep 1994 DE
4446470 Jun 1996 DE
69400215 Oct 1996 DE
19522899 Dec 1996 DE
2808505 Jan 1997 DE
19753534 Jun 1999 DE
19800689 Jul 1999 DE
19800698 Jul 1999 DE
19822979 Dec 1999 DE
69229881 Dec 1999 DE
19855440 Jun 2000 DE
19856147 Jun 2000 DE
19940740 Mar 2001 DE
19960494 Jun 2001 DE
10036400 Jun 2002 DE
69429710 Aug 2002 DE
10250083 Dec 2003 DE
10250084 May 2004 DE
10250087 May 2004 DE
10250088 May 2004 DE
10336400 Mar 2005 DE
10361596 Sep 2005 DE
102004019916 Nov 2005 DE
102004020220 Nov 2005 DE
102004032049 Jan 2006 DE
102004032051 Jan 2006 DE
102004032103 Jan 2006 DE
102005005446 Aug 2006 DE
102005005449 Aug 2006 DE
102007011485 Sep 2008 DE
1658055 Jul 2007 DK
1658054 Oct 2007 DK
1515702 Jan 2009 DK
SP066345 Aug 2006 EC
0008131 Feb 1980 EP
0043254 Jan 1982 EP
0008131 Dec 1982 EP
0177893 Apr 1986 EP
0216453 Apr 1987 EP
0226061 Jun 1987 EP
0228417 Jul 1987 EP
0229652 Jul 1987 EP
0232877 Aug 1987 EP
0239973 Oct 1987 EP
0240906 Oct 1987 EP
0261616 Mar 1988 EP
0261616 Mar 1988 EP
0270954 Jun 1988 EP
0277289 Aug 1988 EP
0293066 Nov 1988 EP
0328775 Aug 1989 EP
0358105 Mar 1990 EP
0228417 Sep 1990 EP
0229652 Oct 1991 EP
0477135 Mar 1992 EP
0277289 Apr 1992 EP
0293066 Apr 1993 EP
0270954 May 1993 EP
0544144 Jun 1993 EP
058326 Feb 1994 EP
0598606 May 1994 EP
0636370 Feb 1995 EP
0641195 Mar 1995 EP
0647448 Apr 1995 EP
0654263 May 1995 EP
0661045 Jul 1995 EP
0675710 Oct 1995 EP
0682945 Nov 1995 EP
0693475 Jan 1996 EP
0820693 Jan 1996 EP
0696598 Feb 1996 EP
0216453 Mar 1996 EP
0583726 Nov 1996 EP
0756480 Feb 1997 EP
0760654 Mar 1997 EP
0761211 Mar 1997 EP
078369 Jun 1997 EP
0785775 Jul 1997 EP
0809488 Dec 1997 EP
0820698 Jan 1998 EP
0820753 Jan 1998 EP
0857062 Aug 1998 EP
0864324 Sep 1998 EP
0864326 Sep 1998 EP
0598606 Jun 1999 EP
0675710 Aug 1999 EP
0980894 Feb 2000 EP
0988106 Mar 2000 EP
1014941 Jul 2000 EP
1070504 Jan 2001 EP
1127871 Aug 2001 EP
1138321 Oct 2001 EP
1152026 Nov 2001 EP
1138321 Jan 2002 EP
1166776 Jan 2002 EP
1201233 May 2002 EP
0661045 Jul 2002 EP
1250045 Oct 2002 EP
1251120 Oct 2002 EP
1293127 Mar 2003 EP
1293195 Mar 2003 EP
1293196 Mar 2003 EP
1127871 Sep 2003 EP
1201233 Dec 2004 EP
1251120 Dec 2004 EP
1492506 Jan 2005 EP
1166776 Feb 2005 EP
1502592 Feb 2005 EP
1658054 Feb 2005 EP
1658055 Feb 2005 EP
1515702 Mar 2005 EP
1527775 Apr 2005 EP
1558221 Aug 2005 EP
1558257 Aug 2005 EP
1560585 Aug 2005 EP
1611880 Jan 2006 EP
1658054 May 2006 EP
1138321 Jan 2007 EP
1740161 Jan 2007 EP
1658055 Mar 2007 EP
1765303 Mar 2007 EP
1786403 May 2007 EP
1558221 Jun 2007 EP
1813276 Aug 2007 EP
1842533 Oct 2007 EP
1845955 Oct 2007 EP
1845956 Oct 2007 EP
1859789 Nov 2007 EP
1980245 Oct 2008 EP
1897545 Dec 2008 EP
2131830 Dec 2009 EP
2246063 Nov 2010 EP
2249811 Nov 2010 EP
2273983 Jan 2011 EP
2402004 Jan 2012 EP
2336571 Dec 2004 ES
2260042 Nov 2006 ES
2285497 Nov 2007 ES
2288621 Jan 2008 ES
2289542 Feb 2008 ES
2315505 Apr 2009 ES
1147210 Apr 1969 GB
1567727 May 1980 GB
2047095 Nov 1980 GB
2057878 Apr 1981 GB
2238478 Jun 1991 GB
20070456 Jun 2007 HR
20070272 Nov 2007 HR
S36-022895 Nov 1961 JP
S55162714 Dec 1980 JP
S5659708 May 1981 JP
S56169622 Dec 1981 JP
S62240061 Oct 1987 JP
H0249719 Feb 1990 JP
03-501737 Apr 1991 JP
H0517566 Jan 1993 JP
H06507645 Sep 1994 JP
08053331 Feb 1996 JP
8-505076 Jun 1996 JP
H09508410 Aug 1997 JP
H1057450 Mar 1998 JP
H10251149 Sep 1998 JP
2000513333 Oct 2000 JP
2002524150 Aug 2002 JP
2002-275175 Sep 2002 JP
2003113119 Apr 2003 JP
2003125706 May 2003 JP
2003526598 Sep 2003 JP
2004143071 May 2004 JP
2004530676 Oct 2004 JP
2005506965 Mar 2005 JP
2005515152 May 2005 JP
2005534664 Nov 2005 JP
2006506374 Feb 2006 JP
2007501201 Jan 2007 JP
2007501202 Jan 2007 JP
2007513147 May 2007 JP
2007533692 Nov 2007 JP
2008024603 Feb 2008 JP
2008504327 Feb 2008 JP
2008528654 Jul 2008 JP
2009523833 Jun 2009 JP
2009524626 Jul 2009 JP
2009531453 Sep 2009 JP
2009536927 Oct 2009 JP
2009537456 Oct 2009 JP
2010505949 Feb 2010 JP
2010527285 Aug 2010 JP
2010534204 Nov 2010 JP
2011504455 Feb 2011 JP
2011506493 Mar 2011 JP
2011510034 Mar 2011 JP
WO 2011059074 May 2011 JP
2012515735 Jul 2012 JP
2012528845 Nov 2012 JP
2013523804 Jun 2013 JP
2013155124 Aug 2013 JP
2013536810 Sep 2013 JP
2014505736 Mar 2014 JP
2014528437 Oct 2014 JP
6085307 Feb 2017 JP
2013523780 Jun 2017 JP
1020060069832 Jun 2006 KR
20070039041 Apr 2007 KR
20070111510 Nov 2007 KR
20090085312 Aug 2009 KR
20100111303 Oct 2010 KR
20110016921 Feb 2011 KR
2007000008 Mar 2007 MX
2007000009 Mar 2007 MX
2007009393 Aug 2007 MX
2010008138 Aug 2010 MX
2010012039 Nov 2010 MX
20061054 Mar 2006 NO
20070578 Jan 2007 NO
20074412 Nov 2007 NO
528302 Feb 2007 NZ
1699440 Dec 2004 PT
1658054 May 2006 PT
1658055 Jul 2007 PT
1515702 Dec 2008 PT
2328275 May 2004 RO
2131244 Jun 1999 RU
2198197 Feb 2003 RU
2220715 Jan 2004 RU
2396944 Jul 2004 RU
2326654 Sep 2005 RU
2339365 Dec 2007 RU
2354357 Dec 2007 RU
2007103712 Sep 2008 RU
2007103707 Nov 2008 RU
2007132975 Apr 2009 RU
2567723 Nov 2015 RU
1515702 Apr 2009 SI
1699440 Nov 2009 SI
10612003 Jan 2004 SK
1759445 Sep 1992 SU
1254634 May 2006 TW
WO 1980000841 May 1980 WO
WO 1989005624 Jun 1989 WO
WO 1990003776 Apr 1990 WO
WO 1993006723 Apr 1993 WO
WO 9310765 Jun 1993 WO
WO 1993010758 Jun 1993 WO
WO 1993011749 Jun 1993 WO
WO 1993023017 Nov 1993 WO
WO 1994006414 Mar 1994 WO
WO 1994008567 Apr 1994 WO
WO 1995017174 Jun 1995 WO
WO 1995020947 Aug 1995 WO
WO 1995022319 Aug 1995 WO
WO 1995030422 Nov 1995 WO
WO 1996000066 Jan 1996 WO
WO 1996003979 Feb 1996 WO
WO 1996014058 May 1996 WO
WO 1997000673 Jan 1997 WO
WO 1997033566 Sep 1997 WO
WO 1997049384 Dec 1997 WO
WO 1998035655 Feb 1998 WO
WO 1998020073 May 1998 WO
WO 1998028698 Jul 1998 WO
WO 1998035655 Aug 1998 WO
WO 1998051758 Nov 1998 WO
WO 1999012864 Mar 1999 WO
WO 1999032120 Jul 1999 WO
WO 1999044591 Sep 1999 WO
WO 1999045887 Sep 1999 WO
WO 1999048481 Sep 1999 WO
WO 0015261 Mar 2000 WO
WO 2000013647 Mar 2000 WO
WO 2000033835 Jun 2000 WO
WO 2000040205 Jul 2000 WO
WO 2001008661 Feb 2001 WO
WO 2001012230 Feb 2001 WO
WO 2001015667 Mar 2001 WO
WO 2001052651 Jul 2001 WO
WO 2001058451 Aug 2001 WO
WO 2001097783 Dec 2001 WO
WO 2002026061 Apr 2002 WO
WO 2002026262 Apr 2002 WO
WO 2002026928 Apr 2002 WO
WO 2002035991 May 2002 WO
WO 2002071860 Sep 2002 WO
WO 2002088217 Nov 2002 WO
WO 2002094254 Nov 2002 WO
WO 2003006723 Jan 2003 WO
WO03007802 Jan 2003 WO
WO 2003013433 Feb 2003 WO
WO 2003013476 Feb 2003 WO
WO 2003013479 Feb 2003 WO
WO 2003013538 Feb 2003 WO
WO 2003015531 Feb 2003 WO
WO 2003018015 Mar 2003 WO
WO 2003024426 Mar 2003 WO
WO 2003024430 Mar 2003 WO
WO 2003026624 Apr 2003 WO
WO 200326743 Apr 2003 WO
WO 2003028698 Apr 2003 WO
WO 2003028990 Apr 2003 WO
WO 2003031546 Apr 2003 WO
WO 2003035029 May 2003 WO
WO 2003035053 May 2003 WO
WO 2003035054 May 2003 WO
WO 2003035177 May 2003 WO
WO 2003039561 May 2003 WO
WO 2003049689 Jun 2003 WO
WO 2003053417 Jul 2003 WO
WO 2003068392 Aug 2003 WO
WO 2003070191 Aug 2003 WO
WO 2003092648 Nov 2003 WO
WO 2003094812 Nov 2003 WO
WO 2003105808 Dec 2003 WO
WO 2004004693 Jan 2004 WO
WO 2004026262 Apr 2004 WO
WO 2004026263 Apr 2004 WO
WO 2004026280 Apr 2004 WO
WO 2004037222 May 2004 WO
WO 2004037230 May 2004 WO
WO 2004037259 May 2004 WO
WO 2004037260 May 2004 WO
WO 2004043449 May 2004 WO
WO 2004066910 Aug 2004 WO
WO 2004078212 Sep 2004 WO
WO 2004084869 Oct 2004 WO
WO 2004093801 Nov 2004 WO
WO 2004093819 Nov 2004 WO
WO 2004098567 Nov 2004 WO
WO 2004100894 Nov 2004 WO
WO 2005016313 Feb 2005 WO
