Oxidative reductive potential water solution and process for producing same

Information

  • Patent Application
  • 20050139808
  • Publication Number
    20050139808
  • Date Filed
    June 04, 2004
    20 years ago
  • Date Published
    June 30, 2005
    19 years ago
Abstract
An oxidative reduction potential water solution that is stable for at least twenty-four hours. The invention also relates to an ORP water solution comprising anode water and cathode water. Another aspect of the invention is an apparatus for producing an ORP water solution comprising at least two electrolysis cells, wherein each cell comprises an anode chamber, cathode chamber and salt solution chamber located between the anode and cathode chambers, wherein the anode chamber is separated from the salt solution chamber by an anode electrode and a first membrane, and the cathode chamber is separated from the salt solution chamber by a cathode electrode and a second membrane.
Description
FIELD OF THE INVENTION

This invention pertains to oxidative reductive potential water solutions and apparatuses and processes for the production thereof.


BACKGROUND OF THE INVENTION

Oxidative reductive potential (ORP) water, also known as super-oxidized water, can be used as a non-toxic disinfectant to eradicate microorganisms, including bacteria, viruses and spores, in variety of settings. For example, ORP water may be applied in the healthcare and medical device fields to disinfect surfaces and medical equipment. Advantageously, ORP water is environmentally safe and, thus, avoids the need for costly disposal procedures. ORP water also has application in wound care, medical device sterilization, food sterilization, hospitals, consumer households and anti-bioterrorism.


Although ORP water is an effective disinfectant, it has an extremely limited shelf-life, usually only a few hours. As a result of this short lifespan, the production of ORP water must take place in close proximity to where ORP water is to be used as a disinfectant. This means that a healthcare facility, such as a hospital, must purchase, house and maintain the equipment necessary to produce ORP water. Additionally, prior manufacturing techniques have not been able to produce sufficient commercial-scale quantities of ORP water to permit its widespread use as a disinfectant at healthcare facilities.


Accordingly, a need exists for an ORP water that is stable over an extended period of time. A need also exists for a process of preparing commercial-scale quantities of ORP water without additional cost. These and other advantages of the invention, as well as additional inventive features, will be apparent from the description of the invention provided herein.


BRIEF SUMMARY OF THE INVENTION

The invention provides an oxidative reductive potential water solution, wherein the solution is stable for at least twenty-four hours. The invention further provides a sealed container containing an oxidative reductive potential water solution, wherein the solution is stable for at least twenty-four hours. The invention also is directed to an oxidative reductive potential water solution, wherein the solution comprises anode water and cathode water. In one embodiment, the ORP water solution of the invention comprises hydrogen peroxide and one or more chlorine species.


Another aspect of the present invention includes an apparatus for producing an oxidative reductive potential water solution comprising at least two electrolysis cells, wherein each cell comprises an anode chamber, cathode chamber and salt solution chamber located between the anode and cathode chambers, wherein the anode chamber is separated from the salt solution chamber by an anode electrode and a first membrane, and the cathode chamber is separated from the salt solution chamber by a cathode electrode and a second membrane. The apparatus may include a recirculation system for the salt solution supplied to the salt solution chamber to permit the concentration of salt ions to be controlled and maintained.


The invention further provides a process for producing oxidative reductive potential water solution comprising providing at least two electrolysis cells, wherein each cell comprises an anode chamber, cathode chamber and salt solution chamber located between the anode and cathode chambers, wherein the anode chamber is separated from the salt solution chamber by an anode electrode and a first membrane, and the cathode chamber is separated from the salt solution chamber by a cathode electrode and a second membrane, providing a flow of water through the anode chamber and cathode chamber, providing a flow of a salt solution through the salt solution chamber, providing electrical current to the anode electrode and cathode electrode simultaneously with the flow of water through the anode and cathode chambers and the flow of salt solution through the salt solution chamber, and collecting the oxidative reductive potential water solution produced by the electrolysis cells.


The invention is also directed to a process for producing oxidative reductive potential water solution comprising providing at least one electrolysis cell, wherein the cell comprises an anode chamber, cathode chamber and salt solution chamber located between the anode and cathode chambers, wherein the anode chamber is separated from the salt solution chamber by an anode electrode and a first membrane, and the cathode chamber is separated from the salt solution chamber by a cathode electrode and a second membrane, providing a flow of water through the anode chamber and cathode chamber, providing a flow of water through the salt solution chamber, providing electrical current to the anode electrode and cathode electrode simultaneously with the flow of water through the anode and cathode chambers and the flow of salt solution through the salt solution chamber, and collecting the oxidative reductive potential water produced by the electrolysis cell, wherein the solution comprises anode water and cathode water.




BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic diagram of a three chambered electrolysis cell for producing oxidative reductive potential water according to the present invention.



FIG. 2 is a diagram illustrating a three chambered electrolysis cell and the ionic species generated in the process of the present invention.



FIG. 3 is a schematic flow diagram of the process for producing oxidative reductive potential water according to the present invention.




DETAILED DESCRIPTION OF THE INVENTION

The invention provides an oxidative reductive potential (ORP) water solution which is also commonly referred to as super-oxidized water. The production of ORP water is carried out by an oxidation-reduction process, also referred to as an electrolytic or redox reaction, in which electrical energy is used to produce chemical change in an aqueous solution. Electrical energy is introduced into and transported through water by the conduction of electrical charge from one point to another in the form of an electrical current. In order for the electrical current to arise and subsist there must be charge carriers in the water, and there must be a force that makes the carriers move. The charge carriers can be electrons, as in the case of metal and semiconductors, or they can be positive and negative ions in the case of solutions.


A reduction reaction occurs at the cathode while an oxidation reaction occurs at the anode in the process for preparing an ORP water solution according to the invention. The specific reductive and oxidative reactions that occur are described in International Application WO 03/048421 A1.


As used herein, water produced at an anode is referred to as anode water and water produced at a cathode is referred to as cathode water. Anode water contains oxidized species produced from the electrolytic reaction while cathode water contains reduced species from the reaction.


Anode water generally has a low pH typically of from about 1 to about 6.8. Anode water generally contains chlorine in various forms including, for example, chlorine gas, chloride ions, hydrochloric acid and/or hypochlorous acid. Oxygen in various forms is also present including, for example, oxygen gas, peroxides, and/or ozone. Cathode water generally has a high pH typically of from about 7.2 to about 11. Cathode water generally contains hydrogen gas, hydroxyl radicals, and/or sodium ions.


The ORP water solution of the invention may be acidic, neutral or basic, and generally has a pH of from about 1 to about 14. At this pH, the ORP water solution can safely be applied in suitable quantities to hard surfaces without damaging the surfaces or harming objects, such as human skin, that comes into contact with the ORP water solution. Typically, the pH of the ORP water solution is from about 3 to about 8. More preferably, the pH of the ORP water solution is from about 6.4 to about 7.8, and most preferably, the pH is from about 7.4 to about 7.6.


The ORP water solution of the present invention generally has an oxidation-reduction potential of between −1000 millivolts (mV) and +1150 millivolts (mV). This potential is a measure of the tendency (i.e., the potential) of a solution to either accept or transfer electrons that is sensed by a metal electrode and compared with a reference electrode in the same solution. This potential may be measured by standard techniques including, for example, by measuring the electrical potential in millivolts of the ORP water solution relative to standard reference silver/silver chloride electrode. The ORP water generally has a potential between −400 mV and +1300 mV. Preferably, the ORP water solution has a potential between 0 mV and +1250 mV, and more preferably between +500 mV and +1250 mV. Even more preferably, the ORP water of the present invention has a potential of between +800 mV and +1100 mV, and most preferably between +800 mV and +1000 mV.


