Oxidative homo-coupling reactions of aryl boronic acids using a porous copper metal-organic framework as a highly efficient heterogeneous catalyst

Information

  • Patent Grant
  • 9045387
  • Patent Number
    9,045,387
  • Date Filed
    Tuesday, July 27, 2010
    14 years ago
  • Date Issued
    Tuesday, June 2, 2015
    9 years ago
Abstract
The disclosure provides methods for the use of open metal frameworks to catalyze coupling reactions.
Description
TECHNICAL FIELD

The disclosure provides methods for the use of open metal frameworks to catalyze coupling reactions.


SUMMARY

The disclosure provides methods and composition comprising open frameworks with accessible metal sites (open-metal-sites) for catalyzing coupling reactions. The disclosure includes all open framework materials that are constructed from organic links bridged by multidentate organic or inorganic cores. Including all classes of open framework materials: covalent organic frameworks (COFs), zeolitic imidozolate frameworks (ZIFs), metal organic polyhedral (MOP) and metal organic frameworks (MOFs) and all possible resulting net topologies as described within the reticular chemistry structure resource.


The disclosure provides a method of using noble metal-based metal organic framework (MOP) or metal organic polyhedral (MOP) such as Cu-based and Pd-based frameworks as the catalyst for homo-coupling synthesis of biaryls. Under un-optimized conditions MOF and/or MOP framework reactions show up to 95% conversion and 90% selectivity. The MOF and/or MOP catalyst is proved to be chemically stable and has the long-sought-after heterogeneous catalytic characteristics.


In one embodiment, a noble metal-based homocoupling of arylboronic acids to synthesize substituted biaryls is provided. Such methods replace traditional methods such as dimerization of aryl-diazonium salts in Gomberg-Bachman reactions and homocoupling of aryl-halides in Ullmann reactions.


The methods and compositions of the disclosure can be used in catalysis and developing new approach for drug precursor synthesis.


The disclosure provides a method for synthesizing biaryls comprising contacting a metal organic framework (MOF) or metal organic polyhedral (MOP) with an aryl boronic acid compound under conditions wherein the MOF or MOP catalyze the synthesis of the biaryl through a homo-coupling reaction. In some embodiment, the method further comprises cupric acetate and the MOF or MOP comprises the metal copper. In yet another embodiment, the aryl bornic acid has the general structure:




embedded image



wherein R is selected from the group consisting of H, NO2, CN, Cl, t-Bu, N(CH3)2 and substituted or unsubstituted napthyl. In one embodiment, the napthyl has the structure




embedded image



In yet another embodiment, the MOF or MOP comprises a linking ligands selected from the group consisting of:




embedded image


embedded image



wherein R1-R15 may or may not be present and if present are independently selected from the group consisting of: —NH2, —CN, —OH, ═O, ═S, —SH, —P, —Br, —Cl, —I, —F,




embedded image



wherein X=1, 2, or 3. In yet another embodiment the linking moiety is




embedded image



wherein R1-R3 may or may not be present and if present are independently selected from the group consisting of: —H, —NH2, —CN, —OH, ═O, ═S, —SH, —P, —Br, —Cl, —I, —F,




embedded image



wherein X=1, 2, or 3. In yet another embodiment, the MOF comprises copper. In a specific embodiment, the MOF comprises a Cu3(BTC)2 (where BTC is benzene-1,3,5-tricarboxylate). In other embodiments, the MOF comprises a metal selected from the group consisting of Cr(II), Pb(II), Mn(IV), Ti(II) and Ni(II).


The disclosure also provide a reaction mixture comprising a metal organic framework (MOF) or metal organic polyhedral (MOP) and an aryl boronic acid. In some embodiments, the mixture further comprises cupric acetate. In some embodiments, the aryl bornic acid has the general structure:




embedded image


wherein R is selected from the group consisting of H, NO2, CN, Cl, t-Bu, N(CH3)2 and substituted or unsubstituted napthyl. In one embodiment, the napthyl has the structure




embedded image



In yet other embodiment, the MOF or MOP comprises a linking ligands selected from the group consisting of:




embedded image


embedded image



wherein R1-R15 may or may not be present and if present are independently selected from the group consisting of: —NH2, —CN, —OH, ═O, ═S, —SH, —P, —Br, —Cl, —I, —F,




embedded image



wherein X=1, 2, or 3. In one embodiment, the linking moiety is




embedded image



wherein R1-R3 may or may not be present and if present are independently selected from the group consisting of: —H, —NH2, —CN, —OH, ═O, ═S, —SH, —P, —Br, —Cl, —I, —F,




embedded image



wherein X=1, 2, or 3. In one embodiment, the MOF comprises copper. In a specific embodiment, the MOF comprises a Cu3(BTC)2 (where BTC is benzene-1,3,5-tricarboxylate). In yet other embodiments, the MOF comprises a metal selected from the group consisting of Cr(II), Pb(II), Mn(IV), Ti(II) and Ni(II).


The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.





DESCRIPTION OF DRAWINGS


FIG. 1A-D shows atomic connectivity and structure of crystalline Cu3(BTC)2. (A) Cu sites in as-synthesized (left) and activated Cu3(BTC)2 frameworks; (B) BTC link; (C) structure of as-synthesized Cu3(BTC)2; and (D) structure of activated Cu3(BTC)2. Cu, O and C are shown. All H atoms are omitted for clarity.



FIG. 2 shows a comparison of the yields for three cycles of the homo-coupling of 4-cyanophenylboronic acid using recycled Cu3(BTC)2.



FIG. 3 shows the proposed mechanism for the Oxidative Homo-coupling catalyzed by Cu3(BTC)2.



FIG. 4 shows a comparison of the experimental PXRD patterns of fresh Cu3(BTC)2 (bottom) and Cu3(BTC)2 after homo-coupling of phenylboronic acid (top).



FIG. 5 shows a comparison of the experimental PXRD patterns of fresh Cu3(BTC)2 (bottom), and Cu3(BTC)2 after homo-coupling of 4-nitrophenylboronic acid (top).



FIG. 6 shows a comparison of the experimental PXRD patterns of fresh Cu3(BTC)2 (bottom), and Cu3(BTC)2 after homo-coupling of 4-cyanophenylboronic acid (top).



FIG. 7 shows a comparison of the experimental PXRD patterns of fresh Cu3(BTC)2 (bottom), and Cu3(BTC)2 after homo-coupling of 4-chlorophenylboronic acid (top).



FIG. 8 shows a comparison of the experimental PXRD patterns of fresh Cu3(BTC)2 (bottom), and Cu3(BTC)2 after homo-coupling of 4-tert-butylphenylboronic acid (top).



FIG. 9 shows a comparison of the experimental PXRD patterns of fresh Cu3(BTC)2 (bottom), and Cu3(BTC)2 after homo-coupling of 4-(dimethylamino)-phenylboronic acid (top).



FIG. 10 shows a comparison of the experimental PXRD patterns of fresh Cu3(BTC)2 (bottom), and Cu3(BTC)2 after homo-coupling of 1-naphthylboronic acid (top).



FIG. 11 shows a comparison of the experimental PXRD patterns of Cu3(BTC)2 after first cycle homo-coupling of 4-cyanophenylboronic acid (bottom), Cu3(BTC)2 after second cycle (middle), and Cu3(BTC)2 after third cycle (top).



FIG. 12 shows FT-IR spectrum of fresh Cu3(BTC)2.



FIG. 13 shows FT-IR spectrum of benzene-1,3,5-tricarboxylic acid (BTC).



FIG. 14 shows FT-IR spectrum of recovered solid after the homo-coupling of phenylboronic acid.



FIG. 15 shows FT-IR spectrum of recovered liquid after the homo-coupling of phenylboronic acid.





DETAILED DESCRIPTION

As used herein and in the appended claims, the singular forms “a,” “and,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a framework” includes a plurality of such frameworks and reference to “the metal” includes reference to one or more metals and equivalents thereof known to those skilled in the art, and so forth.


Also, the use of “or” means “and/or” unless stated otherwise. Similarly, “comprise,” “comprises,” “comprising” “include,” “includes,” and “including” are interchangeable and not intended to be limiting.


It is to be further understood that where descriptions of various embodiments use the term “comprising,” those skilled in the art would understand that in some specific instances, an embodiment can be alternatively described using language “consisting essentially of” or “consisting of.”


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure belongs. Although any methods and reagents similar or equivalent to those described herein can be used in the practice of the disclosed methods and compositions, the exemplary methods and materials are now described.