WO 2005016314 Feb 2005 WO
WO 2005032524 Apr 2005 WO
WO 2005041968 May 2005 WO
WO 2005053587 Jun 2005 WO
WO 2005053656 Jun 2005 WO
WO 2005055981 Jun 2005 WO
WO 2005060942 Jul 2005 WO
WO 2005063214 Jul 2005 WO
WO 2005065646 Jul 2005 WO
WO 2005066183 Jul 2005 WO
WO 2005079760 Sep 2005 WO
WO 2005102286 Nov 2005 WO
WO 2005102294 Nov 2005 WO
WO 2005102294 Nov 2005 WO
WO 2005105036 Nov 2005 WO
WO 2006002883 Jan 2006 WO
WO 2006002884 Jan 2006 WO
WO 2006002886 Jan 2006 WO
WO 2006002884 Mar 2006 WO
WO 2006039692 Apr 2006 WO
WO 2006058249 Jun 2006 WO
WO 2006082097 Aug 2006 WO
WO 2006082099 Aug 2006 WO
WO 2006105615 Oct 2006 WO
WO 2006128471 Dec 2006 WO
WO 2007005716 Jan 2007 WO
WO 2007008752 Jan 2007 WO
WO 2004043967 Feb 2007 WO
WO 2007014061 Feb 2007 WO
WO 2007048233 May 2007 WO
WO 2007053698 May 2007 WO
WO 2007085024 Jul 2007 WO
WO 2007085024 Jul 2007 WO
WO 2007093642 Aug 2007 WO
WO 2007103105 Sep 2007 WO
WO 2007103286 Sep 2007 WO
WO 2007112273 Oct 2007 WO
WO 2007112285 Oct 2007 WO
WO 2007112286 Oct 2007 WO
WO 2007131357 Nov 2007 WO
WO 2007138466 Dec 2007 WO
WO 2008023261 Feb 2008 WO
WO 2008033523 Mar 2008 WO
WO 2008045060 Apr 2008 WO
WO 2008069941 Jun 2008 WO
WO 2008086804 Jul 2008 WO
WO-2008086804 Jul 2008 WO
WO 2008107149 Sep 2008 WO
WO 2008107149 Sep 2008 WO
WO 2008109462 Sep 2008 WO
WO 2008132707 Nov 2008 WO
WO 2008142627 Nov 2008 WO
WO 2008148798 Dec 2008 WO
WO 2009005803 Jan 2009 WO
WO 2009014534 Jan 2009 WO
WO 2009034541 Mar 2009 WO
WO 2009034541 Mar 2009 WO
WO 2009034541 Mar 2009 WO
WO 2009035474 Mar 2009 WO
WO 2009051819 Apr 2009 WO
WO 2009076764 Jun 2009 WO
WO 2009092601 Jul 2009 WO
WO 2009110005 Sep 2009 WO
WO 2009112273 Sep 2009 WO
WO 2009135680 Nov 2009 WO
WO 2010022193 Feb 2010 WO
WO 2010037854 Apr 2010 WO
WO 2010044842 Apr 2010 WO
WO 2010057036 May 2010 WO
WO 2010066034 Jun 2010 WO
WO 2010069050 Jun 2010 WO
WO 2010083843 Jul 2010 WO
WO 2010083894 Jul 2010 WO
WO 2010088911 Aug 2010 WO
WO 2010105672 Sep 2010 WO
WO 2010140007 Dec 2010 WO
WO 2010140007 Dec 2010 WO
WO 2010149169 Dec 2010 WO
WO 2011008298 Jan 2011 WO
WO 2011009602 Jan 2011 WO
WO 2011009603 Jan 2011 WO
WO 2011009604 Jan 2011 WO
WO 2011095314 Aug 2011 WO
WO 2011095314 Aug 2011 WO
WO 2011124953 Oct 2011 WO
WO2011124953 Oct 2011 WO
WO 2011124953 Oct 2011 WO
WO 2011128630 Oct 2011 WO
WO 2011141241 Nov 2011 WO
WO 2011154414 Dec 2011 WO
WO 2012028317 Mar 2012 WO
WO 2012028318 Mar 2012 WO
WO 2012028319 Mar 2012 WO
WO 2012061779 May 2012 WO
WO 2012076907 Jun 2012 WO
WO 2012085657 Jun 2012 WO
WO 2012119727 Sep 2012 WO
WO 2012166474 Dec 2012 WO
WO 2013003845 Jan 2013 WO
WO 2013017234 Feb 2013 WO
WO 2013017242 Feb 2013 WO
WO 2013025449 Mar 2013 WO
WO 2013030177 Mar 2013 WO
WO 2013050539 Apr 2013 WO
WO 2013072395 May 2013 WO
WO 2013084059 Jun 2013 WO
WO 2013127830 Sep 2013 WO
WO 2013127831 Sep 2013 WO
WO 2013128276 Sep 2013 WO
WO 2013156453 Oct 2013 WO
WO 2013167735 Nov 2013 WO
WO 2014032741 Mar 2014 WO
WO 2014059512 Apr 2014 WO
WO 2014140231 Sep 2014 WO
WO 2014190440 Dec 2014 WO
WO 2014191396 Dec 2014 WO
WO 2014191397 Dec 2014 WO
WO 2015004245 Jan 2015 WO
WO 2015048597 Apr 2015 WO
WO 2015103379 Jul 2015 WO
WO 2015120201 Aug 2015 WO
WO 2017178658 Oct 2017 WO
Non-Patent Literature Citations (454)
Entry
Waterman (Pharmaceutical Development and Technology vol. 7, pp. 1-32, published 2002) (Year: 2002).
Freed (International Journal of Pharmaceutics vol. 357, pp. 180-188, published 2008), (Year: 2008).
Definition GRANULE, Merriam-Webster, accessed online Jun. 28, 2018 (2018).
2.9 Methoden der pharmazeutischen Technologie, European Pharmacopeia, 143-144, 1997. (Full English translation attached).
Albertini, B. “New spray congealing atomizer for the microencapsulation of highly concentrated solid and liquid substances” European Journal of Pharmaceutics and Biopharmaceutics 69 (2008) 348-357.
Alekseeva et al, Chemical-Pharmaceutical Journal, vol. 41, No. 9, 2007, 49-52. (Full translation attached.).
Almeida, A. et al., Ethylene vinyl acetate as matrix for oral sustained release dosage forms produced via hot-melt extrusion, European Journal of Pharmaceutics and Biopharmaceutics 77 (2011) 297-305.
Almeida, A. et al., Sustained release from hot-melt extruded matrices based on ethylene vinyl acetate and polyethylene oxide, European Journal of Pharmaceutics and Biopharmaceutics 82 (2012) 526-533.
Andre et al., “O-Demethylation of Opiod Derivatives With Methane Sulfonic Acid/Methoinine: Application to the Synthesis of Naloxone and Analogues” Synthetic Comm. 22(16), pp. 2313-2327, 1992.
Apicella A.et al., Biomaterials, vol. 14, No. 2, pp. 83-90,1993.
Application of a modelling system in the formulation of extended release hydrophilic matrices, Reprinted from Pharmaceutical Technology Europe, Jul. 2006.
Application of Opadry II, complete film coating system, on metformin HCl extended release matrices containing Polyox water soluble resin, Colorcon Apr. 2009.
Arnold C., “Teen Abuse of Painkiller OxyContin on the Rise,” www.npr.org, Dec. 19, 2005.
Augustine, R.L., Catalytic Hydrogenation of a, B-Unsaturated Ketones. III The Effect of Quantity and Type of Catalysts, J.Org Chem. 28(1), pp. 152-155, Abstract 1963.
Avis, Kenneth, Parenteral Preparations. Chapter 85. pp. 1518-1541In Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Bailey, F.E., et al., “Some properties of poly(ethylene oxide) in aqueous solution,” Journal of Polymer Science, vol. 1, Issue No. 1, pp. 56-62, 1959.
Bauer et al. Lehrbuch der Pharmazeutischen Technologie. Eight Edition 2006. Stuttgart, pp. 343-352.
Bauer et al. Lehrbuch der Pharmazeutischen Technologie. Sixth Edition 1999. Stuttgart, pp. IX-XV, Table of contents. (Full English translation attached).
Bauer, Kurt H., et al., Coated Pharmaceutical Dosage Forms—Fundamentals, Manufacturing Techniques, Biopharmaceutical Aspects, Test Methods and Raw Materials, 1st edition, 1998, CRC Press, Medpharm Scientific Publishers. (Preface, Table of Content, List of Abbreviations, Explanation of Terms only).
Baum et al.,“The impact of the addition of naloxone on the use and abuse of pentazocine”, Public Health Reports, Jul.-Aug. 1987, vol. 102, No. 4, p. 426-429.
Baxter, J.L. et al., “Hydrodynamics-induced variability in the USP apparatus II dissolution test,” International Journal of Pharmaceutics 292 (2005) 17-28.
Bellmann et al., “Development of an advanced in vitro model of the stomach and its evaluation versus human gastric psychology.” Food Research International 88 (2016) 191-198.
Bingwen et al, 2008, p. 367. (full translation attached).
Block, Lawrence. Medicated Applications. Chapter 88. In Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Borquist et al., “Simulation of the release from a multiparticulate system validated by single pellet and dose release experiements,” J. Controlled Release, 97: 453-465 (2004).
Braun, et al. A study of Bite Force. Part 2: Relationship to Various cephalometric Measurements. Angel Orthodontist, vol. 65 (5) pp. 373-377, 1995.
Brown, The Dissolution Procedure: Development and Validation, heading “Study Design”, “Time Points” US Pharmacopoeia (USP), vol. 31(5), General Chapter 1092, pp. 1-15, 2006.
Bruce et al, Properties of hot-melt extuded tablet formulations for the colonic delivery of 5-aminosalicylic acid. European Journal of Pharmaceutics and Biopharmaceutics, 59 (2005)85-97.
Caraballo, Journal of Controlled Release, vol. 69, pp. 345-355, 2000.