Various ionic and other species may be present in the ORP water solution of the invention. For example, the ORP water solution may contain chlorine (e.g., free chlorine and bound chlorine), ozone and peroxides (e.g., hydrogen peroxide). The presence of one or more of these species is believed to contribute to the disinfectant ability of the ORP water solution to kill a variety of microorganisms, such as bacteria and flugi, as well as viruses.


Free chlorine typically includes, but is not limited to, hypochlorous acid (HClO), hypochlorite ions (ClO), sodium hypochlorite (NaOCl), chloride ion (Cl), chlorite ions (ClO2), chlorine dioxide (ClO2), dissolved chlorine gas (Cl2), and other radical chlorine species. The ratio of hypochlorous acid to hypochlorite ion is dependent upon pH. At a pH of 7.4, hypochlorous acid levels are from about 25 ppm to about 75 ppm. Temperature also impacts the ratio of the free chlorine component.


Bound chlorine is chlorine in chemical combination with ammonia or organic amines (e.g., chloramines). Bound chlorine is generally present in an amount up to about 20 ppm.


Chlorine, ozone and hydrogen peroxide may present in the ORP water solution of the invention in any suitable amount. The levels of these components may be measured by methods known in the art.


Typically, the total chlorine content, which includes both free chlorine and bound chlorine, is from about 50 parts per million (ppm) to about 200 ppm. Preferably, the total chlorine content is about 80 ppm to about 150 ppm.


The chlorine content may be measured by methods known in the art, such as the DPD colorimeter method (Lamotte Company, Chestertown, Md.) or other known methods established by the Environmental Protection Agency. In the DPD colorimeter method, a yellow color is formed by the reaction of free chlorine with N,N-diethyl-p-phenylenediamine (DPD) and the intensity is measured with a calibrated calorimeter that provides the output in parts per million. Further addition of potassium iodide turns the solution a pink color to provide the total chlorine value. The amount of bound chlorine present is then determined by subtracting free chlorine from the total chlorine.


Typically, chlorine dioxide is present in an amount of from about 0.01 ppm to about 5 ppm, preferably from about 1.0 ppm to about 3.0 ppm, and more preferably from about 1.0 ppm to about 1.5 ppm. Chlorine dioxide levels may be measured using a modified DPD calorimeter test. Forms of chlorine other than chlorine dioxide are removed by the addition of the amino acid glycine. Chlorine dioxide reacts directly with the DPD reagent to yield a pink color that is measured by a calorimeter machine.


Ozone is generally present in an amount of from about 0.03 ppm to about 0.2 ppm, and preferably from about 0.10 ppm to about 0.16 ppm. Ozone levels may be measured by known methods, such as by a colorimetric method as described in Bader and Hoigne, Water Research, 15, 449-456 (1981).


Hydrogen peroxide levels in the ORP water solution are generally in the range of about 0.01 ppm to about 200 ppm, and preferably between about 0.05 ppm and about 100 ppm. More preferably, hydrogen peroxide is present in an amount between about 0.1 ppm and about 40 ppm, and most preferably between about 1 ppm and 4 ppm. Peroxides (e.g., H2O2, H2O2 and HO2) are generally present in a concentration of less than 0.12 milliMolar (mM).


The level of the hydrogen peroxide can be measured by electron spin resonance (ESR) spectroscopy. Alternatively, it can be measured by a DPD method as described in Bader and Hoigne, Water Research, 22, 1109-1115 (1988) or any other suitable method known in the art.


The total amount of oxidizing chemical species present in the ORP water solution is in the range of about 2 millimolar (mM) which includes the aforementioned chlorine species, oxygen species, and additional species that may be difficult to measure such as Cl, ClO3, Cl2, and ClOx. The level of oxidizing chemical species present may also be measured by ESR spectroscopy (using Tempone H as the spin trap molecule).


The ORP water solution of the invention is generally stable for at least twenty-hours, and typically at least two days. More typically, the water solution is stable for at least one week (e.g., one week, two weeks, three weeks, four weeks, etc.), and preferably at least two months. More preferably, the ORP water solution is stable for at least six months after its preparation. Even more preferably, the ORP water solution is stable for at least one year, and most preferably for at least three years.


As used herein, the term stable generally refers to the ability of the ORP water solution remain suitable for its intended use, for example, in decontamination, disinfection, sterilization, anti-microbial cleansing, and wound cleansing, for a specified period of time after its preparation under normal storage conditions (i.e., room temperature).


The ORP water solution of the invention is also stable when stored under accelerated conditions, typically about 30° C to about 60° C., for at least 90 days, and preferably 180 days.


The concentrations of ionic and other species present solution are generally maintained during the shelf-life of the ORP water solution. Typically, the concentrations of free chlorine, chlorine dioxide, ozone and hydrogen peroxides are maintained at about 70% or great from their initial concentration for at least two months after preparation of the ORP water solution. Preferably, these concentrations are maintained at about 80% or greater of their initial concentration for at least two months after preparation of the ORP water solution. More preferably, these concentrations are at about 90% or greater of their initial concentration for at least two months after preparation of the ORP water solution, and most preferably, about 95% or greater.


The stability of the ORP water solution of the invention may be determined based on the reduction in the amount of organisms present in a sample following exposure to the ORP water solution. The measurement of the reduction of organism concentration may be carried out using any suitable organism including bacteria, fungi, yeasts, or viruses. Suitable organisms include, but are not limited to, Escherichia coli, Staphylococcus aureus, Candida albicans, and Bacillus athrophaeus (formerly B. subtilis). The ORP water solution is useful as both a low-level disinfectant capable of a four log (104 ) reduction in the concentration of live microorganisms and a high-level disinfectant capable of a six log (106) reduction in concentration of live microorganisms.


In one aspect of the invention, the ORP water solution is capable of yielding at least a four log (104 ) reduction in total organism concentration following exposure for one minute, when measured at least two months after preparation of the solution. Preferably, the ORP water solution is capable of such a reduction of organism concentration when measured at least six months after preparation of the solution. More preferably, the ORP water solution is capable of such a reduction of organism concentration when measured at least one year after preparation of the ORP water solution, and most preferably when measured at least three years after preparation of the ORP water solution.


In another aspect of the invention, the ORP water solution is capable of at least a six log (106) reduction in the concentration of a sample of live microorganisms selected from the group consisting of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans within one minute of exposure, when measured at least two months after preparation of the ORP water solution. Preferably, the ORP water solution is capable of achieving this reduction of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus or Candida albicans organisms when measured at least six months after preparation, and more preferably at least one year after preparation. Preferably, the ORP water solution is capable of at least a seven log (107) reduction in the concentration of such live microorganism within one minute of exposure, when measured at least two months after preparation.


The ORP water solution of the invention is generally capable of reducing a sample of live microorganisms including, but not limited to, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans, from an initial concentration of between about 1×106 and about 1×108 organisms/ml to a final concentration of about zero organisms/ml within one minute of exposure, when measured at least two months after preparation of the ORP water solution. This is between a six log (106) and eight log (108) reduction in organism concentration. Preferably, the ORP water solution is capable of achieving this reduction of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus or Candida albicans organisms when measured at least six months after preparation, and more preferably at least one year after preparation.


Alternatively, the ORP water solution is capable of a six log (106) reduction in the concentration of a spore suspension of Bacillus athrophaeus spores within about five minutes of exposure, when measured at least two months after preparation of the ORP water solution. Preferably, the ORP water solution is capable of achieving this reduction in the concentration of Bacillus athrophaeus spores when measured at least six months after preparation, and more preferably at least one year after preparation.