All publications mentioned herein are incorporated herein by reference in full for the purpose of describing and disclosing the methodologies, which are described in the publications, which might be used in connection with the description herein. The publications discussed above and throughout the text are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior disclosure.


The synthesis of functionalized biaryls is currently an area of great interest and importance, as these compounds account for some of the most critical structural units in natural products, drugs and functional materials. Homo-coupling of arylboronic acids using noble metal catalysts has proved to be a useful method for the synthesis of symmetrical biaryls. Although efficient, their cost and stability dramatically limit the viability of Pd-based catalysts in many applications. Another method employs Gomberg-Bachmann and Ullmann reactions which require high temperatures (ca. 200° C.) and thus severely limit their compatibility with many functional groups (—NO2 and —CN).


The disclosure demonstrates that MOF and MOP structures serve as an outstanding alternative to precious metal dominated Suzuki homo-coupling reactions with comparable yield and selectivity. The methods and compositions of the disclosure also show great potential of MOF chemistry as it introduces desired complexity and functionality along with exceptional porosity. Specifically, such complexity offered by uniquely connected active centers behave in a favored pattern, which is unprecedented comparing to its molecular counter parts. The catalyst may also be modified in a way to allow the Chan-Lam Coupling, which is a side product of the desired homocoupling reaction and is equally valuable for synthesis.


The disclosure demonstrates the methods and compositions of the disclosure on a group of selected MOFs/MOPs—MOF-5, MOF-177, MIL-53, MOF-199 and MOP-OH (Cu-based). However, it will be apparent from the disclosure other MOF and MOP frameworks that can be utilized in methods of the disclosure.


The disclosure provides a method for homo-coupling synthesis of biaryls using a metal-containing metal-organic frameworks (MOFs), e.g., Cu3(BTC)2 (where BTC is benzene-1,3,5-tricarboxylate), as the catalyst. Under un-optimized conditions, use of this MOF catalyst in the homo-couplings of arylboronic acids functionalized with, e.g., —H, —NO2, —CN, —Cl, -t-Bu- and -Me2N, and 1-naphthylboronic acid result in up to 92% yield. The MOF catalyst offers remarkably superior attributes as a heterogeneous catalyst that are endowed by its highly ordered and open structure; aspects that put its performance on par with the homogeneous catalysts. In addition the MOF catalyst has all the advantages associated with the variations that can be made on the MOF constituents. A description of some of these advantages and attributes are shown in Table 1.









TABLE 1







Comparison of Pd-based catalyst and MOF


catalyst




embedded image















Pd-based Catalyst
MOF Catalyst





Example
(SiPr)Pd(OAc)2(H2O)(4)
Cu3(BTC)2


Metal
Pd(II)
Cu(II)





Ligand


embedded image




embedded image







Oxidant


embedded image


Air





Catalyst Type
Homogeneous
Heterogenous


Reusability
Low
High


Active Site
High
High


Accessibility




Diffusion Rate
High
High


Structural
Medium
High


Tunability









Other transition metals, such as Cr(II), Pb(II), Mn(IV), Ti(II) and Ni(II) have been used to accelerate this homo-coupling reaction, however other co-catalysts and environmentally harmful additives need to be added to facilitate efficient turnover. Cu-based compounds are known to catalyze some coupling reactions (e.g., Glaser Coupling and Chan-Lam Coupling) under homogeneous conditions and consequently high yields can be achieved. In order to maintain such performance in heterogeneous catalytic systems, materials with well-defined porous structures with mono-dispersed and fully accessible metal centers are needed. MOFs are a new class of porous crystals with exceptional porosity and record-breaking surface areas (up to 5,900 m2 g−1).


To illustrate embodiments of the disclosure, Cu3(BTC)2, a copper-based MOF, was used as the catalyst for various oxidative homo-coupling reactions. As shown in FIG. 1, the structure of this MOF is constructed from copper paddlewheel secondary building units (SBUs). The 12 carboxylate oxygen atoms from the two benzenetricarboxylic acid (BTC) groups bind to four coordination sites for each of the three Cu ions of the formula unit. Each metal completes its pseudooctahedral coordination sphere with an axial H2O ligand along the Cu—Cu axis. Water molecules can be easily removed by heating under vacuum (FIG. 1A), which leads to open copper centers that are mono-dispersed throughout the pores (FIG. 1D). The copper centers have been shown to be Lewis acidic and they can be coordinated by various molecules. Such open metal centers in highly porous open framework may accelerate the initial coordination of amine and the following transmetallation.



FIG. 3 depicts a proposed mechanism of action of the MOF in the synthesis of biaryls. The copper paddlewheel in the framework is coordinated by the base, followed by being oxidized by O2 to form the catalytic copper (III) species I. Transmetallation of I with aryl boronic acid gives rise to complex II. The subsequent reductive elimination at the copper center leads to the Chan-Lam coupling product R—NHR′ and the copper (I) species IV. On the other hand, a second transmetallation of complex II with aryl boronic acid produces III, which subsequently forms species IV and the homo-coupling product R—R by a reductive elimination reaction. Hydrolysis of species IV forms intermediate V and borate anion (evidenced by an 11B NMR shift of 3.69 ppm).[13] The catalytic cycle was fulfilled by an oxidation reaction of V to regenerate the catalytic active species I.


As noted the Cu(II) core is linked using a linking ligand or moiety. The linking ligand or moiety can be any number of different compounds as described below. In the specific examples provided herein, the linking ligand/moiety is a BTC compound. Furthermore, it will be recognized that the linking ligand/moiety may be further functionalized as described below.


As used herein, a “core” refers to a repeating unit or units found in a framework. Such a framework can comprise a homogenous repeating core or a heterogeneous repeating core structure. A core comprises a metal or cluster of metals and a linking moiety. A plurality of cores linked together defines a framework.


The term “cluster” refers to identifiable associations of 2 or more atoms. Such associations are typically established by some type of bond—ionic, covalent, Van der Waal, and the like.


A “linking cluster” refers to a one or more reactive species capable of condensation comprising an atom capable of forming a bond between a linking moiety substructure and a metal group or between a linking moiety substructure and another linking moiety substructure. Examples of such species are selected from the group consisting of a boron, oxygen, carbon, nitrogen, and phosphorous atom. In some embodiments, the linking cluster may comprise one or more different reactive species capable of forming a link with a bridging oxygen atom. For example, a linking cluster can comprise CO2H, CS2H, NO2, SO3H, Si(OH)3, Ge(OH)3, Sn(OH)3, Si(SH)4, Ge(SH)4, Sn(SH)4, POSH, AsO3H, AsO4H, P(SH)3, As(SH)3, CH(RSH)2, C(RSH)3, CH(RNH2)2, C(RNH2)3, CH(ROH)2, C(ROH)3, CH(RCN)2, C(RCN)3, CH(SH)2, C(SH)3, CH(NH2)2, C(NH2)3, CH(OH)2, C(OH)3, CH(CN)2, and C(CN)3, wherein R is an alkyl group having from 1 to 5 carbon atoms, or an aryl group comprising 1 to 2 phenyl rings.


A “linking moiety” refers to a mono-dentate or polydentate compound that, through a linking cluster, bind a metal or a plurality of metals, respectively. Generally a linking moiety comprises a substructure having an alkyl or cycloalkyl group, comprising 1 to 20 carbon atoms, an aryl group comprising 1 to 5 phenyl rings, or an alkyl or aryl amine comprising alkyl or cycloalkyl groups having from 1 to 20 carbon atoms or aryl groups comprising 1 to 5 phenyl rings, and in which a linking cluster is covalently bound to the substructure. A cycloalkyl or aryl substructure may comprise 1 to 5 rings that comprise either of all carbon or a mixture of carbon with nitrogen, oxygen, sulfur, boron, phosphorus, silicon and/or aluminum atoms making up the ring. Typically the linking moiety will comprise a substructure having one or more carboxylic acid linking clusters covalently attached.


As used herein, a line in a chemical formula with an atom on one end and nothing on the other end means that the formula refers to a chemical fragment that is bonded to another entity on the end without an atom attached. Sometimes for emphasis, a wavy line will intersect the line.


In one embodiment, the linking moiety substructure is selected from any of the following:




embedded image


embedded image



wherein R1-R15 may or may not be present and if present are independently selected from the group consisting of: —NH2, —CN, —OH, ═O, ═S, —SH, —P, —Br, —Cl, —I, —F,




embedded image



wherein X=1, 2, or 3.