Carbopol 71G, retrieved Mar. 10, 2014 from http://www.lubrizol.com/LifeScience/Products/Carbopol71G-NF.html.
Cawello, “Parameters for Compartment-free Pharmacokinetics—Standardization of Study Design, Data Analysis and Reporting” 1999, pp. XI-XIII (table of contents).
Chibuzor et al. “Formulation Development and Evaluation of Drug Release Kinetics from Colon-Targeted Ibuprofen Tablets Based on Eudragit RL 100-Chitosan Interpolyelectrolyte complexes,” Hindawi Publ. Corporation ISRN Pharmaceutics, vol. 20139 Article ID 838403.
Committee for Proprietary Medicinal Products. Note for Guidance on the Investigation of Bioavailability and Bioequivalence. 2001, pp. 1-18.
COMPAP 90 technical data sheet Mar. 2014; 1 page.
Coppens et al., “Hypromellose, Ethylcellulose, and Polyethylene Oxide Use in Hot Melt Extrusion”; Pharmaceutical Technology, 62-70, Jan. 2005.
Cornish, P. “Avoid the Crush”: hazards of medication administration in patients with dysphagia or a feeding tube, CMA Media Inc., CMAJ. 172(7), pp. 871-872, 2005.
Costa et al. “Modeling and comparison of dissolution profiles”; European Journal of Pharmaceutical Sciences 13 (2001) 123-33.
Crowley M.M. et al., “Stability of polyethylene oxide in matrix tablets prepared by hot-melt extrusion,” Biomaterials 23, 2002, pp, 4241-4248.
Crowley MM, Drug Dev Ind Pharm. Sep. 2007; 33(9):909-26. (Abstract only).
Cuesov, Drug Production Technology, Khar'kov, 1999, pp. 351-352. (Full translation attached.).
Dabbagh, et al. “Release of Propranolol Hydrochloride from Matrix Tablets Containing Sodium Carboxymethylcellulose and Hydroxypropylmethylcellulose”; 1999; Pharmaceutical Development and Technology, 4(3), 313-324.
Dachille et al., “High-pressure Phase Transformations in Laboratory Mechanical Mixers and Mortars”, Nature, vol. 186, Apr. 2, 1960, pp. 34 and 71.
Dachille, F. et al., “High-Pressure Phase Transformation in Laboratory Mechanical Mixers and Mortars”, 1960., Nature, vol. 186, pp. 1-2 (abstract).
Davies, et al; European Journal of Pharmaceutics and Biopharmaceutics, 67, 2007, pp. 268-276.
Dean, D.A., E.R. Evans, I.H. Hall, Pharmaceutical Packaging Technology, Taylor & Francis, 1st Edition, Nov. 30, 2000 (Publisher description dated Oct. 22, 2010).
Deighan, C.J. et al., Rhabdomyolysis and acute renal failure resulting from alcohol and drug abuse, Q.J. Med, vol. 93, 2000, pp. 29-33.
Dejong (Pharmaceutisch Weekblad Scientific Edition) 1987, p. 24-28.
Dexheimer, Terahertz Spectroscopy: Principles and Applications (Optical Science and Engineering Series), CRC; 1 edition 2007. (Table of content only).
Dierickx et al., “Co-extrusion as manufacturing technique for fixed-dose combination mini-matrices,” European Journal of Pharmaceutics and Biopharmaceutics 81 (2012), 683-689.
Disanto, Anthony. Bioavailability and Bioequivalency Testing. Chapter 77. In Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Dow Chemical Company, “Using Dow Excipients for Controlled Release of Drugs in Hydrophilic Matrix Systems”. Sep. 2006, pp. 1-36.
Dow Excipients Chem. of Poly. Water Soluble-Resin 2004, pp. 1-2.
Dow Technical Data, POLYOX WSR Solid Dosage Formulation via Melt Extrusion, Feb. 2003, pp. 1-3.
Efentakis et al, Effects of Excipients on Swelling and Drug Release from Compressed Matrices, in Drug Development and Industrial Pharmacy 23(1):107-112, Jan. 1997, Abstract.
Efentakis M et al. “Evaluation of High Molecular Weight Poly(Oxyethylene) (Polyox) Polymer: Studies of Flow Properties and Release Rates of Furosemide and Captopril from controlled-Release hard Gelatin Capsules”, Pharmaceutical Development and Technology, 5 (3), pp. 339-346, 2000.
Eggleston, “The seat of the emetic action of various drugs,” J. Pharmacol. Exp. Ther. 7, 225-253 (1915).
El-Egakey, Adel et al, “Hot extruded dosage forms Part I Technology and dissolution kinetics of polymeric matrices” Pharmacerutica Acta Helvetiae, vol. 46, pp. 31-53,Mar. 19, 1970.
El-Sherbiny I.M. et al “Preparation, characterization, swelling and in vitro drug release behaviour of poly[N-acryloylglycine-chitosan] interplymeric pH and thermally-resposive hydrogels”, European Polymer Journal, vol. 41, pp. 2584-2591, 2005.
Encyclopedia of Pharmaceutical Technology, Third Edition, vol. 1, edited by James Swarbrick PharmaceuTech, Inc., Pinehurst, North Carolinia, USA (Table of Contents only), Oct. 25, 2006.
Encyclopedia of Pharmaceutical Technology, Third Edition, vol. 2, edited by James Swarbrick PharmaceuTech, Inc., Pinehurst, North Carolinia, USA (Table of Contents only), Oct. 25, 2006.
Encyclopedia of Pharmaceutical Technology, Third Edition, vol. 3 edited by James Swarbrick PharmaceuTech, Inc., Pinehurst, North Carolinia, USA (Table of Contents only), Oct. 25, 2006.
Encyclopedia of Pharmaceutical Technology, Third Edition, vol. 4, edited by James Swarbrick PharmaceuTech, Inc., Pinehurst, North Carolinia, USA (Table of Contents only), Oct. 25, 2006.
Encyclopedia of Pharmaceutical Technology, Third Edition, vol. 5, edited by James Swarbrick PharmaceuTech, Inc., Pinehurst, North Carolinia, USA (Table of Contents only), Oct. 25, 2006.
Encyclopedia of Pharmaceutical Technology, Third Edition, vol. 6, edited by James Swarbrick PharmaceuTech, Inc., Pinehurst, North Carolinia, USA (Table of Contents only), Oct. 25, 2006.
Encyclopedia of Pharmacological Technology, Informa Healthcare, 1st Ed., 1996, vol. 14 (Table of Content only).
Erskine, Jr., Clyde. Quality Assurance and Control. Chapter 83. pp. 1487-1491 in Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Eudragit NE40D web page from Evonik website; downloaded Feb. 24, 2015.
Eudragit RS PO web page from Evonik website; downloaded Feb. 24, 2015.
European Pharmacopeia 5.0; Glyceryl behenate monograph; dated Jan. 2005; downloaded Feb. 24, 2015.
European Pharmacopoeia 2.9.40 “Uniformity of Dosage Units”, 2006, pp. 3370-3373.
European Pharmacopoeia 5.0, 2.9.8 “Resistance to Crushing of Tablets”, 2005, p. 235.
European Pharmacopoeia, Third Edition Supplement 2000, Council of Europe, Strasbourg, 2000, pp. 85-107.
European Pharmacopoeia, Third Edition, Council of Europe, Strasbourg, 1997, pp. 127-152.
European Search Report and Opinion Application No. 12002708.1-1219, dated Sep. 24, 2012.
European Search Report and Opinion Application No. 1417677.3-1460, dated Dec. 15, 2014.
European Search Report and Opinion, Application No. 11006253.6-2112, dated Dec. 16, 2011.
European Search Report and Opinion, Application No. 11006254.4-2112, dated Dec. 16, 2011.
European Search Report and Opinion, Application No. 11008131.2-1219, dated Feb. 24, 2012.
European Search Report and Opinion, Application No. 11009129.5-2112, dated Apr. 10, 2012.
European Search Report and Opinion, Application No. 12001296.8-1219, dated Jun. 26, 2012.
European Search Report and Opinion, Application No. 12001301.6-1219, dated Jun. 26, 2012.
European Search Report and Opinion, Application no. 12003743.7-1219, dated Sep. 24, 2012.
European Search Report and Written Opinion for EP Application No. 13169658.5, dated Aug. 6, 2013.
European Search Report and Written Opinion for EP Application No. 13169659.3, dated Aug. 6, 2013.
European Search Report and Written Opinion for EP Application No. 13176309.9-1460, dated Oct. 9, 2013.
European Search Report and Written Opinion for EP Application No. 13197503.9-1460, dated Feb. 18, 2014.
European Search Report and Written Opinion for EP Application No. 13425151.1-1460, dated Mar. 11, 2014
European Search Report and Written Opinion for EP Application No. 14169801.9-1455 dated Oct. 20, 2014.
Evaluation of Verapamil HCI (240 mg) Etxtended Release Matrix Formulation Using USP Apparatus III in Biorelevant Dissolution Media, Jul. 2009.
Evonik Industries, Eudragit Application Guidelines, 10th Edition, 2008, (Table of Contents only).
Evonik Rohm GmbH product brochure: EUDRAGIT acrylic polymers for solid oral dosage forms (2009).
Extended European Search Report for Application No. EP 16183922.0-1460, dated Oct. 31, 2016.
Extended European Search Report and Opinion for Application No. EP 15153679.4-1455, dated Jun. 30, 2015.
Extended European Search Report and Opinion for Application No. EP 15165064.5-1455, dated Oct. 16, 2015.
Extended European Search Report and Opinion for Application No. EP 15165065.2-1455, dated Nov. 2, 2015.
Extended European Search Report and Opinion for Application No. EP 15165067.8-1455, dated Nov. 2, 2015.
Extended European Search Report and Opinion for Application No. EP 15165069.4-1455, dated Nov. 2, 2015.
Extended European Search Report and Opinion for Application No. EP 15165070.2-1455, dated Nov. 2, 2015.
Extended European Search Report and Opinion for Application No. EP 15184634.2-1455, dated Mar. 3, 2016.
Fathima, N. et al. “Drug-excipient interaction and its importance in dosage form development,” Journal of Applied Pharmaceutical Science 01 (06); 2011, pp. 66-71.
Fell J.T., et al, “Determinination of Tablet Strength by the Diametral-Compression Test” Journal of Pharmaceutical Science, vol. 59, No. 5, May 1970, pp. 688-691.
Follonier N. et al., “Evaluation of hot-melt extrusion as a new technique for the production of polymer-based pellets for sustained release capsules containing high loadings of freely soluble drugs,” Drug Development and Industrial Pharmacy, 20(8), pp. 1323-1339, 1994.
Follonier, N. et al., “Various ways of modulating the release of dltiazem hydrochloride from hot-melt extruded sustained release pellets prepared using polymeric materials” Journal of Controlled Release 36, pp. 243-250, 1995.
Formulation of Polyox ER Matrices for a Highly Soluble Active, Colorcon Jul. 2009.
Foye W. Principles of Medicinal Chemistry; Analgesics pp. 241-242, at 241 (1989).