The ORP water solution is further capable of a four log (104 ) reduction in the concentration of a spore suspension of Bacillus athrophaeus spores within about thirty (30) seconds of exposure, when measured at least two months after preparation of the ORP water solution. Preferably, the ORP water solution is capable of achieving this reduction in the concentration of Bacillus athrophaeus spores when measured at least six months after preparation, and more preferably at least one year after preparation.


The ORP water solution is also capable of a six log (106) reduction in the concentration of fungal spores, such as Aspergillis niger spores, within about five to about ten minutes of exposure, when measured at least two months after preparation of the ORP water solution. Preferably, the ORP water solution is capable of achieving this reduction in the concentration of fungal spores when measured at least six months after preparation, and more preferably at least one year after preparation.


In one embodiment, the ORP water solution of the invention comprises hydrogen peroxide (H2O2) and one or more chlorine species. Preferably, the chlorine species present is a free chlorine species. The free chlorine species may be selected from the group consisting of hypochlorous acid (HOCl), hypochlorite ions (OCl), sodium hypochlorite (NaOCl), chlorite ions (ClO2), chloride ion (Cl-), chlorine dioxide (ClO2), dissolved chlorine gas (Cl2), and mixtures thereof.


Hydrogen peroxide is present in the ORP water solution generally in the range of about 0.01 ppm to about 200 ppm, and preferably between about 0.05 ppm and about 100 ppm. More preferably, hydrogen peroxide is present in an amount between about 0.1 ppm and about 40 ppm, and most preferably between about 1 ppm and 4 ppm.


The total amount of free chlorine species is generally between about 10 ppm and about 400 ppm, preferably between about 50 ppm and about 200 ppm, and most preferably between about 50 ppm and about 80 ppm. The amount of hypochlorous acid is in the generally between about 15 ppm and about 35 ppm. The amount of sodium hypochlorite is generally in the range of about 25 ppm and about 50 ppm. Chlorine dioxide levels are generally less than about 5 ppm.


The ORP water solution comprising hydrogen peroxide and one or more chlorine species is stable as described herein. Generally, the ORP water solution is stable for at least one week. Preferably, the ORP water solution is stable for at least two months, more preferably, the ORP water solution is stable for at least six months after its preparation. Even more preferably, the ORP water solution is stable for at least one year, and most preferably for at least three years.


The pH of the ORP water solution in this embodiment is generally between about 6 to about 8. Preferably, the pH of the ORP water solution is between about 6.2 and about 7.8, and most preferably between about 7.4 and about 7.6. The ORP water solution is stable


While in no way limiting the present invention, it is believed that the control of pH permits a stable ORP water solution in which hydrogen peroxide and chlorine species, such as, by way of example, hypochlorous acid and hypochlorite ions, coexist.


Following its preparation, the ORP water solution of the invention may be transferred to a sealed container for distribution and sale to end users such as, for example, health care facilities including hospitals, nursing homes, doctor offices, outpatient surgical centers, dental offices, and the like. Any suitable sealed container may be used that maintains the sterility and stability of the ORP water solution held by the container. The container may be constructed of any material that is compatible with the ORP water solution. The container should be generally non-reactive so that the ions present in the ORP water solution do not react with the container to any appreciable extent.


Preferably, the container is constructed of plastic or glass. The plastic may be rigid so that the container is capable of being stored on a shelf. Alternatively, plastic may be flexible, such as a flexible bag.


Suitable plastics include polypropylene, polyester terephthalate (PET), polyolefin, cycloolefin, polycarbonate, ABS resin, polyethylene, polyvinyl chloride, and mixtures thereof. Preferably, the container comprises polyethylene selected from the group consisting of high-density polyethylene (HDPE), low-density polyethylene (LDPE), and linear low-density polyethylene (LLDPE). Most preferably, the container is high density polyethylene.


The container has an opening to permit dispensing of the ORP water solution. The container opening may be sealed in any suitable manner. For example, the container may be sealed with a twist-off cap or stopper. Optionally, the opening may be further sealed with a foil layer.


The headspace gas of the sealed container may be air or other suitable gas that does not react with the ORP water solution. Suitable headspace gases included nitrogen, oxygen, and mixtures thereof.


The invention further provides an ORP water solution comprising anode water and cathode water. Anode water is produced in the anode chamber of the electrolysis cell used in the present invention. Cathode water is produced in the cathode chamber of the electrolysis cell.


Cathode water is generally present in the ORP water solution of the solution in an amount of from about 10% by volume to about 90% by volume of the solution. Preferably, cathode water is present in the ORP water solution in an amount of from about 10% by volume to about 50% by volume, more preferably of from about 20% by volume to about 40% by volume of the solution, and most preferably of from about 20% by volume to about 30% by volume of the solution.


As noted herein, the ORP water solution containing both anode water and cathode water can be acidic, neutral or basic, and generally has a pH of from about 1 to about 14. Typically, the pH of the ORP water solution is from about 3 to about 8. Preferably, the pH is about 6.4 to about 7.8, and more preferably from about 7.4 to about 7.6.


The ORP water solution of the invention has a wide variety of uses as a disinfectant, cleanser, cleaner, antiseptic and the like to control the activity of unwanted or harmful substances present in the environment. Substances that may be treated with the ORP water solution include, for example, organisms and allergens.


The ORP water solution may be used as a disinfectant, sterilization agent, decontaminant, antiseptic and/or cleanser. The ORP water solution of the invention is suitable for use in the following representative applications: medical, dental and/or veterinary equipment and devices; food industry (e.g., hard surfaces, fruits, vegetables, meats); hospitals/health care facilities (e.g., hard surfaces); cosmetic industry (e.g., skin cleaner); households (e.g., floors, counters, hard surfaces); electronics industry (e.g., cleaning circuitry, hard drives); and bio-terrorism (e.g., anthrax, infectious microbes).


The ORP water solution may also be applied to humans and/or animals to treat various conditions including, for example, the following: surgical/open wound cleansing agent; skin pathogen disinfection (e.g., for bacteria, mycoplasmas, virus, fungi, prions); battle wound disinfection; wound healing promotion; burn healing promotion; treatment of stomach ulcers; wound irrigation; skin fungi; psoriasis; athlete's foot; pinkeye and other eye infections; ear infections (e.g., swimmer's ear); lung/nasal/sinus infections; and other medical applications on or in the human or animal body. The use of ORP water solutions as a tissue cell growth promoter is further described in U.S. Patent application Publication 2002/0160053 A1.


While in no way limiting the present invention, it is believed that the ORP water solution eradicates the bacteria with which it contacts as well as destroying the bacterial cellular components including proteins and DNA.


Organisms that can be controlled, reduced, killed or eradicated by treatment with the ORP water solution include, but are not limited to, bacteria, fungi, yeasts, and viruses. Susceptible bacteria include, but are not limited to, Escherichia coli, Staphylococcus aureus, Bacillus athrophaeus, Streptococcus pyogenes, Salmonella choleraesuis, Pseudomonas aeruginosa, Shingella dysenteriae, and other susceptible bacteria. Fungi and yeasts that may be treated with the ORP water solution include, for example, Candida albicans and Trichophyton mentagrophytes. The ORP water solution may also be applied to viruses including, for example, adenovirus, human immunodeficiency virus (HIV), rhinovirus, influenza (e.g., influenza A), hepatitis (e.g., hepatitis A), coronavirus (responsible for Severe Acute Respiratory Syndrome (SARS)), rotavirus, respiratory syncytial virus, herpes simplex virus, varicella zoster virus, rubella virus, and other susceptible viruses.


