The present invention relates to oximeters, and in particular to techniques for ambient light cancellation in pulse oximeters.
Pulse oximetry is typically used to measure various blood flow characteristics including, but not limited to, the blood-oxygen saturation of hemoglobin in arterial blood, the volume of individual blood pulsations supplying the tissue, and the rate of blood pulsations corresponding to each heartbeat of a patient. Measurement of these characteristics has been accomplished by use of a non-invasive sensor which scatters light through a portion of the patient's tissue where blood perfuses the tissue, and photoelectrically senses the absorption of light in such tissue. The amount of light absorbed is then used to calculate the amount of blood constituent being measured.
The light scattered through the tissue is selected to be of one or more wavelengths that are absorbed by the blood in an amount representative of the amount of the blood constituent present in the blood. The amount of transmitted light scattered through the tissue will vary in accordance with the changing amount of blood constituent in the tissue and the related light absorption. For measuring blood oxygen level, such sensors have typically been provided with a light source that is adapted to generate light of at least two different wavelengths, and with photodetectors sensitive to both of those wavelengths, in accordance with known techniques for measuring blood oxygen saturation.
Known non-invasive sensors include devices that are secured to a portion of the body, such as a finger, an ear or the scalp. In animals and humans, the tissue of these body portions is perfused with blood and the tissue surface is readily accessible to the sensor.
One problem with oximeter measurements is that in addition to receiving the light that was directed at the tissue, ambient light is also detected by the photodetector. Attempts can be made to block out ambient light, but some amount of ambient light will typically be detected. One particular concern is the light at the power line frequency of fluorescent or other lights, which is 60 Hz in the United States and 50 Hz in Europe and other countries.
Since a single photodetector is typically used, the light of different wavelengths, such as red and infrared, is time multiplexed. The detected signal must be demultiplexed. The demultiplexing frequency must be high enough so that it is much larger than the pulse rate. However, choosing a demultiplexing frequency is also impacted by the ambient light interference. One issue is the aliasing of harmonics of the AC power line frequency. U.S. Pat. No. 5,713,355 discusses a technique of altering the demultiplexing frequency depending upon the amount of ambient interference detected at each frequency.
U.S. Pat. No. 5,885,213 discusses subtracting a dark signal (detected ambient light) from the detected light signal. This is accomplished by leaving both the red and infrared light emitters off, in between turning them on, so that a “dark” signal supposedly composed of the ambient light present can be detected. This can then be subtracted from the desired signal. Other examples of patents dealing with the ambient light issue are U.S. Pat. Nos. 6,385,471, 5,846,190 and 4,781,195.
U.S. Pat. No. 6,449,501 discusses using a notch filter to filter out line frequency. However, the sampling rate is described as being set to twice the fundamental frequency of the power line interference, leaving higher harmonics of the power line interference as a problem, and it is unclear how the interference can be filtered without filtering the modulation frequency. Another example of a notch filter being used is set forth in U.S. Pat. No. 4,802,486, which uses a notch filter for the EKG signal.
The present invention provides a pulse oximeter method and apparatus which provides (1) a notch filter at a distance between a demodulation frequency and a common multiple of commonly used power line frequencies (50, 60, 100, and 120) and also (2) a demodulation frequency greater than a highest pulse rate of a person and lower than any harmonic of 50, 60, 100, or 120 Hz. The invention thus allows the filtering of a significant source of ambient light interference, while choosing an optimum demodulation frequency that avoids interference from the notch filter or from harmonics of the power line interference.
In one embodiment, the common multiple is 1200, with the demodulation frequency being between 5 and 20 Hz away from 1200, preferably approximately 1211 in one embodiment.
In another aspect of the invention, dark signals, or ambient light, are measured both before and after each of the light emitter wavelengths (red and infrared in one embodiment). Instead of simply subtracting one of the dark levels, the two dark levels are averaged and then subtracted from the detected signal. This compensates for a variation in ambient light during the detected signal, reducing the effect of power line interference or any other low frequency interference.