Foye, W., Principles of Medicinal Chemistry; Structural Features and Pharmacologic Activity, pp. 63-66 at 65 (1989).
Freed et al., “pH Control of Nucleophilic/electrophilic oxidation”, International Journal of Pharmaceutics, vol. 357, pp. 180-188 (2008).
Giles R. et al. Plastic Packaging Materials. Chapter 81. pp. 1473-1477 In Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Goodman and Gilman, “The Pharmacological Basis of Therapeutics, Seventh Edition”, MacMillan Publishing Company, Table of Contents. 1985.
Goodman and Gilman, 1985, 7th edition, chapter 22, 491-530.
Goodman and Gilman, 1985, 7th edition, chapter 23, 533-579.
Graham N.B., Poly(Ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications, p. 263-291 Chapter 17, 1992.
Griffin W, “Classification of Surface-Active Agents by HLB” Journal of the Society of Cosmetic Chemists, Atlas Powder Company, 1949, pp. 311-326.
Griffith, et al. “Tablet Crushing and the Law: The Implications for Nursing” Professional Nurse 19(1), pp. 41-42, 2003.
Gryczke et al, “Development and evaluation of orally disintegrating tablets (ODTs) containing Ibuprofen granules prepared by hot melt extrusion”, Colloids and surfaces., B, Biointerfaces, Elsevier, Amsteram, NL, vol. 86, No. 2, Apr. 5, 2011, pp. 275-284.
Guidance for Industry—Bioavailability and Bioequivalence—Studies for Orally Administered Drug Products—General Considerations, FDA, BP, Announced in the Federal Register: vol. 68, No. 53/Mar. 19, 2003.
Guidance for Industry—Statistical Approaches to Establishing Bioequivalence, FDA, BP, Jan. 2001.
Handbook of Pharmaceutical Excipients, 1986, American Pharmaceutical Association, Washington, DC and London (Table of Content Only).
Handbuch der Kunststoff-Extrusionstechnik 1, “Grundlagen” in Chapter 1.2 “Klassifizierung von Extrudem”, pp. 3-7. 1989. (Full english translation attached).
Hanning C.D.et al. “The Morphone Hydrogel Suppository. A New Sustained release Rectal Preparation”, British Journal of Anaesthesia, 61, pp. 221-227, 1988.
Hartauer, Kerry J. “Influence of Peroxide Impurities in Povidone and Crospovidone on the Stability of Raloxife”, Pharma. Dev & Tech, 5 (3) 303-310 (2000).
Henriest D. et al. In vitro and in vivo evaluation of starch-based hot stage extruded double matrix systems. Journal of Controlled Release. 2001 vol. 75, pp. 391-400.
Hoepfner et al. Fiedler Encyclopedia of Excipients. Sixth Edition, 2007, Aulendorf, Germany; Table of Contents only.
Hong S. et al. Dissolution kinetics and physical characterization of three-layered tablet with poly(ethylene oxide) core matrix capped by Carbopol. Int .J. Pharmacol. 2008, vol. 356, pp. 121-129.
Inert gas—Wikipedia, Dec. 2009, pp. 1-3.
Investigation of a Directly Compressible Metformin HCI 500mg Extended Release Formulation based on Hypromellose, Colorcon Jul. 2009.
James, A. “The legal and clinical implications of crushing tablet medication”, Nurse Times 100(50), 28-33, 2004.
Janicki S. et al. “Slow-Release Microballs: Method of Preparation”, Acta Pharm. Technol. 33(3) 154-155, 1987.
Jannetto, P. et al, “Oxycodone: Recognition and Pharmacogenomics,” Toxicology News, Mar. 2003, 1-7.
Kalant H. et al., Death in Amphetamine Users: Caues and Rates, CMA Journal, vol. 112 (Feb. 8, 1975): 299-304.
Katz N. et al. “Challenges in the development of prescription opioid abuse—deterrent formulations”, Clin. J. Pain, 23(8): 648-660 (Oct. 2007).
Kim C.-J. “Drug Release from Compressed Hydrophilic Polyox-WSR Tablets” J Pharm. Sciences 1995, 84(3): pp. 303-306.
Kim N et al. “Preparation and Evaluation of Eudragit Gels. V. Rectal Gel Preparations for Sustained Release and Avoidance of First-Pass Metabolism of Lidocaine”, Chem. Pharm Bull. 1992, 40(10), 2800-2804.
King et al. Oral Solid Dosage Forms. Chapter 90. pp. 163-1632 In Remington's Pharmaceutical Sciences, 17th Ed, 1985.
King, R, “Tablets, Capsules, and Pills” Remington's Pharmaceutical Sciences, pp. 1553-1593, Ch. 89, 1980, 16th Edition.
King, Remington's Pharmaceutical Sciences 17th ed., Chapter 78, p. 1418-1419 (1985).
Knevel, Adelbert. Separation. Chapter 78. pp. 1432-1442 In Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Kolter, K., “Compression Behaviour of Kollidon SR,” APV/ APGI 2002, Florence, Apr. 11, 2002.
Kondrat, T., “Technology dosage forms” Moscow 1991, p. 96.
Koziolek, M. et al., “Development of a bio-relevant dissolution test device simulating mechanical aspects present in the fed stomach,” European Journal of Pharmaceutical Sciences 57 (2014) 250-256.
Lee, Y.-S. et al., Principles of Terahertz Science and Technology (Lecture Notes in Physics), Springer; 1 edition 2008, (Table of Contents Only).
Lenindzer, A.,“The molecular basis of the structure and functions of cells” Moscow 1974, p. 681.
Levina et al., “The Effect of Ultrasonic Vibration on the Compaction Characteristics of Ibuprofen” Drug Development and Industrial Pharmacy, vol. 28, No. 5, pp. 495-514, 2002.
Levina M. et al “The Effect of Ultrasonic Vibration on the Compaction Characteristics of Paracetamol”, Journal of Pharmaceutical Sciences, vol. 89, No 6, pp. 705-723, Jun. 2000.
Li et al, “Characterization of Poly(Ethylene Oxide) as a Drug Carrier in Hot-Melt Extrusion”, Drug Development and Industrial Pharmacy, vol. 32, No. 8, Jan. 1, 2006, pp. 991-1002.
Lieberman, Herbert A., Pharmaceutical Dosage Forms, Tablets, Second Edition, Revised and Expanded, 1990. vol. 2 (Cover and Table of Content only).
Lintner, Carl. Stability of Pharmaceutical Products. Chapter 82. pp. 1478-1486 In Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Linz et al. “Cebranopadol: A Novel Potent Analgesic Nociception/Orphanin FQ Peptide and Opioid Receptor Agonist,” J Pharmacol. Exp. Ther. 2014; 349: 535-548; available online Apr. 8, 2014.
Liu J. et al., “Properties of Lipophilic Matrix Tables Containing Phenylpropanolamine Hydrochloride Prepared by Hot-Melt Extrusion”, EJPB, 52 (2001), pp. 181-190.
Lockhart H. et al, “Packaging of Pharnaceuticals and Health Care Products”; Blackie Academic & Professional; First Edition 1996. (Table of contents only).
Longer et al. Sustained-Release Drug Delivery Systems. Chapter 92. pp. 1611-1661 In Remington's Pharmaceutical Sciences, 17th Ed, 1985.
M. Xu et al., “Evaluation of the coat quality of sustained release pellets by individual pellet dissolution methodology,” Int. J. Pharm. 478 (2015) 318-327.
Madorsky S.L. “Thermal degradation of Polyethylene Oxide and Polypropylene Oxide”, Journal of Polymer Science, pp. 183-194 vol. 36, No. 3, Mar. 1959.
Maggi et al., “Dissolution behavior of hydrophilic matrix tablets containing two different polyethylene oxides (PEOs) for the controlled release of a water-soluble drug. Dimensionality study” Biomaterials, 2002, 23, 1113-1119.
Maggi L.et al, “High molecular weight polyethylene oxides (PEOs) as an alternative to HPMC in controlled release dosage form”, 2000, International Journal of Pharmaceutics, 195 pp, 229-238.
Maggi, C.. Therapeutic Potential of Capsaicin-like Molecules. Life Sciences, vol. 51, pp. 1777-1781, 1992.
Mank R. et al., “Darstellung wirkstoffhaltiger Extrusionsformlinge auf der Basis von Thermoplasten. Teil 1: Untersuchung zur Wirkstoffliberation” Pharmazie 44, H. 11, pp. 773-776, 1989 English language translation of relevant paragraph provided.
Mank R., “Darstellung wirkstoffhaltiger Extrusionsformlinge auf der Basis von Thermoplasten. Teil 2: Unersuchungen zur Optimierung der Wirkstofffreigabe” Pharmazie 45, H. 8, pp. 592-593 1990. English, translation of relevant paragraph provided.
Marques, Tablet breaking force, 2008.
Matos, Dr. Rick, Ph.D—Letter Jan. 6, 2011.
McGary, C.W.. Jr. “Degradation of Poly(ethylene Oxide)”, Journal of Polymer Science vol. XLVI,1960, pp. 51-57.
McGinity et al., Hot-Melt Extrusion as a Pharmaceutical Process, American Pharmaceutical Review, vol. 4 (2), pp. 25-36, 2001.
McGinity, J.W.—Letter of Jan. 26, 2009, pp. 1-4.
McNeill M. et al. Properties controlling the diffusion and release of water-soluble solutes from poly(ethylene oxide) hydrogels. 4. Extended constant rate release from partly-coated spheres. Journal Biomat. Sci.. Polymer. Ed. 1996, vol. 7, pp. 953-963.
Mesiha M.S. et al “A Screening Study of Lubricants in Wet Powder Passes Suitable for extrusio-spheronization”, Drug Development and Industrial Pharmacy, 19(8), pp. 943-959, 1993.
Metformin Hydrochloride 1000 mg Extended Release Tablets, Lubrizol Advanced Materials, Inc., Nov. 20, 2009, Previous Edition Dec. 19, 2008.
Metformin Hydrochloride 750 mg Extended Release Tablets, Lubrizol Advanced Materials, Inc., Sep. 2010.
Meyer et al., “Awareness Topic: Mitigating the Risks of Ethanol Induced Dose Dumping from Oral Sustained/Controlled Release Dosage Forms,” FDA ACPS Meeting, Oct. 2005, p. 1-4.
Miles, R.E. et al., Terahertz Frequency Detection and Identification of Materials and Objects (NATO Science for Peace and Security Series B: Physics and Biophysics), Springer; 1 edition 2007, (Table of contents).
Miller “To crush or not to crush? What to consider before giving medications to a patent with a tube or who has trouble swallowing”, Nursing, pp. 50-52, Feb. 2000.
Mises à jour cumulatives, Vidal, Jan./Oct. 2002 (full translation attached).
Mitchell, “Oral Dosage Forms That Should Not Be oiYshed: 2000 Update” Hospital Pharmacy 35(5), 553-557, 2000.
Monolithic: retrieved from internet: http:/merriam-webster.com/dictionary/monolithic. Retrieved on Sep. 2, 2015.