The ORP water of the invention is also suitable for use in controlling the activity of allergens present in the environment. As used herein, allergens include any substance other than bacteria, fungi, yeasts, or viruses, that can trigger an adverse immune response, or allergy, in susceptible people or animals. Asthma is a common physiological response following exposure to one or more allergens. Allergens may be either viable (i.e., from living or dead organisms) or non-viable (e.g., non-living such as textiles), and may be present in the environment, for example, in households and/or workplaces.


Protein-based household allergens that may be treated with the ORP water include, for example, animal fur, skin, and feces, household dust, weeds, grasses, trees, mites, and pollens. Animal allergens include, for example, cat epithelium, dog epithelium, horse dander, cow dander, dog dander, guinea pig epithelium, goose feathers, mouse epithelium, mouse urine, rat epithelium and rat urine.


Occupational allergens include, for example, high-molecular-weight agents, such. as natural proteins generally derived from plant or animal proteins, and low-molecular-weight chemicals, such as diisocyanates, and other material found in some textiles. Other chemical allergens that may be present in the workplace include, for example, anhydrides, antibiotics, wood dust and dyes. Numerous proteins may be occupational allergens including vegetable gums, enzymes, animal proteins, insects, plant proteins, and legumes.


Additional allergens suitable for treatment by the ORP water solution are described in Korenblat and Wedner, Allergy Theory and Practice (1992) and Middleton, Jr., Allergy Principles and Practice (1993).


The ORP water solution of the invention may be used or applied in any suitable amount to provide the desired bactericidal, virucidal, germicidal and/or anti-allergenic effect.


The ORP water solution may be applied to disinfect and sterilize in any suitable manner. For example, to disinfect and sterilize medical or dental equipment, the equipment is maintained in contact with the ORP water solution for a sufficient period of time to reduce the level of organisms present on the equipment to a desired level.


For disinfection and sterilization of hard surfaces, the ORP water solution may be applied to the hard surface directly from a container in which the ORP water solution is stored. For example, the ORP water solution may be poured, sprayed or otherwise directly applied to the hard surface. The ORP water solution may then be distributed over the hard surface using a suitable substrate such as, for example, cloth, fabric or paper towel. In hospital applications, the substrate is preferably sterile. Alternatively, the ORP water solution may first be applied to a substrate such as cloth, fabric or paper towel. The wetted substrate is then contacted with the hard surface. Alternatively, the ORP water solution may be applied to hard surfaces by dispersing the solution into the air as described herein. The ORP water solution may be applied in a similar manner to humans and animals.


An implement may optionally be used to apply the ORP water solution to hard surfaces such as floors, walls, and ceilings. For example, the ORP water solution may be dispensed onto a mop head for application to floors. Other suitable implements for applying the ORP water solution to hard surfaces are described in U.S. Pat. No. 6,663,306.


The invention further provides a cleaning wipe comprising a water insoluble substrate and the ORP water solution as described herein, wherein the ORP water solution is dispensed onto the substrate. The ORP water solution may be impregnated, coated, covered or otherwise applied to the substrate. Preferably, the substrate is pretreated with the ORP water solution before distribution of the cleaning wipes to end users.


The substrate for the cleaning wipe may be any suitable water-insoluble absorbent or adsorbent material. A wide variety of materials can be used as the substrate. It should have sufficient wet strength, abrasivity, loft and porosity. Further, the substrate must not adversely impact the stability of the ORP water solution. Examples include non woven substrates, woven substrates, hydroentangled substrates and sponges.


The substrate may have one or more layers. Each layer may have the same or different textures and abrasiveness. Differing textures can result from the use of different combinations of materials or from the use of different manufacturing processes or a combination thereof. The substrate should not dissolve or break apart in water. The substrate provides the vehicle for delivering the ORP water solution to the surface to be treated.


The substrate may be a single nonwoven sheet or multiple nonwoven sheets. The nonwoven sheet may be made of wood pulp, synthetic fibers, natural fibers, and blends thereof. Suitable synthetic fibers for use in the substrate include, without limitation, polyester, rayon, nylon, polypropylene, polyethylene, other cellulose polymers, and mixtures of such fibers. The nonwovens may include nonwoven fibrous sheet materials which include meltblown, coform, air-laid, spun bond, wet laid, bonded-carded web materials, hydroentangled (also known as spunlaced) materials, and combinations thereof. These materials can comprise synthetic or natural fibers or combinations thereof. A binder may optionally be present in the substrate.


Examples of suitable nonwoven, water insoluble substrates include 100% cellulose Wadding Grade 1804 from Little Rapids Corporation, 100% polypropylene needlepunch material NB 701-2.8-W/R from American Non-wovens Corporation, a blend of cellulosic and synthetic fibres-Hydraspun 8579 from Ahlstrom Fibre Composites, and 70% Viscose/30% PES Code 9881 from PGI Nonwovens Polymer Corp. Additional examples of nonwoven substrates suitable for use in the cleaning wipes are described in U.S. Pat. Nos. 4,781,974, 4,615,937, 4,666,621, and 5,908,707, and International Patent Application Publications WO 98/03713, WO 97/40814, and WO 96/14835.


The substrate may also be made of woven materials, such as cotton fibers, cotton/nylon blends, or other textiles. Regenerated cellulose, polyurethane foams, and the like, which are used in making sponges, may also be suitable for use.


The liquid loading capacity of the substrate should be at least about 50%-1000% of the dry weight thereof, most preferably at least about 200%-800%. This is expressed as loading ½ to 10 times the weight of the substrate. The weight of the substrate varies without limitation from about 0.01 to about 1,000 grams per square meter, most preferably 25 to 120 grams/m2 (referred to as “basis weight”) and typically is produced as a sheet or web which is cut, die-cut, or otherwise sized into the appropriate shape and size. The cleaning wipes will preferably have a certain wet tensile strength which is without limitation about 25 to about 250 Newtons/m, more preferably about 75-170 Newtons/m.


The ORP water solution may be dispensed, impregnated, coated, covered or otherwise applied to the substrate by any suitable method. For example, individual portions of substrate may be treated with a discrete amount of the ORP water solution. Preferably, a mass treatment of a continuous web of substrate material with the ORP water solution is carried out. The entire web of substrate material may be soaked in the ORP water solution. Alternatively, as the substrate web is spooled, or even during creation of a nonwoven substrate, the ORP water solution is sprayed or metered onto the web. A stack of individually cut and sized portions of substrate may be impregnated or coated with the ORP water solution in its container by the manufacturer.


The cleaning wipes may optionally contain additional components to improve the properties of the wipes. For example, the cleaning wipes may further comprise polymers, surfactants, polysaccharides, polycarboxylates, polyvinyl alcohols, solvents, chelating agents, buffers, thickeners, dyes, colorants, fragrances, and mixtures thereof to improve the properties of the wipes. These optional components should not adversely impact the stability of the ORP water solution. Examples of various components that may optionally be included in the cleaning wipes are described in U.S. Pat. Nos. 6,340,663, 6,649,584 and 6,624,135.


The cleaning wipes of the invention can be individually sealed with a heat-sealable or glueable thermoplastic overwrap (such as polyethylene, Mylar, and the like). The wipes can also be packaged as numerous, individual sheets for more economical dispensing. The cleaning wipes may be prepared by first placing multiple sheets of the substrate in a dispenser and then contacting the substrate sheets with the ORP water solution of the invention. Alternatively, the cleaning wipes can be formed as a continuous web by applying the ORP water solution to the substrate during the manufacturing process and then loading the wetted substrate into a dispenser.