In some embodiments, the framework used in the catalysis has a zeolitic structure. In such embodiments, the organic link typically comprises at least one 5-membered ring with a nitrogen in the one position and three position of the 5-membered ring, which forms the linking moiety or bridge between two metal ions. The imidazole ring can be further functionalized to form benzimidazoles, triazole, bensotriazole, tetrazole, guanine, xanthine and hypoxanthine derivatives. For example, the following linking moieties can be used in the formation of catalytic frameworks of the disclosure:




embedded image



wherein R-R4 is —H, —NH2, —COOH, —CN, —NO2, —F, —Cl, —Br, —S, —O, —SH, —SO3H, —PO3H2, —OH, —CHO, —CS2H, —SO3H, —Si(OH)3, —Ge(OH)3, —Sn(OH)3, —Si(SH)4, —Ge(SH)4, —Sn(SH)4, —PO3H, —AsO3H, —AsO4H, —P(SH)3, —As(SH)3, —CH(RSH)2, C(RSH)3, —CH(RNH2)2, —C(RNH2)3, —CH(ROH)2, —C(ROH)3, CH(RCN)2, —C(RCN)3




embedded image


In yet another embodiment, the substructure can comprise substituted or unsubstituted aromatic rings, substituted of unsubstituted heteroacromatic rings, substituted or unsubstituted nonaromatic rings, substituted or unsubstituted nonaromatic heterocyclic rings, or saturated or unsaturated, substituted or unsubstituted, hydrocarbon groups. The saturated or unsaturated hydrocarbon groups may include one or more heteroatoms. For example a linking moiety can comprise the following structures:




embedded image



wherein A1, A2, A3, A4, A5, and A6 are each independently absent or any atom or group capable of forming a sable ring structure and R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, and R16 are each independently H, alkyl, aryl, OH, alkoxy, alkenes, alkynes, phenyl and substitutions of the foregoing, sulfur-containing groups (e.g., thioalkoxy), silicon-containing groups, nitrogen-containing groups (e.g., amides), oxygen-containing groups (e.g., ketones, and aldehydes), halogen, nitro, amino, cyano, boron-containing groups, phosphorus-containing groups, carboxylic acids, or esters. In one embodiment, R1, R2, R3, R4 are each independently selected from the group consisting of NH2, CN, OH, ═O, ═S, SH, P, Br, CL, I, F,




embedded image



wherein X=1, 2, or 3.


All of the foregoing linking moieties that possess appropriate reactive groups can be chemically transformed by a suitable reactant post framework synthesis to further functionalize the framework. By modifying the organic links within the framework post-synthesis, access to function groups there were previously inaccessible or accessible only through great difficulty and/or cost is possible and facile. Post framework reactants include all known organic transformations and their respective reactants; rings of 1-20 carbons with functional groups including atoms such as N, S, O. All metals that may chelate to and add functional groups; or a combination of previously existing and newly added functional groups. All reactions that result in tethering an organometallic complex to the framework for use, for example, as a heterogenous catalyst.


A post framework reactant refers to any organic reactant. Rings of 1-20 carbons with functional groups comprising atoms such as N, S, O, and P are useful. In addition, metal and metal containing compounds that may chelate to and add functional groups or a combination of previously existing and newly added functional groups are also useful. Reactions that result in the tethering of organometallic complexes to the framework for use as, for example, a heterogeneous catalyst can be used. For example, converting a reactive side group in a linking agent to an alcohol followed by reacting the group with an alkali earth metal to generate a metal alkoxide is provided.


Examples of post framework reactants include, but are not limited to, heterocyclic compounds. In one embodiment, the post framework reactant can be a saturated or unsaturated heterocycle. The term “heterocycle” used alone or as a suffix or prefix, refers to a ring-containing structure or molecule having one or more multivalent heteroatoms, independently selected from N, O and S, as a part of the ring structure and including at least 3 and up to about 20 atoms in the ring(s). Heterocycle may be saturated or unsaturated, containing one or more double bonds, and heterocycle may contain more than one ring. When a heterocycle contains more than one ring, the rings may be fused or unfused. Fused rings generally refer to at least two rings share two atoms there between. Heterocycle may have aromatic character or may not have aromatic character. The terms “heterocyclic group”, “heterocyclic moiety”, “heterocyclic”, or “heterocyclo” used alone or as a suffix or prefix, refers to a radical derived from a heterocycle by removing one or more hydrogens there from. The term “heterocyclyl” used alone or as a suffix or prefix, refers a monovalent radical derived from a heterocycle by removing one hydrogen there from. The term “heteroaryl” used alone or as a suffix or prefix, refers to a heterocyclyl having aromatic character. Heterocycle includes, for example, monocyclic heterocycles such as: aziridine, oxirane, thiirane, azetidine, oxetane, thietane, pyrrolidine, pyrroline, imidazolidine, pyrazolidine, pyrazoline, dioxolane, sulfolane 2,3-dihydrofuran, 2,5-dihydrofuran tetrahydrofuran, thiophane, piperidine, 1,2,3,6-tetrahydro-pyridine, piperazine, morpholine, thiomorpholine, pyran, thiopyran, 2,3-dihydropyran, tetrahydropyran, 1,4-dihydropyridine, 1,4-dioxane, 1,3-dioxane, dioxane, homopiperidine, 2,3,4,7-tetrahydro-1H-azepine homopiperazine, 1,3-dioxepane, 4,7-dihydro-1,3-dioxepin, and hexamethylene oxide. For example, heterocycles useful in the methods of the disclosure include:




embedded image


In addition, heterocycle includes aromatic heterocycles (heteroaryl groups), for example, pyridine, pyrazine, pyrimidine, pyridazine, thiophene, furan, furazan, pyrrole, imidazole, thiazole, oxazole, pyrazole, isothiazole, isoxazole, 1,2,3-triazole, tetrazole, 1,2,3-thiadiazole, 1,2,3-oxadiazole, 1,2,4-triazole, 1,2,4-thiadiazole, 1,2,4-oxadiazole, 1,3,4-triazole, 1,3,4-thiadiazole, and 1,3,4-oxadiazole.


A framework can undergo post synthetic modification by reacting the framework with a reactive species. For example, if a side group on a linking moiety comprises, for example, NH2 reaction with an aziridine containing compound results in opening of the reactive species ring depicted generally by:




embedded image


Using such methods variations and functionalized frameworks can be generated. As shown above, the reaction of the linking moiety with aziridine results in the addition of a side group to the linking moiety. In such a framework the reactive side group can extend into the pores of the framework thereby modifying their size or charge.


The preparation of the frameworks of the disclosure can be carried out in either an aqueous or non-aqueous system. The solvent may be polar or non-polar as the case may be. The solvent can comprise the templating agent or the optional ligand containing a monodentate functional group. Examples of non-aqueous solvents include n-alkanes, such as pentane, hexane, benzene, toluene, xylene, chlorobenzene, nitrobenzene, cyanobenzene, aniline, naphthalene, naphthas, n-alcohols such as methanol, ethanol, n-propanol, isopropanol, acetone, 1,3,-dichloroethane, methylene chloride, chloroform, carbon tetrachloride, tetrahydrofuran, dimethylformamide, dimethylsulfoxide, N-methylpyrolidone, dimethylacetamide, diethylformamide, thiophene, pyridine, ethanolamine, triethylamine, ethlenediamine, and the like. Those skilled in the art will be readily able to determine an appropriate solvent based on the starting reactants and the choice of solvent is not believed to be crucial in obtaining the materials of the disclosure.


Templating agents can be used in the methods of the disclosure. Templating agents employed in the disclosure are added to the reaction mixture for the purpose of occupying the pores in the resulting crystalline base frameworks. In some variations of the disclosure, space-filling agents, adsorbed chemical species and guest species increase the surface area of the metal-organic framework. Suitable space-filling agents include, for example, a component selected from the group consisting of: (i) alkyl amines and their corresponding alkyl ammonium salts, containing linear, branched, or cyclic aliphatic groups, having from 1 to 20 carbon atoms; (ii) aryl amines and their corresponding aryl ammonium salts having from 1 to 5 phenyl rings; (iii) alkyl phosphonium salts, containing linear, branched, or cyclic aliphatic groups, having from 1 to 20 carbon atoms; (iv) aryl phosphonium salts, having from 1 to 5 phenyl rings; (v) alkyl organic acids and their corresponding salts, containing linear, branched, or cyclic aliphatic groups, having from 1 to 20 carbon atoms; (vi) aryl organic acids and their corresponding salts, having from 1 to 5 phenyl rings; (vii) aliphatic alcohols, containing linear, branched, or cyclic aliphatic groups, having from 1 to 20 carbon atoms; or (viii) aryl alcohols having from 1 to 5 phenyl rings.