Moorman-Li, R. et al, “A Review of Abuse-Deterrent Opioids for Chronic Nonmalignant Pain.” Pharmacy and Therapeutics, vol. 37 No. 7, Jul. 2012, pp. 412-421.
Morissette et al. Advanced Drug Delivery Review 26 (2004), 275-300.
Moroni A. et al, “Application of Poly(Oxyethylene) Homopolymers in Sustained release Solid formulations” Drug Development and Industrial Pharmacy, 21(12) pp. 1411-1428, 1995.
Mullins, John. Ophthalmic Preparations. Chapter 87. pp. 1553-1563; In Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Munjal M, et al., “Polymeric Systems for Amorphous Delta∧9-Tetrahydrocannabinol Produced by a Hot-Melt Method. Part II: Effect of Oxidation Mechanisms and Chemical Interactions on Stability” Journal of Pharmaceutical Sciences vol. 95 No. 11, Wiley InterScience, 2006, pp. 2473-2485.
Munsell Color Company, “The Munsell Book of Color: Glossy Collection”, X-Rite, Originally published in 1966, pp. 1-7.
Nairn, J.G., Solutions, Emulsion, Suspensions and Extractives. Chapter 84. pp. 1492-1517, In Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Note for Guidance on Stability Testing, EMEA, Aug. 2003, pp. 1-20.
Note for Guidance on the Investigation of Bioavailability and Bioequivalence, EMEA, London, Jul. 26, 2001 (CPMP/EWP/QWP/1401/98).
Ohnishi N. et al., Effect of the Molecular Weight of Polyethylene Glycol on the Bioavailability of Indomethacin Sustained-Release suppoositories Prepared with Solid Dispersion, Chem. Pharm. Bull, 35(8), pp. 3511-3515, 1987.
Oliveira et al., “Production and characterization of laminar coextrudates at room temperature in the absence of solvents,” AAPS Annual Meeting and Exposition, Oct. 14-18, 2012, Chicago, USA.
Oxicotin: Balancing Risks and Benefits, United States Senate, Hearing, Feb. 12, 2002.
Oxycodon (Oxygesic): Missbrauch, Abhaengigkeit und toedliche Folgen durch Injection zerstossener Retardtabletten, Deutsches Ärzteblatt, vol. 36, A2326-A2326, Sep. 5, 2003.
Ozeki T. et al. “Control of Medicine Release From Solid Dispersion Through Poly(ethylene oxide)-Carboxyvinylpolymer Interaction”, International Journal of Pharmaceutics, 165, 1998, pp. 239-244.
Ozeki T. et al. “Controlled Release From Solid Dispersion Composed of Poly(ethylene oxide)-Carbopol Interpolymer Complex With Various Cross-Linking Degrees of Carbopol”, Journal of Controlled Release. 63, 2000. pp. 287-295.
Ozeki T. et al., “Control of medicine release from solid dispersion composed of the poly(ethylene oxide)-carboxyviylpolymer interpolymer complex by varying molecular wight of poly(ethylene oxide)” Journal of Controlled Release 58, pp. 87 95, 1999.
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2010/004459 dated Dec. 1, 2010.
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2009/003290 dated Jul. 9, 2009.
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2013/053894 dated Mar. 22, 2013.
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2013/057851 dated Jun. 12, 2013.
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2013/059728 dated Aug. 6, 2013.
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2014/064830 dated Aug. 6, 2014.
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2014/075618 dated Feb. 11, 2015.
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2014/0777748 dated Feb. 12, 2015.
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2015/060377 dated Jul. 23, 2015.
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2015/061343 dated Jul. 22, 2015.
PCT Second Written Opinion for PCT Application No. PCT/EP2013/053893 dated Feb. 21, 2014.
PCT Second Written Opinion for PCT Application No. PCT/EP2013/057851 dated Apr. 15, 2014.
Pentoxifylline 400 mg Extended Release Tablets, Lubrizol Advanced Materials, Inc., Mar. 3, 2011, Previous Edition Nov. 19, 2009.
Perez-Marcos, B., Usefulness of certain varieties of Carbomer in the formulation of hydrophilic furosemide matrices, International Journal of Pharmaceutics, 67 (1991) 113-121.
Pharm. Research, Official Journal of the American Association of Pharmaceutical Scientists, Sep. 1989, 6(9), S-98.
Pharm. Research, Official Journal of the American Association of Pharmaceutical Scientists, Oct. 1991, 8(10), S-192.
Phillips, G. Briggs. Sterilization. Chapter 79. pp. 1443-1454, In Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Physico-mechanical Characterization of Polyox for Table Manufacture, Colorcon Jul. 2009.
Pillay V. et al. A novel approach for constant rate delivery of highly soluble bioactives from a simple monolithic system, Journal of Controlled Release. 2000, vol. 67, pp. 67-78.
Pinto, Joao F. et al.,“Evaluation of the Potential Use of Poly(ethylene oxide) as Tablet- and Extrudate-Forming Material,” AAPS PharmSci, 2004; 6 (2), Article 15, pp. 1-10, http://www.aapspharmsci.org).
Piringer, O.G.and A.L. Baner, Plastic Packaging: Interactions with Food and Pharmaceuticals, Wiley VCH, 2nd Completely Revised Edition, Feb. 13, 2008. (Table of Contents only).
Polyox water soluble resins 2003. http://www.dow.com/webapps/lit/litorder.asp?filepath=polyox/pdfs/noreg/326-00002.pdf.
POLYOX water-soluble resins (DOW Mar. 2002); see http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_0031/0901b80380031a4a.pdf?filepath=/326-00001.pdf&fromPage.GetDoc).
POLYOX WSR-303, retrieved Mar. 10, 2014 from URL http://www.dow.com/dowwolff/en/industrial_solutions/polymers/polyethylene.
POLYOX, COLORCON, Application Data (Apr. 2009) downloaded from http://www.colorcon.com/literature/marketing/mr/Extended%20Release/POLYOX/English/ads_PEO_Antioxidant.pdf.
Pontier, C. et al, “Use of cycles of compression to characterize the behavior of apatitic phosphate powders,” Journal of the European Ceramic Society 22 (2002), 1205-1216.
Porter, S. Coating of Pharmaceutical Dosage Forms. Chapter 91. pp. 1633-1643 In Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Prapaitrakul W. et al, “Release of Chlorpheniramine Maleate from Fatty Acid Ester Matrix disks Prepared by Melt-extrusion” J. Pharm. Pharmacol. 43, pp. 377-381, 1991.
Proeschel, P.A. et al., “Task-dependence of activity / bite-force Relations and its impact on estimation of chewing force from EMG”; J. Dent. Res., vol. 81, No. 7, pp. 464-468, 2002.
Purdue News, “Purdue Pharma Provides Update on Development of New Abuse-Resistant Pain Medications; FDA Cites Patient Needs as First Priority; New Drug Application Delayed,” www.headaches.about.com, Jun. 18, 2002, pp. 1-6.
Quintavalle et al., “Preparation of sustained release co-extrudates by hot-met extrusion and mathematical modelling of in vitro/in vivo drug release profiles,” European Journal of Pharmaceutical Sciences 33 (2008), 282-293.
Radko S.et al., Applied ad Theoretical Electrophoresis 5, pp. 79-88, 1995.
Ravin, L. Preformulation. Chapter 76, pp. 1409-1423, In Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Remington, Chapter 45, pp. 996-1035. (2000) (Full Translation Attached).
Remington, The Science and Practice of Pharmacy, 19th ed., vol. II , p. 1457 (1995) (providing a table of DFA-approved commercially marketed salts).
Repka M. et al., Bioadhesive Properties of Hydroxypropylcellulose Topical Films Produced by Hot-Melt Extrusion, Journal of Controlled Release, 70 (2001), pp. 341-351.
Repka, “Pharmaceutical applications of hot-melt extrusion,” MA, Drug Dev Ind Pharm. Oct. 2007; 33(10):1043. (Abstract).
Riippi M. et al., The effect of compression force on surface structure, crushing strength, friability and disintegration time of erythromycin acistrate tablets, Eur J Pharm Biopharm, vol. 46, 1998, pp. 339-345.
Rippie E.G. et al, “Regulation of Dissolution Rate by Pellet Geometry” Journal of Pharmaceutical Sciences, Vo. 58, No. 4, pp. 428-431, Apr. 1969.
Rippie, E. Powders. Chapter 89, pp. 1585-1602, In Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Ritschel et al. Die Tablette: Handbuch der Entwicklung, Herstellung und Qualitatssicherung. 2nd Edition, 2002, Ch 6, pp. 515-519. (Full English translation attached).
Ritschel et al. Die Tablette: Handbuch der Entwicklung, Herstellung und Qualitatssicherung. 2nd Edition, 2002, Ch 6, pp. 69-82 and 115-136.
Ritschel et al. Die Tablette: Handbuch der Entwicklung, Herstellung und Qualitatssicherung. 2nd Edition, 2002, Table of content.
Rosiaux et al. “Ethanol-resistant ethylcellulose/guar gum coatings—Importance for formulation parameters” Europeah Journal of Pharmaceutics and Bioparmaceutics, vol. 85, No. 3, (Jul. 25, 2013). pp. 1250-1258.
Rowe C et al. Handbook of Pharmaceutical Excipients. Sixth Edition. 2009, Edition Cantor Verlag Aulendorf, pp. V-IX, Table of Contents.
Rowe C et al., Handbook of Pharmaceutical Excipients, 7th Edition, 2012, Table of Contents.
Salomies et al., “Determination of Oxycodone Hydrochloride in Oral Solutions by High-Performance Thin-Layer Chromatography/Densitometry,” Journal of AOAC International, 83: 1497-1501 (2000).
Satish et al. “Formulation and Characterization of Matrix and Triple Layer Matrix Tablets for Controlled Delivery of Tramadol Hydrochloride,” International Journal of Pharmaceutical Sciences; 5(4) (2013) 458-464.
Sax et al., Hawley's Condensed Chemical Dictionary, 11th ed., 1987, p. 1233, definition of “wax”.
Scheirs J., et al.“Characterizing the Solid-State Thermal Oxidation of Poly (ethylene oxide) Powder”, pp. 2014-2019, Polymer, vol. 32, No. 11, 1991.
Schier et al. “Fatality from Administration of Labetalol and Crushed Extended-Release Nifedipine” The Annals of Pharmacotherapy vol. 37, 1420-1423, Oct. 2003.
Schilling, et al., “Novel application of hot melt extrusion for the preparation of monolithic matrices containing enteric-coated particles.” International Journal of Pharmaceutics 400 (2010) 34-31.
Schroeder J., et al. Granulierung hydrophober Wirkstoffe im Planetwalzenextruder, Pharm. Ind. 2003, vol. 65, No. 4, 367-372. (Full English translation attached).
Sciarra et al. Aerosols. Chapter 93., pp. 1662-1667, In Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Search result conducted on http://www.unitconversion.org//force/newtons-to-kiloponds-convresion.html, on Jul. 5, 2011 (Conversion of 18.8 kiloponds to newtons).
Shivanand P et al., “Factors Affecting Release of KCI From Melt extruded Polyethylene Disks”, Pharmaceutical Research, Oct. 1991, vol. 8, No. 10, p. S-192.