The dispenser includes, but is not limited to, a canister with a closure, or a tub with closure. The closure on the dispenser is to seal the moist wipes from the external environment and to prevent premature volatilization of the liquid ingredients.


The dispenser may be made of any suitable material that is compatible with both the substrate and the ORP water solution. For example, the dispenser may be made of plastic, such as high density polyethylene, polypropylene, polycarbonate, polyethylene terephthalate (PET), polyvinyl chloride (PVC), or other rigid plastics.


The continuous web of wipes may be threaded through a thin opening in the top of the dispenser, most preferably, through the closure. A means of sizing the desired length or size of the wipe from the web would then be needed. A knife blade, serrated edge, or other means of cutting the web to desired size may be provided on the top of the dispenser, for non-limiting example, with the thin opening actually doubling in duty as a cutting edge. Alternatively, the continuous web of wipes may be scored, folded, segmented, perforated or partially cut into uniform or non-uniform sizes or lengths, which would then obviate the need for a sharp cutting edge. Further, the wipes may be interleaved, so that the removal of one wipe advances the next.


The ORP water solution of the invention may alternatively be dispersed into the environment through a gaseous medium, such as air. The ORP water solution may be dispersed into the air by any suitable means. For example, the ORP water solution may be formed into droplets of any suitable size and dispersed into a room.


For small scale applications, the ORP water solution may be dispensed through a spray bottle that includes a standpipe and pump. Alternatively, the ORP water solution may be packaged in aerosol containers. Aerosol containers generally include the product to be dispensed, propellant, container, and valve. The valve includes both an actuator and dip tube. The contents of the container are dispensed by pressing down on the actuator. The various components of the aerosol container are compatible with the ORP water solution. Suitable propellants may include a liquefied halocarbon, hydrocarbon, or halocarbon-hydrocarbon blend, or a compressed gas such as carbon dioxide, nitrogen, or nitrous oxide. Aerosol systems typically yield droplets that range in size from about 0.15 μm to about 5 μm.


The ORP water solution may be dispensed in aerosol form as part of an inhaler system for treatment of infections in the lungs and/or air passages or for the healing of wounds in such parts of the body.


For larger scale applications, any suitable device may be used to disperse the ORP water solution into the air including, but not limited to, humidifiers, misters, foggers, vaporizers, atomizers, water sprays, and other spray devices. Such devices permit the dispensing of the ORP water solution on a continuous basis. An ejector which directly mixes air and water in a nozzle may be employed. The ORP water solution may be converted to steam, such as low pressure steam, and released into the air stream. Various types of humidifiers may be used such as ultrasonic humidifiers, stream humidifiers or vaporizers, and evaporative humidifiers.


The particular device used to disperse the ORP water solution may be incorporated into a ventilation system to provide for widespread application of the ORP water solution throughout an entire house or healthcare facility (e.g., hospital, nursing home, etc.).


The ORP water solution may optionally contain a bleaching agent. The bleaching agent may be any suitable material that lightens or whitens a substrate. The ORP water solution containing a bleaching agent can be used in home laundering to disinfect and sterilize bacteria and germs as well as brighten clothing. Suitable bleaching agents include, but are not limited to, chlorine-containing bleaching agents and peroxide-containing bleaching agents. Mixtures of bleaching agents may also be added to the ORP water solution. Preferably, the bleaching agent is added in the form of an aqueous solution to the ORP water solution.


Chlorine-containing bleaching agents useful in the present invention include chlorine, hypochlorites, N-chloro compounds, and chlorine dioxide. Preferably, the chlorine-containing bleaching agent added to the ORP water solution is sodium hypochlorite or hypochlorous acid. Other suitable chlorine-containing bleaching agents include chlorine, calcium hypochlorite, bleach liquor (e.g., aqueous solution of calcium hypochlorite and calcium chloride), bleaching powder (e.g., mixture of calcium hypochlorite, calcium hydroxide, calcium chloride, and hydrates thereof), dibasic magnesium hypochlorite, lithium hypochlorite, chlorinated trisodium phosphate. Mixtures of chlorine-containing bleaching agents may be used.


The addition of a bleaching agent to the ORP water solution may be carried out in any suitable manner. Preferably, an aqueous solution containing the bleaching agent is first prepared. The aqueous solution containing the bleaching agent may be prepared using household bleach (e.g., Clorox® bleach) or other suitable source of chlorine-containing bleaching agent or other bleaching agent. The bleaching agent solution is then combined with the ORP water solution.


The bleaching agent may be added to the ORP water solution in any suitable amount. Preferably, the ORP water solution containing a bleaching agent is non-irritating to human or animal skin. Preferably, the total chloride ion content of the ORP water solution containing a chlorine-containing bleaching agent is from about 1000 ppm to about 5000 ppm, and preferably from about 1000 ppm to about 3000 ppm. The pH of the ORP water solution containing a chlorine-containing bleaching agent is preferably from about 8 to about 10, and the oxidative-reductive potential is from about +700 mV to about +800 mV.


The ORP water solution may optionally contain additives suitable for the household and workplace cleaning environment. Suitable additives include surfactants, such as detergents and cleaning agents. Perfumes or other scent-producing compounds may also be included to enhance consumer reception of the ORP water solution.


The present invention further provides a process for producing an ORP water solution using at least one electrolysis cell comprising an anode chamber, cathode chamber and salt solution chamber located between the anode and cathode chambers, wherein the ORP water solution comprises anode water and cathode water. A diagram of a typical three chamber electrolysis cell useful in the invention is shown in FIG. 1.


The electrolysis cell 100 has an anode chamber 102, cathode chamber 104 and salt solution chamber 106. The salt solution chamber is located between the anode chamber 102 and cathode chamber 104. The anode chamber 102 has an inlet 108 and outlet 110 to permit the flow of water through the anode chamber 100. The cathode chamber 104 similarly has an inlet 112 and outlet 114 to permit the flow of water through the cathode chamber 104. The salt solution chamber 106 has an inlet 116 and outlet 118. The electrolysis cell 100 preferably includes a housing to hold all of the components together.


The anode chamber 102 is separated from the salt solution chamber by an anode electrode 120 and an anion ion exchange membrane 122. The anode electrode 120 may be positioned adjacent to the anode chamber 102 with the membrane 122 located between the anode electrode 120 and the salt solution chamber 106. Alternatively, the membrane 122 may be positioned adjacent to the anode chamber 102 with the anode electrode 120 located between the membrane 122 and the salt solution chamber 106.


The cathode chamber 104 is separated from the salt solution chamber by a cathode electrode 124 and a cathode ion exchange membrane 126. The cathode electrode 124 may be positioned adjacent to the cathode chamber 104 with the membrane 126 located between the cathode electrode 124 and the salt solution chamber 106. Alternatively, the membrane 126 may be positioned adjacent to the cathode chamber 104 with the cathode electrode 124 located between the membrane 126 and the salt solution chamber 106.


The electrodes are generally constructed of metal to permit a voltage potential to be applied between the anode chamber and cathode chamber. The metal electrodes are generally planar and have similar dimensions and cross-sectional surface area to that of the ion exchange membranes. The electrodes are configured to expose a substantial portion of the surface of the ion exchange members to the water in their respective anode chamber and cathode chamber. This permits the migration of ionic species between the salt solution chamber, anode chamber and cathode chamber. Preferably, the electrodes have a plurality of passages or apertures evenly spaced across the surface of the electrodes.


A source of electrical potential is connected to the anode electrode 120 and cathode electrode 124 so as to induce an oxidation reaction in the anode chamber 102 and a reduction reaction in the cathode chamber 104.