Crystallization can be carried out by leaving the solution at room temperature or in isothermal oven for up to 300° C.; adding a diluted base to the solution to initiate the crystallization; diffusing a diluted base into the solution to initiate the crystallization; and/or transferring the solution to a closed vessel and heating to a predetermined temperature.


The frameworks of the disclosure can be used in various devices and systems to perform the catalysis described and depicted in FIG. 3. The MOF and/or MOP compositions can be added to a reaction vessel comprising a reagents to be coupled (e.g., homocoupled). For example, a MOF-199 can be added to a reaction mixture comprising an arylboronic acid to be coupled and the reaction allowed to proceed. In some embodiments, the reaction mixture can be passed through a column comprising a MOF and/or MOP that catalyzes the homo-coupling of the reagents. In another embodiment, the reaction vessel can be agitated or mixed. As described elsewhere herein the MOF and/or MOP can be reused. In some embodiments, the reaction is carried out at room temperature. In another embodiment, the reaction is carried out with stirring at room temperature. After filtration and washing with fresh dichloromethane, the MOF can be fully recovered and re-used without any significant loss of activity.


The following examples are intended to illustrate but not limit the disclosure. While they are typical of those that might be used, other procedures known to those skilled in the art may alternatively be used.


EXAMPLES

Materials: MOF-199 (Basolite C300, Aldrich), cyclohexylamine, triethylamine, phenylbornic acid, 4-nitrophenylboronic acid, 4-cyanophenylbornic acid, 4-chlorophenylboronic acid, 4-ter-burlyphenylboronic acid, 4-(dimethylamino)-phenylboronic acid, naphthalene-1-bonronic acid and 1,3,5-trimethyoxybenzene were purchased form Aldrich Chemical Co. Dichloromethane was purchased from Fisher Scientific International Inc. All starting materials were used without further purification. All experimental operations, unless otherwise noted, were performed in air.


General Homo-coupling Reaction Procedure:


A mixture of arylboronic acid, (3.01 mmol), cyclohexylamine (0.248 g, 286 μL, 2.51 mmol) and triethylamine (0.253 g, 348 μL, 2.49 mmol) were premixed and dissolved in 20 mL dichloromethane in a 50 mL round-bottom flask. MOF (0.100 g, 0.165 mmol, 0.495 mmol Cu(II)) or cupric acetate monohydrate (Cu(OAc)2.H2O, 0.100 g, 0.501 mmol) was then added to the solution. The mixture was stirred at room temperature for 5 h, followed by filtration and washing with fresh dichloromethane. The excess dichloromethane in the filtrate was subsequently removed by rotovap. 1,3,5-trimethoxybenzene (0.168 g, 1.00 mmol) was added to the filtrate as internal standard for 1H NMR. Chemical shifts of all products in 1H NMR agree well with literature data.


Biphenyl: 47% yield of biphenyl (based on phenylboronic acid) was afforded when MOF was used; no biphenyl product was formed in the case of cupric acetate monohydrate. GC-MS, m/z+154.1; 4,4′-dinitrobiphenyl: 87% and 18% yields of 4,4′-dinitrobiphenyl (based on 4-nitrophenylboronic acid) were afforded when MOF and cupric acetate monohydrate were used, respectively. GC-MS, m/z+244.2; Biphenyl-4,4′-dicarbonitrile: 92% and 19% yields of biphenyl-4,4′-dicarbonitrile (based on 4-cyanophenylboronic acid) were afforded in the presence of MOF and cupric acetate monohydrate, respectively. 1.34 mmol (yield: 90%) and 1.35 mmol (yield: 92%) biphenyl-4,4′-dicarbonitrile were observed in the second and third cycles, respectively. GC-MS, m/z+204.1; 4,4′-dichlorobiphenyl: 81% and 8% yields of 4,4′-dichlorobiphenyl (based on 4-chlorophenylboronic acid) were afforded in the presence of MOF and cupric acetate monohydrate, respectively. GC-MS, m/z+223.1; 4,4′-di-tert-butylbiphenyl: 25% yield of 4,4′-di-tert-butylbiphenyl (based on 4-tert-butylphenylboronic acid) was afforded when MOF was used, but none was formed in the case of cupric acetate monohydrate. GC-MS, m/z+266.1; N,N,N′,N′-tetramethyldiphenyl-4,4′-diamine: 43% and 5% yields of N,N,N′,N′-tetramethyldiphenyl-4,4′-diamine (based on 4-(dimethylamino)-phenylboronic acid) for MOF and cupric acetate monohydrate, respectively. GC-MS, m/z+240.1; 1,1′-binaphthyl: 90% and 6% yields of 1,1′-binaphthyl (based on naphthalyl-1-boronic acid) were afforded for MOF and cupric acetate monohydrate, respectively. GC-MS, m/z+254.2.


Powder X-ray diffraction (PXRD) data were collected using a Bruker D8-Discover θ-2θ diffractometer in reflectance Bragg-Brentano geometry. Cu Kα radiation (λ=1.5406 Å; 1,600 W, 40 kV, 40 mA) was focused using a planer Gobel Mirror riding the Kα line. A 0.6 mm divergence slit was used for all measurements. Diffracted radiation was detected using a Vantec line detector (Bruker AXS) (6° 2θ sampling width) equipped with a Ni monochrometer. All samples were ground to ensure mono dispersity in the bulk, and then mounted onto a glass slide fixed on a sample holder by dropping powders and then leveling the sample surface with a wide-blade spatula. The best counting statistics were achieved by using a 0.02° 2θ step scan from 1-50° with an exposure time of 0.4 s per step. The diffraction patterns collected for Cu3(BTC)2 both before and after homo-couplings are shown in FIGS. 4-10. Powder patterns of Cu3(BTC)2 after three cycles also illustrated in FIG. 11.


FT-IR spectra of benzyltricarboxylic acid (BTC) and Cu3(BTC)2 (fresh and after coupling reaction) were obtained as KBr pellets using Nicolet 400 Impact spectrometer. FT-IR of recovered liquid after coupling reaction was performed on two clear KBr crystal plates. As shown in FIGS. 12 and 13, the C═O stretch of carboxylates in Cu3(BTC)2 absorbs at 1653 cm−1, whereas the C═O stretch of free carboxylic acid in BTC absorbs at 1734 cm−1, which is a strong characteristic peak for presence of any non-coordinated carboxylic groups. Recovered Cu3(BTC)2 solid, as shown in FIG. 14, clearly indicated that no free carboxylic acid from decomposition was trapped in Cu3(BTC)2 framework. Furthermore, FIG. 15 shows that no BTC leached out into the solution. This discussion pertaining to the IR spectral relationships between these compounds is offered as support for the intactness of MOFs throughout the coupling reactions.



1H and 11B NMR spectra were recorded at 295K on Bruke ARX 400 and ARX 500 instruments, respectively (1H, 400 MHz; 11B, 160 MHz). 1H chemical shift values are reported in parts per million (ppm) relative to SiMe4 (δ 0 ppm). 11B chemical shift value are reported in ppm relative to BF3.Et2O (δ 0 ppm). Monitor reaction by 11B NMR: The reaction of boronic acid was monitored by 11B NMR to track in detail of the boron source.


The 11B NMR shift of the suspension of boronic acid in CH2Cl2 is δ 30.49 ppm, which corresponding the trimerized product boroxine (PhBO)3; after 2 equivalent of cyclohexyl amine added to the solution, the solution became clear and the 11B chemical shift showed two signals: a weak peak at δ 29.45 ppm and a strong signal of δ 19.97 ppm (we assign this to intermediate II based on the chemical shift which corresponding to a three-coordinated boron center). 5 mol % of MOF199 was added and the mixture was stirred for 1 h, followed by 11B NMR for the aliquitor. In addition to the previous two signals, a third peak at δ 3.69 ppm was observed. Although the product was not isolate this 11B chemical shift falls into a four-coordinated boron species region; hence this was tentatively assigned to a borate anion.


A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.


