The present invention is directed to a stopper device for the storage of an opened container of wine, such as a wine bottle whose cork has been removed and some of its contents decanted. It has been recognized that wine, particularly red wine, once opened and exposed to ambient air, oxidizes thus changing the wine's sought after characteristic taste. The present invention aides in the preservation of wine in opened containers and does so conveniently.
Virtually anyone who routinely drinks wine notices that if a bottle of wine is uncorked and not completely consumed, the wine contained within the bottle changes in its physical and chemical characteristics making the wine much less enjoyable to consume as time passes. This is caused by oxidation, that is, the bonding of oxygen molecules to oxidisable compounds present within the wine. Oxidation of wine results in the production of brown compounds and browning of red pigments with loss of color. It further results in the production of aldehydes and desirable grape (primary), fermentation (secondary) and aging (tertiary) derived flavors. The product of new flavor compounds can mask the desirable flavor compounds.
Such oxidisable compounds in wine include phenolics, alcohols and some flavor aldehyde compounds. Although wines suffer from oxidation, because of the high concentration of phenolics extracted from the grape skins during red wine production, red wine has a high reserve of oxidisable compounds and hence appears more sensitive to oxidative spoilage. Sulphur dioxide added to red wine loosely binds to red wine pigments decolorizing the pigment molecules and rendering a portion of the sulphur dioxide ineffective. The sulphur dioxide is also used to inhibit microbial growth and is thus a highly desirable additive for use in red wines.
It has thus been recognized to be highly desirable to limit or entirely prevent oxygen, such as that contained in ambient air, from contacting the surface of a food product, such as wine, in order to maintain the product's desirable flavor and other physical characteristics.
There have been rather rudimentary attempts to inject an inert gas in the free space of an opened wine bottle in order to displace air. There have also been syringe-like products which enable the user to withdraw air from the bottle's free space. However, such devices have proven to be ineffective in the flow of inert gas to the free space above the wine and in removal of the ambient air to substantially reduce oxidation.
It is thus an object of the present invention to provide a stopper, which is simple to employ, can be employed with virtually any wine bottle and which can greatly suppress oxidation of wine contained therein.
This and further objects will be more readily appreciated when considering the following disclosure and appended drawings.
The present invention is directed to a stopper device sized to fit within the neck of an opened wine bottle. The device includes a neck portion joined to a head portion, the latter extending external to the wine bottle during use. In use, pressurized inert gas introduced into the primary orifice will move through the stopper thus allowing the inert gas to be introduced within open space above the wine meniscus. The stopper is a rotary cap which essentially opens and closes the gas injection path and allows the gas to pass in to the wine bottle. The primary gas injection path is selectively blocked according to the position of the orifice. In the open position gas is allowed to be injected in to the bottle while a separate vent air path prevents the bottle from overpressurizing during the injection of the gas by facilitating a reduction of the amount of air in the bottle. In the closed orientation, both the gas injection path and the vent path are sealed thus isolating the contents of the bottle from the external atmosphere. Because inert gas, such as argon, is heavier than air, air will be displaced through the vent path. Thus, by the introduction of inert gas through the primary orifice, inert gas can be conveniently, accurately and easily introduced to the free space within the wine bottle above the wine meniscus thus suppressing oxidation.
As shown in
In operation, any suitable, commercially available source of inert gas can be employed. Typically, such devices include a pressurized cartridge of an inert gas such as argon, having a trigger device and tube for directing the inert gas to an end point location. This tube would be inserted within the plunger 14, fitting snugly therein through the use of O-rings 15 positioned, as shown, proximate the entry port of head portion 11.
Prior to the introduction of inert gas, the stopper is oriented in its open position by moving the plunger 14 vertically. In this embodiment the cap is rotated radially thus translating the plunger 14 long the axis of the plunger. The plunger may be mechanically or electromechanically translated in a variety of different ways. During gas injection the gas travels through the plunger plenum 16 and exits radially through orifice 18 (
When gas is injected a positive pressure is created inside the bottle. The positive pressure causes air inside the bottle to be forced out through a separate ventilation path. The ventilation path is designed such that the exiting air does not mix with the incoming inert gas. Plunger cap 22 is physically connected to plunger 14. When the stopper is in its open position, plunger cap 22 and its plunger vent 56 (
By having a separate vent path, inert gas is allowed to flow through the plunger 14 and into the subject wine bottle thus introducing inert gas above the meniscus of the wine contained therein. The inert gas would then be caused to blanket the wine meniscus as it is heavier than air. At the same time air inside the bottle is allowed to exit the bottle via a separate vent path. This vent prevents the bottle from overpressurizing and allows inert gas to flow in and the air to flow out.
When gas injection has been completed the outer cap 26 is rotated to its closed position. This axially actuates plunger 14 to its lower position. (
Although the present invention was discussed in terms of the preservation of wine, it can be employed to extend the shelf life of virtually any product made the subject of oxidive deterioration. In other words, the present invention can introduce an inert gas to the interior of a container and substantially prevent the inert gas from being inadvertently dislodged there from and the product preserved thereby.
The present application claims priority to provisional patent application Ser. No. 60/931,870 filed on May 25, 2007.
Number | Date | Country | |
---|---|---|---|
60931870 | May 2007 | US |