The ion exchange membranes 122 and 126 used in the electrolysis cell 100 may be constructed of any suitable material to permit the exchange of ions between the salt solution chamber 106 and the anode chamber 102 such as chloride ions (Cl) and between the salt solution salt solution chamber 106 and the cathode chamber 104 such as sodium ions (Na+). The anode ion exchange membrane 122 and cathode ion exchange membrane 126 may be made of the same or different material of construction. Preferably, the anode ion exchange membrane comprises a fluorinated polymer. Suitable fluorinated polymers include, for example, perfluorosulfonic acid polymers and copolymers such as perfluorosulfonic acid/PTFE copolymers and perfluorosulfonic acid/TFE copolymers. The ion exchange membrane may be constructed of a single layer of material or multiple layers.


The source of the water for the anode chamber 102 and cathode chamber 104 of the electrolysis cell 100 may be any suitable water supply. The water may be from a municipal water supply or alternatively pretreated prior to use in the electrolysis cell. Preferably, the pretreated water is selected from the group consisting of softened water, purified water, distilled water, and deionized water. More preferably, the pretreated water source is ultrapure water obtained using reverse osmosis purification equipment.


The salt water solution for use in the salt water chamber 106 may be any aqueous salt solution that contains suitable ionic species to produce the ORP water solution. Preferably, the salt water solution is an aqueous sodium chloride (NaCl) salt solution, also commonly referred to as a saline solution. Other suitable salt solutions include other chloride salts such as potassium chloride, ammonium chloride and magnesium chloride as well as other halogen salts such as potassium and bromine salts. The salt solution may contain a mixture of salts.


The salt solution may have any suitable concentration. The salt solution may be saturated or concentrated. Preferably, the salt solution is a saturated sodium chloride solution.


The various ionic species produced in the three chambered electrolysis cell useful in the invention are illustrated in FIG. 2. The three chambered electrolysis cell 200 includes an anode chamber 202, cathode chamber 204, and a salt solution chamber 206. Upon application of a suitable electrical current to the anode 208 and cathode 210, the ions present in the salt solution flowing through the salt solution chamber 206 migrate through the anode ion exchange membrane 212 and cathode ion exchange membrane 214 into the water flowing through the anode chamber 202 and cathode chamber 204, respectively.


Positive ions migrate from the salt solution 216 flowing through the salt solution chamber 206 to the cathode water 218 flowing through the cathode chamber 204. Negative ions migrate from the salt solution 216 flowing through the salt solution chamber 206 to the anode water 220 flowing through the anode chamber 202.


Preferably, the salt solution 216 is aqueous sodium chloride (NaCl) that contains both sodium ions (Na+) and chloride ions (Cl) ions. Positive Na+ ions migrate from the salt solution 216 to the cathode water 218. Negative Cl ions migrate from the salt solution 216 to the anode water 220.


The sodium ions and chloride ions may undergo further reaction in the anode chamber 202 and cathode chamber 204. For example, chloride ions can react with various oxygen ions and other species (e.g., oxygen free radicals, O2, O3) present in the anode water 220 to produce ClOn- and ClO. Other reactions may also take place in the anode chamber 202 including the formation of oxygen free radicals, hydrogen ions (H+), oxygen (as O2), ozone (O3), and peroxides. In the cathode chamber 204, hydrogen gas (H2), sodium hydroxide (NaOH), hydroxide ions (OH), ClOn- ions, and other radicals may be formed.


The invention further provides for a process and apparatus for producing an ORP water solution using at least two three chambered electrolysis cells. A diagram of a process for producing an ORP water solution using two electrolysis cells of the invention is shown in FIG. 3.


The process 300 includes two three-chambered electrolytic cells, specifically a first electrolytic cell 302 and second electrolytic cell 304. Water is transferred, pumped or otherwise dispensed from the water source 305 to anode chamber 306 and cathode chamber 308 of the first electrolytic cell 302 and to anode chamber 310 and cathode chamber 312 of the second electrolytic cell 304. Typically, the process of the invention can produce from about 1 liter/minute to about 50 liters/minute of ORP water solution. The production capacity may be increased by using additional electrolytic cells. For example, three, four, five, six, seven, eight, nine, ten or more three-chambered electrolytic cells may be used to in increase the output of the ORP water solution of the invention.


The anode water produced in the anode chamber 306 and anode chamber 310 is collected are collected in the mixing tank 314. A portion of the cathode water produced in the cathode chamber 308 and cathode chamber 312 is collected in mixing tank 314 and combined with the anode water. The remaining portion of cathode water produced in the process is discarded. The cathode water may optionally be subjected to gas separator 316 and/or gas separator 318 prior to addition to the mixing tank 314. The gas separators remove gases such as hydrogen gas that are formed in cathode water during the production process.


The mixing tank 314 may optionally be connected to a recirculation pump 315 to permit homogenous mixing of the anode water and portion of cathode water from electrolysis cells 302 and 304. Further, the mixing tank 314 may optionally include suitable devices for monitoring the level and pH of the ORP water solution. The ORP water solution may be transferred from the mixing tank 314 via pump 317 for application in disinfection or sterilization at or near the location of the mixing tank. Alternatively, the ORP water solution may be dispensed into suitable containers for shipment to a remote site (e.g., warehouse, hospital, etc.).


The process 300 further includes a salt solution recirculation system to provide the salt solution to salt solution chamber 322 of the first electrolytic cell 302 and the salt solution chamber 324 of the second electrolytic cell 304. The salt solution is prepared in the salt tank 320. The salt is transferred via pump 321 to the salt solution chambers 322 and 324. Preferably, the salt solution flows in series through salt solution chamber 322 first followed by salt solution chamber 324. Alternatively, the salt solution may be pumped to both salt solution chambers simultaneously.


Before returning to the salt tank 320, the salt solution may flow through a heat exchanger 326 in the mixing tank 314 to control the temperature of the ORP water solution as needed.


The ions present in the salt solution are depleted over time in the first electrolytic cell 302 and second electrolytic cell 304. An additional source of ions may periodically be added to the mixing tank 320 to replace the ions that are transferred to the anode water and cathode water. The additional source of ions may be used to maintain a constant pH of the salt solution which tends to drop (i.e., become acidic) over time. The source of additional ions may be any suitable compound including, for example, salts such as sodium chloride. Preferably, sodium hydroxide is added to the mixing tank 320 to replace the sodium ions (Na+) that are transferred to the anode water and cathode water.


In another embodiment, the invention provides an apparatus for producing an oxidative reductive potential water solution comprising at least two three-chambered electrolytic cells. Each of the electrolytic cells includes an anode chamber, cathode chamber, and salt solution chamber separating the anode and cathode chambers. The apparatus includes a mixing tank for collecting the anode water produced by the electrolytic cells and a portion of the cathode water produced by one or more of the electrolytic cells. Preferably, the apparatus further includes a salt recirculation system to permit recycling of the salt solution supplied to the salt solution chambers of the electrolytic cells.


The following examples further illustrate the invention but, of course, should not be construed as in any way limiting in its scope.


EXAMPLES 1-3

These examples demonstrate the unique features of the ORP water solution of the invention. The samples of the ORP water solution in Examples 1-3 were analyzed in accordance with the methods described herein to determine the physical properties and levels of ionic and other chemical species present in each sample. The pH, oxidative-reductive potential (ORP) and ionic species present are set forth in Table 1 for each sample of the ORP water solution.