The activity of copper MOFs were tested in the homo-coupling reactions of several representative arylboronic acids with various functional groups (see Table 2A and 2B). 5.5 mol percent of MOF catalyst was added in air to a solution of dry dichloromethane containing the arylboronic acids, triethylamine and cyclohexylamine. For comparison, a nonporous cupric acetate monohydrate having the same Cu paddlewheel unit and a molecular structure was employed under identical reaction conditions. The reactions were run for 5 hours at room temperature under stirring. The homo-coupling of phenylboronic acid and tert-butyl phenylboronic acid on the MOF resulted in up to 47% yield of biaryl. In contrast, cupric acetate failed to show any observable activity. In the homo-couplings of nitro-, cyano-, chloro-, or dimethylamino-phenylboronic acids and 2-naphthylboronic acid, use of MOF catalyst gave up to 92% yield. Cupric acetate, in contrast, did catalyze these reactions with poor yields (5%-19%). The presence of MOF in catalytic quantities clearly resulted in up to 15 times higher yield.









TABLE 2A







Synthesis of biaryls with MOF catalyst and copper acetate.




embedded image
















Cu3(BTC)2

Cu(OAc)2·H2O


R3
Yield %2
Biaryl Product1
Yield %





—H
47


embedded image


 0





—NO2
87


embedded image


18





—CN
92


embedded image


19





—Cl
81


embedded image


 8





-t-Bu
25


embedded image


 0







embedded image


43


embedded image


 5







embedded image


90


embedded image


 6





Based on GC-MS and 1H NMR.


Yield of the biaryls was calculated based on recovered boronic acid. In every reaction, arylated cyclohexylamine from the Chan-Lam coupling was the only by-product.


Naphthyl-1-boronic acid was used for the last reaction.













TABLE 2B







Synthesis of biaryls with MOF catalyst and copper acetate.


Product yield and selectivity.




embedded image






embedded image
















MOF-199

Cu(OAc)2·H2O












R
Yield %2
Selectivity %3
Product1
Yield %
Selectivity %





—H
47
65


embedded image


 0
 0





—NO2
87
95


embedded image


18
20





—CN
92
98


embedded image


19
24





—Cl
81
85


embedded image


 8
10





-t-Bu
25
74


embedded image


 0
 0







embedded image


43
63


embedded image


 5
 8







embedded image


90
99


embedded image


 6
24





—H4
65
75


embedded image


 0
 0






1Based on GC-MS and 1H-NMR.




2Yeild of the biaryls was calculated based on boronic acid.




3MOP-OH was used as the catalyst.







After filtration and washing with fresh dichloromethane, the MOF can be fully recovered and re-used without any significant loss of activity. The PXRD pattern of MOF after each homo-coupling was measured and compared to the original. No apparent changes or shifts were observed. Furthermore, three continuous reactions were carried out for the homo-coupling of 4-cyanophenylboronic acid using MOF. FIG. 2 and FIG. 11 clearly show that the biaryl yield was maintained throughout all cycles. It is note-worthy that no further re-activation is needed between cycles, which offer great potential in industrial scale continuous production. In order to further determine whether the reactions take place under completely heterogeneous conditions, control experiments and several leaching tests were conducted. First, control experiments were performed in the absence of MOF under identical conditions, and no conversion, as monitored by GC-MS and 1H NMR, was observed for any homo-coupling. Second, no further conversion was observed when the filtrate from each reaction catalyzed by MOF was recovered and used with fresh reactants. Third, the FT-IR spectra of both recovered solids and liquids after the homo-coupling of phenylboronic acid were measured. As expected, no carbonyl stretch from free carboxylic acid was observed (FIGS. 12 and 15), which indicates that the MOF network remains intact throughout the reactions. The coupling reactions were also monitored using 11B NMR. Based on the boron species presented in the catalytic cycle and the Homo-coupling reaction mechanism.


The data demonstrate that a copper-containing MOF can serve as an alternative catalyst for precious metal-dominated oxidative homo-coupling reactions of aryl boronic acids with comparable yield. More importantly, in the search for versatile and efficient catalysts for the systematic synthesis of substituted biaryls, the heterogeneous nature of MOFs may open up new possibilities for the C—C coupling of boronic acids. This discovery also shows the great potential of MOF chemistry as it introduces complexity and functionality along with exceptional porosity. Specifically, such complexity, offered by uniquely connected active centers, can lead to behavior that is unprecedented in its molecular counterparts.

Claims
  • 1. A method to connect aryls by homocoupling comprising contacting a porous metal organic framework (MOF) or a porous metal organic polyhedral (MOP) with boronic acid substituted aryls wherein the MOF or MOP catalyze the synthesis of a biaryl through a homo-coupling reaction, wherein the MOF or MOP comprises a plurality of linking moieties that have a substructure selected from the group consisting of (C1-C20)alkyl, (C3C20)cycloalky, aryl, (C1-C20)alkylamine, arylamine, and heterocycle; and wherein the substructure has one or more covalently attached CO2H linking clusters that undergo condensation with a copper metal and wherein the MOF or the MOP comprise open copper centers that are mono-dispersed throughout the pores.
  • 2. The method of claim 1, wherein the method further comprises cupric acetate.
  • 3. The method of claim 1, wherein the method further comprises a solvent.
  • 4. The method of claim 1, wherein the method further comprises a base.
  • 5. The method of claim 4, wherein the copper center of the MOF or the MOP forms a coordinate bond with the base.
  • 6. The method of claim 1, wherein the method further comprises an oxidant.
  • 7. The method of claim 6, wherein the one or more oxidant is air.
  • 8. The method of claim 1, wherein the method is performed at room temperature.
  • 9. The method of claim 1, wherein the boronic acid substituted aryls are phenylboronic acids that can be optionally substituted at the para position.
  • 10. The method of claim 9, wherein the boronic acid substituted aryls comprise the general structure of:
  • 11. The method of claim 1, wherein the boronic acid substituted aryls is boronic acid substituted naphthalene that may or may not be further substituted.
  • 12. The method of claim 11, wherein the boronic acid substituted naphthalene is 1-naphthylboronic acid.
  • 13. The method of claim 1, wherein the MOF or MOP comprises one or more linking moieties comprising:
  • 14. The method of claim 13, wherein the MOF or MOP comprises one or more linking moieties comprising:
  • 15. The method of claim 14, wherein the MOF or MOP comprises one or more linking moieties comprising:
  • 16. The method of claim 1, wherein the MOF or MOP contains a transition metal.
  • 17. The method of claim 16, wherein the MOF or MOP contains Cu.
  • 18. A method to connect aryls by homocoupling comprising contacting a metal organic framework (MOF) with boronic acid substituted aryls, wherein the MOF catalyzes the synthesis of a biaryl through a homo-coupling reaction, and wherein the MOF comprises Cu3(BTC)2 (where BTC is benzene-1,3,5-tricarboxylate).
  • 19. The method of claim 1, wherein the method can be repeated for one or more cycles with the same MOF or MOP.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a U.S. National Stage Application filed under 35 U.S.C. §371 and claims priority to International Application No. PCT/US10/43373, filed Jul. 27, 2010, which claims priority under 35 U.S.C. §119 from Provisional Application Ser. No. 61/228,951, filed Jul. 27, 2009, the disclosure of which is incorporated herein by reference.