Sidhu et al., “Watch for nonpsychotropics causing psychiatric side effects,” Current Psychiatry, vol. 7, No. 4, 2008, 61-74.
Siegel, P. Tonicity, Osmoticity, Osmolality, and Osmolarity. Chapter 80. pp. 1454-1472 In Remington's Pharmaceutical Sciences, 17th Ed, 1985.
Silver, J. “Painkiller OxyContin most commonly abused prescription drug on the streets of Western Pennsylvania”, Pittsburg Post-Gazette, Apr. 8, 2001.
Spassov et al., Stereochemistry of Diastereomeric 3-Dialkylaminopropanols and O-Derivatives, J.f. prakt. Chemie, 323:5, 793-800 (1981).
Sprockel O.L et al. “Permeability of Cellulose Polymers: Water Vapour Transmission Rates”., J. Pharma. Pharmacol. 42, pp. 152-157, 1990.
Sreenivasa, B. et al, Design and Evaluation of Ethylene Vinyl Acetate Sintered Matrix Tablets, Indian Journal of Pharmaceutical Sciences, Sep.-Oct. 2003, 65(5): 496-502.
Stafford J., überzogene feste Formen, 1991, 347-68. (English translation attached).
Starch 1500, Partially Pregelatinized Maize Starch, technical data from Colorcon, Feb. 2016, 6 pages.
Strang, Abuse of buprenorphie (Temgesic) by snorting, Letter to the editor, British Med J., 302: 969 (1991).
Stringer J. L., et al “Diffusion of small molecular weight drugs in radiation-crosslinked poly(ethyleneoxide) hydrogels”, Journal of Controlled Release 42, pp. 195-202, 1996.
Summers et al; “Influence of Crystal Form on Tensile Strength of Compacts of Pharmaceutical Materiels” Journal of Pharmaceutical Sciences, vol. 66, No. 8, Aug. 1977, pp. 1172-1175.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 1, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 10, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 11, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 12, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 13, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 14, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 15, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 16, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 18, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 19, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 2, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 20, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 3, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 4, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 5, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 6, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 7, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 8, table of contents.
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 9, table of contents.
Tablet, www.docstoc.com (2011).
Tennant, “Simultaneous Use of Stimulants and Opioids,” 2011 [online] retrieved on Jul. 7, 2016 from http://www.practicalpainmanagement.com/treatments/pharmacological/opioids/simultaneous-use-stimulants-opioids; 7 pages.
The Merck Index, 14th Ed. (2006) No. 0006360 Nalefene.
The Merck Index, 14th Ed. (2006) No. 0006362 Naloxone.
The Merck Index, 14th Ed. (2006) No. 0006363 Naltrexone.
The Merck Index, 14th Ed. (2006) No. 0006959 Oxycodone.
Third Party Observations filed with EPO for Patent EP658055B1, Feb. 2, 2009, pp. 1-8.
Thoma V.K. et al. “Bestimmung der In-vitro-Freigabe von schwach basischen Wirkstoffen aus Ratardarzneiformen”, pp. 299-301, Pharm. Ind. 51, Nr. 3, 1989.
Tikhonov, A. et al, Biopharmacy. The Manual for Students of Pharmaceutical Universities and Departments, 2003, pp. 40-41, Kharkov, Ukraine (Full English translation attached).
Tipler, et al, Physics for Scientists and Engineers, vol. I, 6th Edition, pp. 234-235, 2003.
Tompkins et al., “Human abuse liability assessment of oxycodone combined with ultra-low-dose natrexone,” Psychopharma., 210: 471-480 (2010).
Tramadol Hydrochloride 100 mg Extended Release Tablets, Lubrizol Advanced Materials, Inc., Sep. 2010.
Tranquilan-Aranilla et al., “Kappa-carrageenan-polyethylene oxide hydrogel blends prepared by gamma irradiation,” Radiation Physics and Chemistry vol. 55, pp. 127-131, 1999.
Turco et al. Intravenous Admixtures. Chapter 86. pp. 1542-1552, In Remington's Pharmaceutical Sciences, 17th Ed, 1985.
US Pharmacopoeia, Chapter 1217, Aug. 12, 2008.
USP Expert Council, US Pharmacopoeia, Chapter 1092, 2007, 1-15.
Varma et al, Factors Affecting Mechanism and Kinetics of Drug Release from Matrix-Based Oral Controlled Drug Delivery Systems, Am. J. Drug Deliv. 2004: 2 (1): 43-57.
Verhoeven et al., “Influence of polyethylene glycol/polyethylene oxide on the release characteristics of sustained-release ethylcellulose mini-matrices produced by hot-melt extrusion: in in vitro and in vivo evaluations,” European Journal of Pharmaceutics and Biopharmaceutics 72 (2009) 463-470.
Verhoeven, et al. “Xanthan gum to tailor drug release of sustained-release ethylcellulose mini-matrices prepared via hotmelt extrusion: in vitro and in vivo evaluation,” European Journal of Pharmaceutics and Biopharmaceutics, 63 (2006) 320-330.
Vippagunta et al. Crystalline Solids, Advanced Drug Delivery Review 48 (2001), 3-26.
Vynckier et al.,“Hot-melt co-extrusion for the production of fixed-dose combination products with a controlled release ethylcellulose matrix core,” International Journal of Pharmaceutics 464 (2014), 65-74.
Wade and Weller, “Handbook of Pharmaceutical Excipients: 2nd Edition”, The American Pharmaceutical Association and The Pharmaceutical Press, Washington and London, Table of Contents pp. v-vi, 1994.
Wagner, Pharmazeutische Biologie—Drogen und ihre Inhaltsstoffe—Scharistoffdrogen, 2nd., revised edition, Gustav Fischer Verlag, Stuttgart-N.Y., 1982, pp. 82-92 (Full English Translation attached).
Wagner, Pharmazeutische Biologie—Drogen und ihre Inhaltsstoffe—Scharfstoffdrogen, 2nd., revised edition, Gustav Fischer Verlag, Stuttgart-N.Y., 1982, Table of Content.
Waltimo, et al, “A novel bite force recorder and maximal isometric bite force values for healthy young adults”, Scandinavian Journal of Dental Research 1993; 101: 171-175.
Waltimo, et al, “Maximal bite force and its association with signs and symptoms of craniomandibular disorders in young Finnish non-patients”, Acta Odontol Scand 53 (1995): 254-258.
Waterman et al., “Stabilization of Pharmaceuticals to Oxidative Degradation”, Pharmaceutical Development and Technology vol. 7(1) pp. 1-32, (2002).
Waters et al., “Intravenous Quetiapine-Cocaine Use (“Q-Ball”)”, Letter to the Editor, Am. J. Psychiatry, 164(1): pp. 173-174 (2007).
Weiss, U., “Derivatives of Morphine. I 14-Dihydroxydihydromorphinone,” J. Am. Chem. Soc. 77, pp. 5891-5892, Nov. 20, 1955.
West, Anthony R., Solid state chemistry and its applications, Wiley, New York, 1988, pp. 358 and 365.
Wikipedia—Dextromethorphan Aug. 12, 2013 (and attached related English-language entry dated Dec. 11, 2013).
Woodburn, K.R. et al., Vascular complications of injecting drug misuse, Br. J. of Surgery, vol. 83, 1996, pp. 1329-1334.
Wu N, et al. Mathematical modeling and in vitro study of controlled drug release via a highly swellable and dissoluble polymer matrix: polyethylene oxide with high molecular weights, J Control Release. Feb. 16, 2005;102(3):569-581.
Yang et al., “Zero-Order Release Kinetics from a Self-Correcting Floatable Asymmetric Configuration Drug Delivery System”, Journal of Pharmaceutical Sciences, vol. 85, No. 2, Feb. 1996, pp. 170-173.
Yang, et al; “Characterization of Compressibility and Compactibility of Poly(ethylene oxide) Polymers for Modified Release Application by Compaction Simulator”; Journal of Pharmaceutical Sciences, vol. 85, No. 10, pp. 1085-1090, Oct. 1996.
Yarbrough et al, Letters to Nature “Extraordinary effects of mortar-and-pestle grinding on microstructure of sintered alumina gel”, Nature 322, pp. 347-349 (Abstract only) (Jul. 24, 1986).
Yeh et al., Stability of Morphine in Aqueous Solution III: Kinetics of Morphine Degradation in Aqueous Solution, Wiley Subscription Services, Inc., Journal of Pharmaceutical Sciences, 50(1):35-42, (1961).
Zeeshan, F and N. Bukhari, “Development and Evaluation of a Novel Modified-Release Pellet-Based Tablet System for the Delivery of Loratadine and Pseudophedrine Hydrochloride as Model Drugs,” AAPS PharmaSciTech 11(2); 910-916 (available on-line May 22, 2010).
Zhang et al., “Properties of Sustained-Release Tablets Prepared by Hot-Melt Extrusion” Pharmaceutical Development and Technolggy 1999, 4(2), 241-250.
Furu et al. “use of ADHD drugs in the Nordic countries: a population-based comparison study,” Acta Psychiatrica Scandinavia, May 2010.
Bannwarth, Bernard, “Will Abuse-Deterrent Formulations of Opioid Analgesics be Successful in Achieving Their Purpose?”, Drugs, 2012, vol. 72, pages.
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2017/070396 dated Sep. 8, 2017.
Extended European Search Report for Application No. EP 16182124.4-1455, dated Jan. 17, 2017.
Cuesov, Drug Production Technology, Khar'kov, 1999, pp. 351-352. (Full transl. attached.).
Sumitomo Seika Chemicals, Co., Ltd, “Certificate of Analysis,” Product: Polyethylene Oxide; Grade: PEO-18NF; Feb. 2, 2016.
Sumitomo Seika Chemicals, Co., Ltd, “Certificate of Analysis,” Product: Polyethylene Oxide; Grade: PEO-20NF; Feb. 3, 2016.
Sumitomo Seika Chemicals, Co., Ltd, “Certificate of Analysis,” Product: Polyethylene Oxide; Grade: PEO-20NF; Jan. 23, 2012.
Sumitomo Seika Chemicals, Co., Ltd, “Certificate of Analysis,” Product: Polyethylene Oxide; Grade: PEO-20NF; May 15, 2013.
Turkington, R., “Amphetamines,” in Chemicals used for Illegal Purposes. A Guide for first Responders to Identify Explosives, Recreational Drugs, and Poisons, 2010, p. 247.
Vezin, W. et al, “Adjustment of precompression force to reduce mixing-time dependence of tablet tensile strength,” J. Pharm. Pharmacol. 1983, 35: 555-558 (Mar. 28, 1983).
Nickerson, B., Sample Preparation of Pharmaceutical Dosage Forms, Springer, New York (2011); Chapter 1, pp. 3-48.
POLYOX Water-Soluble Resins in Pharmaceutical Applications. Dow Chemicals, Published 2004.
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2016/052046 dated Apr. 12, 2016.
Patel, Et. Al., “Poloxamers: A pharmaceutical excipient with therapeutic behaviors,” PharmTech, vol. 1, No. 2, pp. 299-300 (Apr. 2009).