TABLE 1Physical characteristics and ion species presentfor the ORP water solution samplesEXAMPLE 1EXAMPLE 2EXAMPLE 3pH7.457.447.45ORP (mV)+879+881+874Total Cl(ppm)110110120Bound Cl(ppm)566Cl Dioxide (ppm)1.511.491.58Ozone0.120.100.12Hydrogen Peroxide42.543.042.0


As demonstrated by these results, the present invention provides a ORP water solution having suitable physical characteristics for use in disinfection, sterilization and/or cleaning.


EXAMPLES 4-10

These examples demonstrate the addition of a bleaching agent to the ORP water solution according to the invention in various amounts. In particular, these examples demonstrate the antimicrobial activity and fabric bleaching ability of the compositions.


A 10% Clorox® bleach solution was prepared using distilled water. The following solutions were then prepared using the 10% bleach solution: 80% ORP water solution/20% bleach (Example 4); 60% ORP water solution/40% bleach (Example 5); 40% ORP water solution/60% bleach (Example 6); 20% ORP water solution/80% bleach (Example 7); and 0% ORP water solution/100% bleach (Example 8). Two control solutions were also used for comparison including 100% ORP water solution/0% bleach (Example 9) and an ORP water solution with 0.01% Tween 20 detergent (Example 10). The physical characteristics of these samples were determined, specifically pH, oxidative-reductive potential (ORP), total chlorine (Cl) content, hypochlorous acid (HClO) content, chlorine dioxide content and peroxide content, and are set forth in Table 2.

TABLE 2Physical characteristics of ORP water solution/bleach compositionsTotal ClHClOCl DioxidePeroxidepHORP(ppm)(ppm)(ppm)(ppm)Ex. 48.92+789124862n.d.n.d.Ex. 59.20+7822610104n.d.n.d.Ex. 69.69+743400680n.d.n.d.Ex. 79.86+730480048n.d.n.d.Ex. 89.80+737500050n.d.n.d.Ex. 97.06+90164322.835Ex. 106.86+91451262.735


The large bolus of chlorine ions added as part of the bleaching agent prevented the accurate measurement of the chlorine dioxide and peroxide levels as indicated with the n.d. designations. As these examples demonstrate, the hypochlorous acid levels of the ORP water solution with and without the addition of a bleaching agent are similar.


The samples of Examples 4-10 were subjected to a high spore count test using Bacillus subtilis var. niger spores (ATCC #9372 obtained from SPS Medical of Rush, N.Y.). Spore suspensions were concentrated (by evaporation in a sterile hood) to 4×106 spores per 100 microliters. A 100 microliter sample of the spore suspension were mixed with 900 microliters of each of the samples in Examples 4-10. The samples were incubated at room temperature for periods of 1 to 5 minutes as set forth in Table 3. At the indicated times, 100 microliters of the incubated samples were plated onto individual TSA plates and incubated for 24 hours at 35° C.±2° C., after which the number of resulting colonies on each plate was determined. The control plates demonstrated that the starting spore concentrations were >1×106 spores/100 microliters. The concentration of Bacillus spores for the various samples at the various incubation times (as the average of two determinations) is set forth in Table 3.

TABLE 3Bacillus spore concentrations1 minute2 minutes3 minutes4 minutes5 minutesEx. 4>>1000411102Ex. 5>>10001000100Ex. 6>>1000>>1000>1000220Ex. 7>>1000>>1000>1000150Ex. 8>>1000>>1000>100031Ex. 9>>100074000Ex 10>>1000239300


As these results demonstrate, as the concentration of bleach (as 10% aqueous bleach solution) increases, the amount of Bacillus spores killed is reduced for the samples incubated for 2-3 minutes. However, for samples incubated for 5 minutes, the bleach concentration does not impact Bacillus spore kill. Further, the results demonstrate that the addition of 0.01% detergent to the ORP water solution does not reduce spore kill.


The samples of Examples 4-10 were subjected to a fabric bleaching test. The fabric upon which the samples were tested was a 100% rayon children's t-shirt with dark blue dye patches. Two inch square pieces of dyed fabric were placed into 50 mL plastic tubes. Each fabric piece was covered by a sample of the solution in Examples 4-10. The elapsed time until complete bleaching was obtained, as determined by the whitening of the fabric, is set forth in Table 4.

TABLE 4Time until complete bleaching of fabric sampleExampleTimeEx. 439minutesEx. 523minutesEx. 618minutesEx. 719minutesEx. 810minutesEx. 9>6hoursEx. 10>6hours


As demonstrated by these examples, as the concentration of the ORP water solution increases in the composition, the time until complete bleaching is achieved increases.


All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.


The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.


Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.