STATEMENT AS TO FEDERALLY SPONSORED RESEARCH

This invention was made with Government support of Grant No. HDTRA1-08-1-0023 awarded by the Department of Defense—Defense Threat Reduction Agency and Grant No. DE-FG02-08ER15935 awarded by the Department of Energy. The U.S. government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2010/043373 7/27/2010 WO 00 1/27/2012
Publishing Document Publishing Date Country Kind
WO2011/014503 2/3/2011 WO A
US Referenced Citations (60)
Number Name Date Kind
2684967 Berg Jul 1954 A
4532225 Tsao et al. Jul 1985 A
5160500 Chu et al. Nov 1992 A
5208335 Ramprasad et al. May 1993 A
5648508 Yaghi et al. Jul 1997 A
5733505 Goldstein et al. Mar 1998 A
6479447 Bijl et al. Nov 2002 B2
6501000 Stibrany et al. Dec 2002 B1
6617467 Muller et al. Sep 2003 B1
6624318 Mueller et al. Sep 2003 B1
6686428 Zhang et al. Feb 2004 B2
6893564 Mueller et al. May 2005 B2
6929679 Mueller et al. Aug 2005 B2
6930193 Yaghi et al. Aug 2005 B2
7196210 Yaghi et al. Mar 2007 B2
7202385 Mueller et al. Apr 2007 B2
7279517 Mueller et al. Oct 2007 B2
7309380 Mueller et al. Dec 2007 B2
7343747 Mueller et al. Mar 2008 B2
7411081 Mueller et al. Aug 2008 B2
7524444 Hesse et al. Apr 2009 B2
7582798 Yaghi et al. Sep 2009 B2
7652132 Yaghi et al. Jan 2010 B2
7662746 Yaghi et al. Feb 2010 B2
7799120 Yaghi et al. Sep 2010 B2
7815716 Mueller et al. Oct 2010 B2
8480955 Yaghi et al. Jul 2013 B2
8709134 Yaghi et al. Apr 2014 B2
8735161 Yaghi et al. May 2014 B2
8742152 Yaghi et al. Jun 2014 B2
20030004364 Yaghi et al. Jan 2003 A1
20030078311 Muller et al. Apr 2003 A1
20030148165 Muller et al. Aug 2003 A1
20030222023 Mueller et al. Dec 2003 A1
20040081611 Muller et al. Apr 2004 A1
20040225134 Yaghi et al. Nov 2004 A1
20040249189 Mueller et al. Dec 2004 A1
20040265670 Muller et al. Dec 2004 A1
20050004404 Muller et al. Jan 2005 A1
20050014371 Tsapatsis Jan 2005 A1
20050124819 Yaghi et al. Jun 2005 A1
20050154222 Muller et al. Jul 2005 A1
20050192175 Yaghi et al. Sep 2005 A1
20060057057 Muller et al. Mar 2006 A1
20060135824 Mueller et al. Jun 2006 A1
20060154807 Yaghi et al. Jul 2006 A1
20060185388 Muller et al. Aug 2006 A1
20060252641 Yaghi et al. Nov 2006 A1
20060252972 Pilliod et al. Nov 2006 A1
20060287190 Eddaoudi et al. Dec 2006 A1
20070068389 Yaghi et al. Mar 2007 A1
20070202038 Yaghi et al. Aug 2007 A1
20080017036 Schultink et al. Jan 2008 A1
20080184883 Zhou et al. Aug 2008 A1
20090155588 Hesse et al. Jun 2009 A1
20100132549 Yaghi et al. Jun 2010 A1
20100143693 Yaghi et al. Jun 2010 A1
20100186588 Yaghi et al. Jul 2010 A1
20100286022 Yaghi et al. Nov 2010 A1
20110137025 Yaghi et al. Jun 2011 A1
Foreign Referenced Citations (23)
Number Date Country
102005023856 Nov 2006 DE
102005054523 May 2007 DE
1674555 Jun 2006 EP
2007534658 Nov 2007 JP
2004101575 Nov 2004 WO
2006072573 Jul 2006 WO
2006116340 Nov 2006 WO
2007101241 Sep 2007 WO
2008091976 Jul 2008 WO
2008138989 Nov 2008 WO
2008140788 Nov 2008 WO
2009020745 Feb 2009 WO
2009042802 Apr 2009 WO
2009056184 May 2009 WO
2009149381 Dec 2009 WO
2010078337 Jul 2010 WO
2010083418 Jul 2010 WO
2010088629 Aug 2010 WO
2010090683 Aug 2010 WO
2010148276 Dec 2010 WO
2010148296 Dec 2010 WO
2010148374 Dec 2010 WO
2011038208 Mar 2011 WO
Non-Patent Literature Citations (131)
Entry
Adamo et al., Journal of the American Chemical Society, 2006, vol. 28, pp. 6829.
Moreno-Mañas et al., Journal of Organic Chemistry, 1996, vol. 16, pp. 2346-2351.
Lakmini et al., Journal of Physical Chemistry, Jul. 2, 2008, vol. 112, pp. 12896-12903.
Hassan et al., Chemical Reviews, 2002, vol. 102, pp. 1359-1469.
Smith et al., Synlett, Jan. 2007, Issue 1, pp. 131-132.
Kim et al., CrystEngComm, 2014, Paper, “Isoreticular MOFs based on rhombic dodecahedral MOP as a tertiary building unit.”, DOI:10.1039/c4ce00017j.
Czaja, Alexander U. et al., “Inustrial applications of metal-organic frameworks,” Chemical Society Reviews, Mar. 16, 2009, pp. 1284-1293, vol. 38, No. 5.
Demir A.S. et al., “Role of Copper Species in the Oxidation Dimerization of Arylbornonic Acids: Synthesis of Symmetrical Biaryls,” J. of Organic Chemistry, Dec. 26, 2003, pp. 10130-10134, vol. 68, No. 26.
Gonzales-Arellano C. et al., “Homogeneous and heterogenized Au(III) Schiff base-complexes as selective and general catalysts for self-coupling of aryl boronic acids,” Chemical Communications, Apr. 21, 2005, pp. 1990-1992, No. 15.
Kirai, N., et al., “Homocoupling of arylboronic acids catalysed by 1,10-phenanthroline-ligated copper complexes in air,” European J. of Organic Chemistry, Mar. 16, 2009, pp. 1864-1867.
Koza, D.J. et al., “An Efficient High Yielding Approach for the Homocoupling of Aryl Boronic Acids,” Synthesis, Nov. 1, 2002, pp. 2183-2186, No. 15.
Llabres I. Xamena et al., “MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF,” J. of Catalysis, pp. 294-298, vol. 250, No. 2, 2007.
Patteux, Claudine, International Search Report and Written Opinion, PCT/US2010/043373, European Patent Office, Jun. 10, 2010.
Xiao Jia, Chinese Patent Application No. 201080021284.2; The State Intellectual Property Office of the People's Republic of China, Issue Date: Aug. 19, 2014.
Andrew et al., “Post-Synthetic Modification of Tagged MOFs,” Angew. Chem. Int. Ed. 47:8482-8486 (2008).
Baharlou, Simin. International Preliminary Report on Patentability for PCT/US2009/046463. Date of Mailing: Dec. 16, 2010.
Banerjee et al., “High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture,” Science 319:939-943 (2008).
Banerjee et al., “Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective Capture Properties,” J. Am. Chem. Soc. 131:3875-3877 (2009).
Barman et al., “Azulene Based Metal-Organic Frameworks for Strong Adsorption of H2,” Chem. Commun. 46: 7981-7983 (2010).
Barton et al., “Tailored Porous Materials,” Chem. Mater. 11:2633-2656 (1999).
Bloch et al., “Metal Insertion in a Microporous Metal-Organic Framework Lined with 2,2′-Bipyridine” J. Am. Chem. Soc. 132:14382-14384 (2010).
Braun et al., “1,4-Benzenedicarboxylate Derivatives as Links in the Design of Paddle-Wheel Units and Metal-Organic Frameworks,” Chem. Commun. 24:2532-2533 (2001).
Britt et al., “Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites,” Proc. Natl. Acad. Sci. USA 106:20637-20640 (2009).
Britt et al., “Ring-Opening Reactions Within Metal-Organic Frameworks,” Inorg. Chem. 49:6387-6389 (2010).
Carlucci et al., “Nanoporous three-dimensional networks topologically related to cooperite from the self-assembly of copper(I)centres and teh 1,2,4,5-tetracyanobenzene,” New J. Chem. 23(23):397-401 (1999).
Carlucci, Lucia et al., “Polycatenation, polythreading and polyknotting in coordination network chemistry” Coordination Chemistry Reviews 246, 2003, pp. 247-289.
Caskey et al., “Dramatic Tuning of CO2 Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores,” JACS 130(33):10870-10871 (2008).
Centrone et al., “Raman Spectra of Hydrogen and Deuterium Adsorbed on a Metal-Organic Framework,” Chem. Phys. Lett. 411:516-519 (2005).
Chae et al., “Tertiary Building Units: Synthesis, Structure, and Porosity of a Metal-Organic Dendrimer Framework (MOD-1),” J. Am. Chem. Soc. 123:11482-11483 (2001).
Chae et al., “A Route to High Surface Area, Porosity and Inclusion of Large Molecules in Crystals,” Nature427, 523-527 (2004); Featured in (1) Chemical & Engineering News magazine, Feb. 9, 2004, (2) BBC World Service, Feb. 4, (3) New Scientist, Feb. 4.