Houston, T.E., et al., “Bite Force and Bite Pressure: Comparison of Humans and Dogs,” http://www.glapbta.com/BFBP.pdf, 2003, pp. 1-7.
Sigma-Aldrich entry for CAS No. 9010-88-2; www.sigmaaldrich.com/catalog/product/aldrich/182249?lang=en&region=US (downloaded Jun. 2018).
Sprockel, et. al, “A melt-extrusion process for manufacturing matrix drug delivery systems,” Int. Journal of Pharmaceutics 155 (1997) 191-199.
Saleem et al. “Formulation and Evaluation of Tramadol hydrochloride Rectal Suppositories,” Indian J. Pharm Sci. Sep.-Oct. 2008; 70(5), 640-644.
Decision of the United States District Court for the Southern District of New York, in In re Endo Pharmaceuticals Inc. and Grünenthal GmbH v. Amneal Pharmaceuticals, LLC et al., Findings of Fact and Conclusions of Law, District Judge Thomas P. Griesa, New York, New York, Jan. 14, 2015.
Decision of the United States District Court for the Southern District of New York, in In re Oxycontin Antitrust Litigation, Purdue Pharma LP v. Teva Pharmaceuticals, Findings of Fact and Conclusions of Law, District Judge Sidney H. Stein, New York, New York, Jan. 14, 2014.
U.S. Court of Appeals, Federal Circuit, Purdue Pharma L.P. v. Epic Pharma, LLC, 117 USPQ2d 1733 (Fed. Cir. 2016).
Al-Angari, A. et al. “The compaction properties of polyethylene glycols,” J Pharm. Pharmacol. (1985) 37:151-153.
Al-Nasassrah et al. , “The effect of an increase in chain length on the mechanical properties of polyethylene glycols,” European Journal of Pharmaceutics and Biopharmaceutics 46 (1998) 31-38.
Anderson, S.L. et al., “A Model for Antiplasticization in Polystyrene,” Macromolecules 28:2944-54 (1995).
Back, D.M.et al., “Ethylene Oxide Polymers”, in Kirk-Othmer Encyclopedia of Chemical Technology. 2000, John Wiley & Sons, Inc., vol. 10, 673-696.
Bailey, F.E., et al., “High Molecular Weight Polymers of Ethylene Oxide” Solution Properties Industrial and Engineering Chemistry, 1958. 50(1): 8-11.
Balogh, E., “Tastes in and Tastes of Paprika,” in Taste: Proceedings of the Oxford Symposium on Food and Cookery 28 (Tom Jaine Ed.) 1988, pp. 25-40.
Baumann, T., “Pain Management,” Pharmacotherapy: A Pathophysiologic Approach (J.T. DiPiro et al. eds., McGraw-Hill 4th ed. 1999), Ch. 56, 1014-1026.
Baumrucker, S.J., “OxyContin, the Media, and Law Enforcement”, American Journal of Hospice & Palliative Care, 18:3 (May/Jun. 2001), 154-156.
Choi, S., et al., “Development of a Directly Compressible Poly(Ethylene Oxide) Matrix for the Sustained-Release of Dihydrocodeine Bitartrate”, Drug Development and Industrial Pharmacy, vol. 29, No. 10, pp. 1045-1052, 2003.
Choi, S., et al., “Hydrophilic Matrix Formulations of Dihydrocodeine Bitartrate with Polyethylene Oxide by Direct Compression,” Proceedings of the 29th Annual Meeting of the Controlled Release Society, in collaboration with the Korea Society for Biomaterials, Minneapolis, 1st Edition, 2002, 984-985.
Ciccone, P. E., “Attempted Abuse of concerta,” Letters to the Editor, J. Am. Acad. Child Adolesc. Psychiatry 41:7 (Jul. 2002).
Controversies in ADHD: A Breakfast Symposium—Concerta.
Crowley, M. et al., Pharmaceutical Applications of Hot-Melt Extrusion: Part I. Drug Dev. & Indus. Pharmacy (2007) 33:909-926.
Crowley, M. et al., “Properties of Hot-Melt Extruded CPM Tablets Using Hydrophilic Polymers,” poster presentation, (2000).
Crowley, M., “Physicochemical and Mechanical Characterization of Hot-Melt Extruded Dosage Forms.” Dissertation presented to the Faculty of the Graduate School of The University of Texas at Austin. (May 2003).
Crowley, M., et al., “Evaluation of a Hot Melt Extrusion Technique using a Hydrophilic Thermal Polymer and Retardant for the Preparation of Extended Release Chlorpheniramine Maleate Tablets,” in American Association of Pharmaceutical Scientists: Indianapolis, IN (2900).
CROWLEY0000001-CROWLEY0000127 (2015).
Davies, N. “Sustained Release and Enteric Coated NSAIDs: Are They Really GI Safe?” J. Pharm. & Pharmaceut. Sci., 2(1):5-14, 1999.
Declaration of Dr. James W. McGinity, dated Oct. 28, 2009; online, retrieved from: http://www.accessdata.fda.gov/dmgsatfda_docs/labeV2013/021121s032lbl.pdf.
Dimitrov, M, et al., “Study of Verapamil hydrochloride release from compressed hydrophilic Polyox-Wsr tablets.” Int'l J Pharmaceutics (1999) 189:105-111.
Dittmer, D.K., et al., “Glue-Sniffing Neuropathies,” Canadian Family Physician 39:1965-1971 (1993).
Donnelly, C.L., “ADHD Medications: Past and Future,” Behavioral Health Management, May/Jun. 2002, 28 & 30.
Dow, “Material Safety Data Sheet: POLYOX(TM) WSR 30” (effective date: Sep. 18, 2001).
Dow, “POLYOX Water-Soluble Resins: Degradation of Water-Soluble Resins,” Technical Data (Oct. 2002).
Drug Bank “Oxymorphone,” 2015; online, available at: www.dmgbank.ca/chugs/db01192 printed Jul. 1, 2015.
Endo Pharmaceuticals Inc. v. Teva Pharmaceuticals USA, Inc. (S.D.N.Y 2015)—Redacted Version.
FDA News Release, “FDA approves abuse-deterrent labeling for reformulated OxyContin,” Apr. 16, 2013, available at http://www.fda.gov/NewsEvents/Newsroom/Press.Announcements/ucm348252.htm.
FDA, “Notice of Determination that OxyContin Drug Products Covered by NDA 20-553 Were Withdrawn From Sale for Reasons of Safety or Effectiveness.” Federal Register, vol. 78, No. 75, Apr. 18, 2013, 23273-23274.
Final Draft Labeling for Concerta Extended-Release Tablets Attachment to Approval Letter (2000); available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2000/21121lbl.pdf.
Greenhill, L.L., et al., “Practice Parameter for the Use of Stimulant Medications in the Treatment of Children, Adolescents, and Adults,” J. Am. Acad. Child Adolesc. Psychiatry, 41:2 Supplement, 26S-49S (Feb. 2002).
Griffith, D., “Potential new ADHD drug creating lots of big hopes,” Sacramento Bee (California), Oct. 30, 2002.
Huang, H. et al., “Preparation of Controlled Release Oral Dosage Forms by Low Temperature Melt Extrusion,” AAPS PharmSci. 2000 2(S1).
Jaffe, S.L., “Failed Attempts at Intranasal Abuse of Concerta,” Letters to the Editor, J. Am. Acad. Child Adolesc. Psychiatry, 41:1 (Jan. 2002).
Jannsen Pharmaceuticals, Inc. CONCERTA Labeling Revisioins, Dec. 12, 2013; online, retrieved from: http://www.accessdata.fda.gov/dmgsatfda_docs/labeV2013/021121s032lbl.pdf.
Joint Claim Construction and Prehearing Statement, dated Jul. 11, 2014. Janssen Pharmaceuticals, Inc. and Grünenthal GmbH v. Actavis Elizabeth LLC and Alkem Laboratories Limited, Civil Action No. 2:13-cv-04507 CCC-MF (D.N.J.), Janssen Pharmaceuticals, Inc. and Grünenthal GmbH v. Roxane Laboratories, Inc., Civil Action No. 2:13-cv-06929 CCC-MF (D.N.J.), and Janssen Pharmaceuticals, Inc. and Grünenthal GmbH v. Alkem Laboratories Limited, Civil Action No. 2:13-cv-07803 CCC-MF (D.N.J.).
Kibbe, Coloring Agents, in Handbook of Pharmaceutical Excipients (3d ed. 2000).
Kidokoro, M. et al. ,“Properties of Tablets Containing Granulations of Ibuprofen and Acrylic Copolymers Prepared by Thermal Processes,” Pharm Dev. and Tech. , 6:263- 275 (2001).
Kinjo, N. et al, “Antiplasticization in the Slightly Plasticized Poly(vinyl chloride),” Polymer Journal 4(2):143-153 (1973).
Larhib, H. et al., “Compressing polyethyelene glycols: the effect of compression pressure and speed,” Int 'l J Pharmaceutics (1997) 147: 199-205.
Lieberman, H., et al., Pharmaceutical Dosage Forms: Tablets, vol. 2, Ch. 5: Granulation Technology and Tablet Characterization (1990), Table of contents and 245-348.
Lyons et al., “Twitch Interpolation in the Assessment of the Maximum Force-Generating Capacity of the Jaw-Closing Muscles in Man,” Arch. Oral. Biol. 41:12, 1161-1168 (1996).
Makki, A, et. Al., Eds., A Dictionary of American Idioms, 4th Ed. Barron's, New York (2004) 342-343.
Markovitz, H., et al. “Calculations of Entanglement Coupling Spacings in Linear Polymers.” Journal of Physical Chemistry, 1962. 66(8): 1567-1568.
McCrum, N., et al., Principles of Polymer Engineering. 2nd ed., New York: Oxford University Press. 447(1997), Chapter 7, 296-351.
McGinity, J.W. et al., “Melt-Extruded Controlled-Release Dosage Forms” in Pharmaceutical Extrusion Technology, Ghebre-Sellassie, I. and Martin, C., Eds., Marcel Dekker, Inc., New York, 2003, Chapter 10, 183-208.
Mcquay, H. et a. “Methods of Therapeutic Trials,” Textbook of Pain 1125-1138 (P.D. Wall & R. Melzack eds., Elsevier 4th ed. 1999), Table of Contents and 1125-1138.
Miura et al., “Comparison of Maximum Bite Force and Dentate Status Between Healthy and Frail Elderly Persons,” J. Oral Rehabilitation, vol. 28 (2001), pp. 592-595.
Miyagawa, Y. et al., “Controlled-release of diclofenac sodium from wax matrix granulate,” Int 'l J Pharmaceutics (1996) 138:215-224.
National Drug Intelligence Center Information Bulletin “OxyContin Diversion and Abuse” Jan. 2001.
Payne, H. et al., Denatonium Benzoate as a Bitter Aversive Additive in Ethylene Glycol and Methanol-Based Automotive Products, SAE Technical Paper 930589, Abstract (1993).
Pilpel, N., et al. “The effect of temperature on the tensile strength and disintegration of paracetamol and oxytetracylcine tablets,” J Pharm Pharmac., 29:389-392 (1977).