Claims
  • 1. An oxidative reductive potential water solution, wherein the solution is stable for at least twenty-four hours.
  • 2. The solution of claim 1, wherein the pH is from about 3 to about 8 and the solution is stable for at least one week.
  • 3. The solution of claim 2, wherein the pH is from about 6.4 to about 7.8.
  • 4. The solution of claim 3, wherein the pH is from about 7.4 to about 7.6.
  • 5. The solution of claim 3, wherein the solution is stable for at least two months.
  • 6. The solution of claim 3, wherein the solution is stable for at least six months.
  • 7. The solution of claim 3, wherein the solution is stable for at least one year.
  • 8. The solution of claim 3, wherein the solution is stable for at least three years.
  • 9. The solution of claim 5, wherein the solution is capable of yielding at least a 104 reduction in total organism concentration following exposure for one minute, when measured at least two months after preparation of the solution.
  • 10. The solution of claim 9, wherein the solution is capable of yielding at least a 106 reduction in total organism concentration following exposure for one minute, when measured at least two months after preparation of the solution.
  • 11. The solution of claim 5, wherein the solution is capable of yielding at least a 106 reduction in the concentration of a sample of live microorganisms selected from the group consisting of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans within one minute of exposure, when measured at least two months after preparation of the ORP water solution.
  • 12. The solution of claim 5, wherein the solution is capable of reducing a sample of live microorganisms selected from the group consisting of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans having an initial concentration of between about 1×106 and about 1×108 microorganisms/ml to a final concentration of about zero microorganisms/ml within one minute of exposure, when measured at least two months after preparation of the solution.
  • 13. The solution of claim 5, wherein the solution is capable of yielding at least a 104 reduction in the concentration of a spore suspension of Bacillus athrophaeus spores within about 30 seconds of exposure, when measured at least two months after preparation of the solution.
  • 14. The solution of claim 5, wherein the solution is capable of yielding at least a 104 reduction in the concentration of a spore suspension of Aspergillis niger spores within about ten minutes of exposure, when measured at least two months after preparation of the solution.
  • 15. A sealed container containing an oxidative reductive potential water solution, wherein the solution is stable for at least twenty-four hours.
  • 16. The sealed container of claim 15, wherein the solution is stable for at least one week.
  • 17. The sealed container of claim 16, wherein the pH of the solution is from about 3 to about 8.
  • 18. The sealed container of claim 17, wherein the pH of the solution is from about 6.4 to about 7.8.
  • 19. The sealed container of claim 18, wherein the pH of the solution is from about 7.4 to about 7.6.
  • 20. The sealed container of claim 19, wherein the solution is stable for at least two months.
  • 21. The sealed container of claim 20, wherein the solution is stable for at least six months.
  • 22. The sealed container of claim 21, wherein the solution is stable for at least one year.
  • 23. The sealed container of claim 22, wherein the solution is stable for at least three years.
  • 24. The sealed container of claim 20, wherein the solution is capable of yielding at least a 104 reduction in total organism concentration following exposure for one minute, when measured at least two months after preparation of the solution.
  • 25. The sealed container of claim 24, wherein the solution is capable of yielding at least a 106 reduction in total organism concentration following exposure for one minute, when measured at least two months after preparation of the solution.
  • 26. The sealed container of claim 20, wherein the solution is capable of yielding at least a 106 reduction in the concentration of a sample of live microorganisms selected from the group consisting of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans within one minute of exposure, when measured at least two months after preparation of the ORP water solution.
  • 27. The sealed container of claim 20, wherein the solution is capable of reducing a sample of live microorganisms selected from the group consisting of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans having an initial concentration of between about 1×106 and about 1×108 microorganisms/ml to a final concentration of about zero microorganisms/ml within one minute of exposure, when measured at least two months after preparation of the solution.
  • 28. The sealed container of claim 20, wherein the solution is capable of yielding at least a 104 reduction in the concentration of a spore suspension of Bacillus athrophaeus spores within about 30 seconds of exposure, when measured at least two months after preparation of the solution.
  • 29. The sealed container of claim 20, wherein the solution is capable of yielding at least a 104 reduction in the concentration of a spore suspension of Aspergillis niger spores within about ten minutes of exposure, when measured at least two months after preparation of the solution.
  • 30. An oxidative reductive potential water solution, wherein the solution comprises anode water and cathode water.
  • 31. The solution of claim 30, wherein the pH is from about 6.4 to about 7.8.
  • 32. The solution of claim 31, wherein the cathode water is present in an amount of from about 10% by volume to about 50% by volume of the solution.
  • 33. The solution of claim 32, wherein the cathode water is present in an amount of from about 20% by volume to about 40% by volume of the solution.
  • 34. The solution of claim 31, wherein the anode water is present in an amount of from about 50% by volume to about 90% by volume of the solution
  • 35. The solution of claim 31, wherein the solution is capable of yielding at least a 104 reduction in total organism concentration following exposure for one minute, when measured at least two months after preparation of the solution.
  • 36. The solution of claim 35, wherein the solution is capable of yielding at least a 106 reduction in total organism concentration following exposure for one minute, when measured at least two months after preparation of the solution.
  • 37. The solution of claim 31, wherein the solution is capable of yielding at least a 106 reduction in the concentration of a sample of live microorganisms selected from the group consisting of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans within one minute of exposure, when measured at least two months after preparation of the ORP water solution.
  • 38. The solution of claim 31, wherein the solution is capable of reducing a sample of live microorganisms selected from the group consisting of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans having an initial concentration of between about 1×106 and about 1×108 microorganisms/ml to a final concentration of about zero microorganisms/ml within one minute of exposure, when measured at least two months after preparation of the solution.
  • 39. The solution of claim 31, wherein the solution is capable of yielding at least a 104 reduction in the concentration of a spore suspension of Bacillus athrophaeus spores within about 30 seconds of exposure, when measured at least two months after preparation of the solution.
  • 40. The solution of claim 31, wherein the solution is capable of yielding at least a 104 reduction in the concentration of a spore suspension of Aspergillis niger spores within about ten minutes of exposure, when measured at least two months after preparation of the solution.
  • 41. An apparatus for producing oxidative reductive potential water comprising at least two electrolysis cells, wherein each cell comprises an anode chamber, cathode chamber and salt solution chamber located between the anode and cathode chambers, wherein the anode chamber is separated from the salt solution chamber by an anode electrode and a first membrane, and the cathode chamber is separated from the salt solution chamber by a cathode electrode and a second membrane.
  • 42. The apparatus of claim 41, further comprising a container to collect the oxidative reductive potential water produced by the electrolysis cells.
  • 43. A process for producing oxidative reductive potential water solution comprising: (a) providing at least two electrolysis cells, wherein each cell comprises an anode chamber, cathode chamber and salt solution chamber located between the anode and cathode chambers, wherein the anode chamber is separated from the salt solution chamber by an anode electrode and a first membrane, and the cathode chamber is separated from the salt solution chamber by a cathode electrode and a second membrane; (b) providing a flow of water through the anode chamber and cathode chamber; (c) providing a flow of a salt solution through the salt solution chamber; (d) providing electrical current to the anode electrode and cathode electrode simultaneously with steps (b) and (c); and (e) collecting the oxidative reductive potential water solution produced by the electrolysis cells.
  • 44. The process of claim 43, wherein the oxidative reductive potential water solution comprises cathode water in an amount of from about 10% by volume to about 50% by volume.
  • 45. The process of claim 44, wherein the oxidative reductive potential water solution comprises cathode water in an amount of from about 20% by volume to about 40% by volume of the solution.
  • 46. The process of claim 43, wherein the oxidative reductive potential water solution comprises anode water in an amount of from about 50% by volume to about 90% by volume of the solution.
  • 47. A process for producing oxidative reductive potential water solution comprising: (a) providing at least one electrolysis cell, wherein the cell comprises an anode chamber, cathode chamber and salt solution chamber located between the anode and cathode chambers, wherein the anode chamber is separated from the salt solution chamber by an anode electrode and a first membrane, and the cathode chamber is separated from the salt solution chamber by a cathode electrode and a second membrane; (b) providing a flow of water through the anode chamber and cathode chamber; (c) providing a flow of water through the salt solution chamber; (d) providing electrical current to the anode electrode and cathode electrode simultaneously with steps (b) and (c); and (e) collecting the oxidative reductive potential water produced by the electrolysis cell, wherein the solution comprises anode water and cathode water.
  • 48. The process of claim 47, wherein the oxidative reductive potential water solution comprises cathode water in an amount of from about 10% by volume to about 50% by volume.
  • 49. The process of claims 48, wherein the oxidative reductive potential water solution comprises cathode water in an amount of from about 20% by volume to about 40% by volume of the solution.
  • 50. The process of claim 47, wherein the oxidative reductive potential water solution comprises anode water in an amount of from about 50% by volume to about 90% by volume of the solution.
  • 51. A method of controlling the activity of allergens comprising applying an oxidative water solution to the allergens, wherein the ORP water solution is stable for at least twenty-four hours.
  • 52. An oxidative reductive potential water solution comprising hydrogen peroxide and at least one free chlorine species, wherein the solution is stable for at least one week and the pH of the solution is from about 6.2 to about 7.8.
  • 53. The solution of claim 52, wherein the free chlorine species is selected from the group selected from the group consisting of hypochlorous acid, hypochlorite ions, sodium hypochlorite, chlorite ions, chloride ions, chlorine dioxide, dissolved chlorine gas, and mixtures thereof.
  • 54. The solution of claim 53, wherein the amount of free chlorine species is between about 10 ppm and about 400 ppm.
  • 55. The solution of claim 54, wherein the free chlorine species is hypochlorous acid present in an amount between about 15 ppm and about 35 ppm.
  • 56. The solution of claim 54, wherein the free chlorine species is sodium hypochlorite present in an amount between about 25 ppm and about 50 ppm.
  • 57. An oxidative reductive potential water solution comprising hydrogen peroxide in an amount between about 1 ppm and about 4 ppm, hypochlorous acid in an amount between about 15 ppm and about 35 ppm and sodium hypochlorite in an amount between about 25 ppm and about 50 ppm, wherein the solution is stable for at least one week and the pH of the solution is from about 6.2 to about 7.8.
  • 58. The solution of claim 57, wherein the solution is stable for at least two months.
  • 59. The solution of claim 58, wherein the solution is stable for at least 6 months
  • 60. The solution of claim 59, wherein the solution is stable for at least 1 year.
  • 61. The solution of claim 60, wherein the solution is stable for at least 3 years.
Continuations (1)
Number Date Country
Parent 60533583 Dec 2003 US
Child 10862092 Jun 2004 US