Chen et al., “Cu2(ATC)6H2O: Design of Open Metal Sites in Porous Metal-Organic Crystals (ATC: 1,3,5,7-adamantane tetracarboxylate),” J. Am. Chem. Soc. 122:11559-11560 (2000).
Chen et al., “Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores,” Science 291:1021-1023 (2001); Featured in Chemical and Engineering News, Feb. 21, 2001.
Chen et al., “Transformation of a Metal-Organic Framework from the NbO to PtS Net,” Inorg. Chem. 41:181-183 (2005).
Chen et al., “High H2 Adsorption in a Microporous Metal-Organic Framework with Open-Metal Sites,” Angew. Chem. Int. Ed. 44:4745-4749 (2005).
Chen et al., “A Microporous Metal-Organic Framework for Gas-Chomatographic Separation of Alkanes,” Angew. Chem. Int. Ed. 45:1390-1393 (2006).
Cho et al., “A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation,” Chem. Comm. 24:2563-2565 (2006).
Choi et al., “Heterogeneity within Order in Crystals of a Porous Metal Organic Framework,” J. Am. Chem. Soc. 133:11920-11923 (2011).
Cui et al., “IIn Situ Hydrothermal Growth of Metal-Organic Framework 199 Films on Stainless Steel Fibers for Solid-Phase Microextraction of Gaseous Benzene Homologues,” Anal. Chem. 81(23):9771-9777 (2009).
Delgado-Friedrichs et al., “Three-Periodic Nets and Tilings: Regular and Quasiregular Nets,” Acta Cryst. A59:22-27 (2003).
Delgado-Friedrichs et al. “What Do We Know About Three-Periodic Nets?,” J. Solid State Chem. 178:2533-2554 (2005).
Delgado-Friedrichs et al. “Three-Periodic Nets and Tilings: Edge-Transitive Binodal Structures,” Acta Cryst. 62:350-355 (2006).
Delgado-Friedrichs et al., “Taxonomy of Periodic Nets and the Design of Materials,” Phys. Chem. 9:1035-1043 (2007).
Deng et al., “Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks,” Science 327:846-850 (2010).
Deng et al., “Robust dynamics” Nature Chem. 2:439-443 (2010).
Doonan et al., “Isoreticular Metalation of Metal-Organic Frameworks,” J. Am. Chem. Soc. 131:9492-9493 (2009).
Doonan, C., “Hydrogen Storage in Metal-Organic Frameworks,” Annual Merit Review Proceedings of DOE Hydrogen Program, May 22, 2009.
Duren et al., “Design of New Materials for Methane Storage,” Langmuir 20:2683-2689 (2004).
Eddaoudi et al., “Design and Synthesis of Metal-Organic Frameworks with Permanent Porosity,” in Topics in Catalysis, G. A. Somorjai and J. M. Thomas, Eds., 9:105 (1999).
Eddaoudi et al., “Highly Porous and Stable Metal-Organic Framework: Structure Design and Sorption Properties,” J. Am. Chem. Soc. 121:1391-1397 (2000).
Eddaoudi et al., “Porous Metal-Organic Polyhedra: 25 Å Cuboctahedron Constructed from Twelve Cu2(CO2)4 Paddle-Wheel Building Blocks,” J. Am. Chem. Soc. 123:4368-4369 (2001).
Eddaoudi et al., “Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks” Acc. Chem. Res. 34:319-330 (2001).
Eddaoudi et al., “Geometric Requirements and Examples of Important Structures in the Assembly of Square Building Blocks,” Proc. Natl. Acad. Sci. 99:4900-4904 (2002).
Eddaoudi et al., “Systematic Design of Pore Size and Functionality in Isoreticular Metal-Organic Frameworks and Application in Methane Storage,” Science 295:469-472 (2002): Featured in (1) Chemical and Engineering News, Jan. 21, 2002, and (2) Chemical Insight magazine, Nov. 15, 2002.
Eddaoudi et al., “Cu2[o-Br-C6H3(CO2)2]2(H2O)2•(DMF)8(H2O)2: A Framework Deliberately Designed to have the NbO Structure Type,” J. Am. Chem. Soc. 124:376-377 (2002).
Ferragut et al., “Positronium Formation in Porous Materials for Antihydrogen Production,”J. Phys. Conf. Ser. 225:1-8 (2010).
Furkawa et al., “Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal-organic frameworks,” J. Mater. Chem. 17:3197-3204 (2007).
Furukawa et al., “Control of Vertex Geometry, Structure Dimensionality, Functionality, and Pore Metrics in the Reticular Synthesis of Crystalline Metal-Organic Frameworks and Polyhedra,” J. Am. Chem. Soc. 130:11650-11661 (2008).
Furukawa et al., “Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications,” J. Am. Chem. Soc. 25:8876-8883 (2009).
Furukawa et al., “Ultra-High Porosity in Metal-Organic Frameworks,” Science 239:424-428 (2010).
Galli et al., “Adsorption of Harmful Organic Vapors by Flexible Hydrophobic Bis-pyrazolate Based MOFs,” Chem. Mater. 22(5):1664-1672 (2010).
Glover et al., “MOF-74 building unit has a direct impact on toxic gas adsorption,” J. Chem. Eng. Sci. 66:163-170 (2011).
Yaghi et al., “Construction of Microporous Materials from Molecular Building Blocks,” Fundamental Materials Research, T. J. Pinnavaia and M. F. Thorpe, eds., vol. II, Plenum: New York, p. 111 (1995).
Yaghi et al., “Construction of Porous Solids from Hydrogen-Bonded Metal Complexes of 1,3,5-Benzenetricarboxylic Acid,” J. Am. Chem. Soc., 1996, 118, 9096-9101.
Yaghi et al., “Conversion of Molecules and Clusters to Extended 3-D Cage and Channel Networks,” Metal Containing Polymeric Materials, C. U. Pittman, C. E. Carraher, B. M. Culbertson, M. Zeldin, J. E. Sheets, Eds., Plenum: New York, p. 219 (1996).
Yaghi et al., “Selective Guest Binding by Tailored Channels in a 3-D Porous Zinc(II)-1,3,5-Benzenetricarboxylate Network,” J. Am. Chem. Soc., 1997, 119, 2861-2868.
Yaghi et al., “Crystal Growth of Extended Solids by Nonaqueous Gel Diffusion,” Chem. Mater., 1997, 9, 1074-1076.
Yaghi et al., “A Molecular Railroad with Large Pores: Synthesis and Structure of Ni(4,4′-bpy)2.5(H2O)2(ClO4)2•1.5(4,4′-bpy)2(H2O),” Inorg. Chem., 1997, 36, 4292-4293.
Yaghi et al., “Construction of a New Open-Framework Solid form 1,3,5-Cyclohexanetricarboxylate and Zinc(II) Building Blocks,” J. Chem. Soc. Dalton Trans. 2383-2384 (1997).
Yaghi et al., “Designing Microporosity in Coordination Solids,” Modular Chemistry, J. Michl, Ed., Kluwer: Boston, p. 663 (1997).
Yaghi et al., “Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids,” Acc. Chem. Res. 31:474-484 (1998).
Yaghi et al., “Design of Solids from Molecular Building Blocks: Golden Opportunities for Solid State Chemistry,” J. Solid State Chem. 152, 1-2 (2000).
Yaghi et al., “A Molecular World Full of Holes,” Chem. Innov. p. 3 (2000).
Yaghi et al., “Reticular Synthesis and the Design of New Materials,” Nature 423:705-714 (2003).
Yaghi, Omar., “Porous Crystals for Carbon Dioxide Storage,” slide presentation at the Fifth Annual Conference on Carbon Capture & Sequestration, US Department of Energy on May 10, 2006 http://www.netl.doe.gov/publications/proceedings/06/carbon-seq/Tech%20Session%20193.pdf.
Yaghi et al., “Metal-Organic Frameworks: A Tale of Two Entanglements,” Nature materials 6:92-93 (2007).
Yaghi, Omar, “Hydrogen Storage in Metal-Organic Frameworks,” slide presentation to DOE Hydrogen Program 2007 Annual Merit Review, US Department of Energy, on May 15, 2007 at http://www.hydrogen.energy.gov/pdfs/review07/st—10—yaghi.pdf.
Yaghi et al., “Reticular Chemistry and Metal-Organic Frameworks for Clean Energy,” MRS Bulletin 34:682-690 (2009).
Young, Lee W., International Search Report and Written Opinion, Date of Mailing of Report: May 7, 2008, International Application No. PCT/US08/51859.
Young, Lee W., “International search Report and Written Opinion,” PCT/US08/06008, United States Patent & Trademark Office, Aug. 20, 2008.
Young, Lee W., International Search Report and Written Opinion, Date of Mailing: Dec. 2, 2008, International Application No. PCT/US08/77741.