POLYOX Water-Soluble Resins NF in Pharmaceutical Applications, Dow Chemical Company, Aug. 2002.
Purdue Pharma LP Material Safety Data Sheet, OxyContin Tablets, 10 mg, 15 mg, 20 mg, 30 mg, 40 mg, 60 mg, Version 16—Sep. 2010; available at www.purduephruma.com/msdss/oxycontin_msds.pdf.
Rauwendaal, Chris, PhD, Responsive Expert Report of Chris Rauwendaal, Ph.D. Regarding Expert Report of Michael M. Crowley, Ph.D., dated Jul. 17, 2015.
Repka, M. et al. Pharmaceutical Applications of Hot-Melt Extrusion: Part II. Drug Dev. & Indus. Pharmacy (2007) 33:1043-1057.
Saravanan, M. et al., “The Effect of Tablet Formulation and Hardness on in Vitro Release of Cephalexin from Eudragit L100 Based Extended Release Tablets,” Biol. Pharm. Bull. (2002) 25(4):541-545.
Seitz, J.A.; et al., “Evaluation of the Physical Properties of Compressed Tablets 1: Tablet Hardness and Friability,” J. of Pharm. Sci. , 54:1353-1357 (1965).
Shah, et al., “Some Effects of Humidity and Heat on the Tableting Properties of Microcrystalline Cellulose Formulations 1,” J. of Pharm. Sci., 57:181-182 (1967).
Singhal, et al., Handbook of Indices of Food Quality and Authenticity (1997), “Capsicum” p. 398-299.
Smith, K.L. et al. “High Molecular Weight Polymers of Ethylene Oxide—Plastic Properties.” Industrial and Engineering Chemistry, 1958. 50(1): 12-16.
Tapentadol Pre-Review Report, Expert Committee on Drug Dependency Thirty-Fifth Meeting Hammamet, Tunisia, Jun. 4-8, 2012, available at http ://www.who.int/medicines/areas/quality_safety/5.2Tapentadolpre-review.pdf.
Tiwari, D., et al., “Evaluation of polyoxyethylene homopolymers for buccal bioadhesive drug delivery device formulations.” AAPS Pharmsci, 1999. 1(3): Article 13.
Wilkins, J.N., “Pharmacotherapy of Schizophrenia Patients with Comorbid Substance Abuse,” Schizophrenia Bulletin, 23:215-228 (1997).
World Health Org., Cancer Pain Relief With a Guide to Opioid Availability (2d ed. 1996)
Yin, T.P., et al., “Viscoelastic Properties of Polyethylene Oxide in Rubber-Like State.” Journal of Physical Chemistry, 1961. 65(3): 534-538.
Zacny, J. et al. Drug & Alcohol Dependence (2003) 69:215-232.
Zhang, F., “Hot-Melt Extrusion as a Novel Technology to Prepare Sustained-Release Dosage Forms,” Dissertation University of Texax at Austin, Dec. 1999.
U.S. Appl. No. 60/287,509, filed Dec. 2, 2002, Joshi et al.
U.S. Appl. No. 60/288,211, filed Sep. 2, 2004, Oshlack et al.
U.S. Appl. No. 60/310,514, filed Apr. 3, 2003, Oshlack et al.
U.S. Appl. No. 60/310,534, filed Apr. 10, 2003, Wright et al.
U.S. Appl. No. 60/376,470, filed Jan. 15, 2004, Ayer et al.
U.S. Appl. No. 60/384,442, filed Dec. 4, 2003, Fink et al.
De Brabander C., et al., “Development and evaluation of sustained release mini-matrices prepared via hot melt extrusion,” Journal of Controlled Release 89 (2003), 235-247.
European Pharmacopoeia 3.0, 2.9.8 “Resistance to Crushing of Tablets”, 1997, p. 135.
Goodman and Gilman, 1985, 7th edition, chapter 29, 274-715.
King, Remington's Pharmaceutical Sciences 17th ed., Chapter 89, p. 1418-1419 (1985).
Pharma Tips ([online] retrieved on Mar. 22, 2018 from http://ww.pharmatips.in/Articles/Pharmaceutics/Tablet/Co-Processed-Directly-Compressed-Adjuvants.aspx May 2011: 10 pages).
Quadros, E. et al., “Evaluation of a novel colonic delivery device in vivo,” STP Pharma Sci. 5, 77-82 (1995).
Theeuwes, Feiix et al., Osmotic Systems for Colon-Targeted Drug Delivery in Colonic Drug Absorption and Metabolism (Peter R. Bieok ed., 1993).
Wooten, Marvin R. et al., Intracerebral Hemorrhage and Vasculitis Related to Ephedrine Abuse, 13 Annals of Neurology 337 (1983).
Romach et al. “Update on tamper-resistant drug formulations,” Drug and Alcohol Dependence, 130 (2013), 13-23.
Agarwal G, et al, “Oral Sustained Release Tablets: An Overview with a Special Emphasis on Matrix Tablet,” American Journal of Advanced Drug Delivery, 2017.
Extended European Search Report for Application No. 17173240.7 dated Nov. 28, 2017.
Misal, R, et al., “Matrix Tablet: A P.romising Technique for Controlled Drug Delivery,” Indo American Journal of Pharmaceutical Research, 2013.
Manish, J., et al, “Sustained Release Matrix Type Drug Delivery System: A Review,” Journal of Drug Delivery & Therapeutics; 2012, 2(6) 142-148.
“Low Substituted Hydroxypropyl Celluslose”, Drugs.com, from https://www.drugs.com/inactive/low-substitute-hydroxypropyl-cellulose-581.html (2018).
Patrick, K., et al., “Pharmacology of Methylphenidate, Amphetamine Enantiomers and Pemoline in Attention-Deficit Hyperactivity Disorder,” Human Psychopharmacology, vol. 12, 527-546 (199).
BASF the chemical company, Kollicoat IR Technical information, Feb. 2013, p. 1-14 (2013).
Befort et al., “The Conserved Asparatate Residue in the Third Putative Transmember Domain,” Molecular Pharmacology 1996: 49:216-223 (1996).
Domino E.F. (1991) Nicotine: A Unique Psychoactive Drug. In: Adlkofer F., Thurau K. (eds. Effects of Nicotine on Biological Systems. APS Advances in Pharmacological Sciences. Birkhaeuser Basel (1991).
Fitzpatrick, J., “The influence of Superdisintegrants on Immediate Release,” by Pharmaceutical Technology Editions [online] retrieved from http://www.pharmatech.com/influence-superdisintegrants-immediate-release; vol. 21, issue 6 (Jun. 1, 2011).
Kolar et al., “Treatmen of adults with attention-deficit/hyperactivity disorder,” Neuropsychiatric Disease and Treatment 2008:4(3):389-403.
Rasmussen, N. “America's First Amphetamine Epidemic 1929-1971.” American Journal of Public Health 2008:98(6): 974-985.
Suzuki, T, “Blood-brain barrier transport of opioid analgesics,” Abstract, Yakugaki Zasshi; 131(10):1445-51 (2011).
Weinhold, et al. “Buprenorphine alone and in combination with naloxone in non-dependent humans.” Drug & Alcohol Dependence 30.3 (1992): 263-274.
Evekeo, (Amphetame Sulfate) for treating patients with ADHD website ([online] https://www.evekeo.com.about-evekeo; 2019:5 pages), 2019.
Lurie et al., “Chiral Resolution of Cationic Drugs of Forensic Interest,” (Analytical Chemistry 1994; 66(22): 4019-4026.
Brzeclo, W.,et al., “The Advent of a new Pseudoephedrine Product to Combat Methampetamine Abuse,” Am J Drug Alcohol Abuse, 2013: 39(5): 284-290.
Kelly, C. et al, “Methamphetamine Synthesis Inhibition: Dissolving Metal Reductions,” Johns Hopkins Univ. Applied Physics Lab., 2015, 1-10.
Presley, B. et al., “Efficiency of Extraction and Conversion of Pseudoephedrine to Methamphetamine from Tamper-Resistant and Non-Tamper-Resistant Formulations,” Journal of Pharmaceutical and Biomedical Analysis , 2018, 16-22.
Targin(R) Product Monograph. Revised Mar. 1, 2016.
Claffey et al, “Amphetamine Adducts of Melanin Intermediates Demonstrated by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry,” Chem. Res. Toxicol. 2001, 14, 1339-1344.
Evans, J.C, et. Al. “Optimal tocopherol concentrations to inhibit soybean oil oxidation,” Journal of The Amencan Oil Chemists' Society 79.1 (2002): 47-51.
Quinn, M.E. “Alpha Tocopherol” in Handbook of Pharmaceuical Excipients, Sixth Edition (2009), 31-33.
Qi et al, “An Investigation into the Crystallisation Behavior of an Amorphous Cryomilled Pharmaceutical Material Above and Below the Glass Transition Temperature,” Journal of Pharmaceutical Sciences, 2009, 196-208.
European Pharmacopeia, 7th Ed. 2.2.8 and 2.2.10, 27ff. (2010).
Ely et al., “Lithium-Ammonia Reduction of Ephedrine to Methamphetamine: An Unusual Clandestine Synthesis,” Technical Note, 1990, 720-723.
Jedinger, N., et al., Eur. J. Pharm. Biopharm 87 (2014), 217-226.
Kunalan et al., “Investigation of the Reaction Impurities Associated with Methylamphetamine Synthesized using the Nagai Method,” Anal. Chem. 2012, 84, 5744-52.
Lee et al., “Analysis of the impurities in the metamphetamine synthesized by thee different methods from ephedrine and pseudoephedrine,” Forensic Science International 161 (2006), 209-215.
Pintauro, Nicholas, D., Food Flaboring Proccesses, Table of Content. Park Ridge, NJ and London, UK, 1976.
Person et al., Structural Determination of the Principal Byproduct of the Lithium-Ammonia Reduction Method of Methamphetamine Manufacture, J Forensic Sci, Jan. 2005, vol. 50, No, 1, 87-95.
POLYOX, 2004, online retrieved on Oct. 15, 2018.
Salouros et al., Isolation and Identification of Three By-Products Found in Methylamphetamine Synthesized by the Emde Route2010, 605-615.
Skinner, Harry F., “Methamphetamine Synthesis via Hydriodic Acid/Red Phosphorus Reduction of Ephedrine,” Forensic Science International, 48 (1990) 123-134.
Gaitondf, B. “General Principles of Drug Action”, 1967, p. 48.
Thumma et al., “Influence of Plasticizers on the Stability of a Prodrug of D9-Tetrahydrocannabinol Incorporated in poly(Ethyelen Oxide) Matrices”, Eur J. Pharm Biopharm. Oct. 2008 (70(2): 605-614.
Related Publications (1)
Number Date Country
20180177732 A1 Jun 2018 US
Continuations (4)
Number Date Country
Parent 14841829 Sep 2015 US
Child 15901063 US
Parent 14192916 Feb 2014 US
Child 14841829 US
Parent 13343846 Jan 2012 US
Child 14192916 US
Parent PCT/EP2010/004461 Jul 2010 US
Child 13343846 US