Young, Lee W., International Search Report and Written Opinion, Date of Mailing: Jan. 12, 2009, International Application No. PCT/US08/70149.
Young, Jung Doo. International Search Report for PCT/US2010/050170. Date of Mailing: Jun. 8, 2011.
Zhang et al., “Docking in Metal-Organic Frameworks,” Science 325:855-859 (2009).
Zhao, Wei. The First Office Action for Chinese Application No. 200880003157.2. The State Intellectual Property Office of the People's Republic of China. Issue Date: Aug. 5, 2011.
Mashiyama, Shinya, Office Action issued in Japanese Patent Application No. 2012-522962, Japanese Patent Office, Date of Mailing: May 27, 2014.
Gould et al., “The Amphidynamic Character of Crystalline MOF-5: Rotational Dynamics in a Free-Volume Environment,” J. Am. Chem. Soc. 130:3246-3247 (2008).
Goebel, Matthias, Supplemental European Search Report and Written Opinion for EP08826913. Date of Completion of Search and Written Opinion: Nov. 10, 2010.
Goebel, Matthias, Supplemental European Search Report and Written Opinion for EP08754337. Date of Completion of Search and Written Opinion: Dec. 3, 2010.
Han, SS et al., “Improved designs of metal-organic frameworks for hydrogen storage” Angew. Chem. Int. Ed. 2007, 46, pp. 6289-6292.
Hayashi et al., “Zeolite A Imidazolate Frameworks,” Nature Materials 6:501-506 (2007).
Hexiang et al., “Multiple Functional Groups of Varying Rations in Metal-Organic Frameworks,” Science 327 (5967):846-850 (2010).
Honda, Masashi, International Preliminary Report on Patentability for PCT/US2008/051859. Date of Issuance of the Report: Jul. 28, 2009.
Howe, Patrick. International Search Report and Written Opinion for PCT/US2009/068849. Date of Mailing of the Search Report: Apr. 6, 2010.
Howe, Patrick. International Search Report and Written Opinion for PCT/US2010/022777. Date of Mailing: Jun. 7, 2010.
Huang et al., “Thermal Conductivity of Metal-Organic Framework 5 (MOF-5): Part II. Measurement,” Int. J. Heat Mass Transfer 50:405-411 (2007).
Isaeva et al., “Metal-organic frameworks—new materials for hydrogen storage,” Russian Journal of General Chemistry 77(4):721-739 (2007).
Jeong et al., “Asymmetric Catalytic Reactions by NbO-Type Chiral Metal-Organic Frameworks,” Chem. Sci. 2:877-882 (2011).
Kaye et al., “Impact of Preparation and Handling on the Hydrogen Storage Properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5),” J. Am. Chem. Soc. 129:14176-14177 (2007).
Kim et al., “Assembly of Metal-Organic Frameworks From Large Organic and Inorganic Secondary Building Units: New Examples and Simplifying Principles for Complex Structures,” J. Am. Chem. Soc. 123:8239-8247 (2001).
Kim, Su Mi, International Search Report and Written Opinion, Date of Mailing: Feb. 24, 2010, International Application No. PCT/US09/46463.
Kim, Su Mi, International Search Report and Written Opinion for PCT/US2009/068731. Date of Mailing: Aug. 19, 2010.
Kim, Su Mi. International Search Report for PCT/US2010/039154. Date of Mailing: Feb. 23, 2011.
Klaes, Daphne. International Search Report and Written Opinion for PCT/US2010/021201. Date of Mailing: Apr. 27, 2010.
Kyoungmoo et al., “A Crystalline Mesoporous Coordination Copolymer with High Microporosity,” Angew. Chem. Int. Ed. 47(4):677-680 (2008).
Lee, Ji Min. International Search Report for PCT/US2010/039284. Date of Mailing: Feb. 22, 2011.
Li et al., “Coordinatively Unsaturated Metal Centers in the Extended Porous Framewokr of Zn3(BDC)3-6CH3OH (BDC=1,4-Benzenedicarboxylate),” J. Am. Chem. Soc. 2186-2187 (1998).
Li et al., “Establishing Microporosity in Open Metal-Organic Frameworks: Gas Sorption Isotherms for Zn(BDC) (BDC=1,4-Benzenedicaroxylate),” J. Am. Chem. Soc. 120:8571-8572 (1998).
Li et al., “Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework,” 402:276-279 (1999); Featured in (1) Chemical and Engineering News (Nov. 22, 19999) and (2) Science News (Nov. 20, 1999).
Li et al., “20 A [Cd4In16S35]14-Supertetrahedral T4 Clusters as Building Units in Decorated Cristobalite Frameworks,” J. Am. Chem Soc. 123:4867-4868 (2001).
Li et al., “[Cd16In64S134]44-: 31-Å Tetrahedron with a Large Cavity,” Angew. Chem. Int. Ed., 42:1819-1821 (2003).
Li et al., “A metal-organic framework replete with ordered donor-acceptor catenanes,” Chem. Commun. 46:380-382 (2010).
Li et al., “A Catenated Strut in a Catenated Metal-Organic Framework,” Angew. Chem. Int. Ed. 49:6751-6755 (2010).
Linder, Nora. International Preliminary Report on Patentability for PCT/US2010/022777. Date of Mailing: Aug. 11, 2011.
Long et al., “The Pervasive Chemistry of Metal-Organic Frameworks,” Chem. Soc. Rev. 38:1213-1214 (2009).
Lu et al., “Synthesis and Structure of Chemically Stable Metal-Organic Polyhedra,” J. Am. Chem. Soc. 131:(35) 12532-12533 (2009).
Mendoza-Cortes et al., “Adsorption Mechanism and Uptake of Methane in Covalent Organic Frameworks: Theory and Experiment,” J. Phys. Chem. 114:10824-10833 (2010).
Michalitsch, Richard. International Search Report and Written Opinion for PCT/US2009/069700. Date of Mailing: May 7, 2010.
Millward et al., “Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature,” J. Am. Chem. Soc. 127:17998-17999 (2005).
Morris et al., “Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks,” J. Am. Chem. Soc. 130:12626-12627 (2008).
Morris et al., “A Combined Experimental—Computational Investigation of Carbon Dioxide Capture in a Series of Isoreticular Zeolitic Imidazolate Frameworks,” J. Am. Chem. Soc. 132:11006-11008 (2010).
Morris et al., “Postsynthetic Modification of a Metal-Organic Framework for Stabilization of a Hemiaminal and Ammonia Uptake,” Inorg. Chem. 50:6853-6855 (2011).
Moyse, Ellen, International Preliminary Report on Patentability and Written Opinion, Date of Issuance of Report: Nov. 17, 2009, International Application No. PCT/US08/006008.
Mulhausen, Dorothee. International Preliminary Report on Patentability for PCT/US2009/069700. Date of Mailing: Jul. 7, 2011.
Mulhausen, Dorothee. International Preliminary Report on Patentability for PCT/US2010/021201. Date of Mailing Jul. 28, 2011.
Natarajan et al., “Non-carboxylate based metal-organic frameworks (MOFs) and related aspects,” Current Opinion in Solid State and Materials Science 13(3-4):46-53 (2009).
Ni et al,. “Porous Metal-Organic Truncated Octahedron Constructed from Paddle-Wheel Squares and Terthiophene Links,” J. Am. Chem. Soc. 127:12752-12753 (2005).
Nickitas-Etienne, Athina, International Preliminary Report on Patentability and Written Opinion, Date of Issuance of Report: Jan. 19, 2010, International Application No. PCT/US08/70149.
Nickitas-Etienne, Athina. International Preliminary Report on Patentability for PCT/US2008/07741. Date of issuance of this report: Mar. 30, 2010.
Nickitas-Etienne, Athina, International Preliminary Report on Patentability for PCT/US2009/068731. Date of Issuance of the Report: Jun. 21, 2011.
Nickitas-Etienne, Athina. International Preliminary Report on Patentability for PCT/US2009/068849. Date of Mailing: Jun. 30, 2011.
Oisaki et al., “A Metal-Organic Framework with Covalently Bound Organometallic Complexes,” J. Am. Chem. Soc. 132:9262-9264 (2010).
Related Publications (1)
Number Date Country
20120130113 A1 May 2012 US
Provisional Applications (1)
Number Date Country
61228951 Jul 2009 US