In a another aspect of the present invention, digital filtering and decimation are done in the digital domain. When there is a change in a gain setting on the front end hardware, or in the LED power, the filters are preloaded to put values in their memory to correspond to an estimate of the settled value of the output at the new gain or power settings. This preloading speeds up when valid data will be available at the output of the filter.
Overall System
Notch Filter
Notch filter 46 deals with power line interference which, in the United States, comes from lights which operate on 60 Hz or 120 Hz, depending upon the power requirements. Europe and other areas use 50 Hz and 100 Hz. A common multiple of 50, 60, 100, and 120 Hz is 1200 Hz. The modulation bandwidth is chosen to be higher than the highest possible human pulse rate, preferably higher than 5 Hz. At the same time, it is chosen to be lower than any harmonic of the power line interference signals. Twenty hertz is chosen as a desirable upper limit because a second harmonic of 2450 will alias in at 2025 Hz. In one embodiment, the modulation frequency chosen is 1211.23 Hz. This is 11.23 Hz distant from 1200 Hz. (within a range of 5-20 Hz). Accordingly, in a preferred embodiment, a zero is provided in the notch filter at 11.23 Hz. The low pass filter with notch (46), in one embodiment, is an 8 pole Bessel filter with a notch at 11.25 Hz.
The present invention thus provides an effective means of eliminating interference from power line interference, such as the ripple on fluorescent lights which can alias onto the detected signal. Although anti-aliasing filters have been provided in hardware before a demodulator, it is difficult to make these effective, and thus there will be some residual line interference in the detected signal to be dealt with in the digital domain.
Averaging Ambient Dark Levels to Reduce Low Frequency Interference
After the red LED is turned off and the signal decays during a period 58, a second dark period 60 is sampled.
Subsequently, the IR LED is turned on during a period 62, and sampled during a period 64. It is turned off and the signal decays during a period 66, with a third dark sample being taken during a period 68. The third dark sample also corresponds to the first dark period 52, as the process repeats itself.
As can be seen from
Preloading Decimation and Bessel Filters
Although these are shown as blocks in
As will be understood by those skilled in the art, the present invention may be embodied in other specific forms without departing from the essential characteristics thereof. For example, more than two different wavelengths of light could be used. Alternately, a different demodulation frequency could be chosen. In addition, the notch filtering can be done either before or after other digital processing of the detected signal. Accordingly, the foregoing description is intended to be illustrative, but not limiting, of the scope of the invention which is set forth in the following claims.
This application is a continuation of application Ser. No. 12/172,981, filed Jul. 14, 2008, in the name of Ethan Petersen, now U.S. Pat. No. 8,315,684 which granted on Nov. 20, 2012 and assigned to Covidien LP, which is a continuation of application Ser. No. 11/495,415, filed Jul. 28, 2006, in the name of Ethan Petersen, now U.S. Pat. No. 7,400,919 which granted on Jul. 15, 2008 and assigned to Covidien LP, which is a divisional of application Ser. No. 10/787,854, filed Feb. 25, 2004, in the name of Ethan Petersen, now U.S. Pat. No. 7,190,985, which granted on Mar. 13, 2007 and assigned to Covidien LP, which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3638640 | Shaw | Feb 1972 | A |
4714341 | Hamaguri et al. | Dec 1987 | A |
4781195 | Martin | Nov 1988 | A |
4800885 | Johnson | Jan 1989 | A |
4802486 | Goodman et al. | Feb 1989 | A |
4805623 | Jöbsis | Feb 1989 | A |
4807630 | Malinouskas | Feb 1989 | A |
4807631 | Hersh et al. | Feb 1989 | A |
4848901 | Hood, Jr. | Jul 1989 | A |
4863265 | Flower et al. | Sep 1989 | A |
4911167 | Corenman et al. | Mar 1990 | A |
4913150 | Cheung et al. | Apr 1990 | A |
4928692 | Goodman et al. | May 1990 | A |
4934372 | Corenman et al. | Jun 1990 | A |
4936679 | Mersch | Jun 1990 | A |
4938218 | Goodman et al. | Jul 1990 | A |
4948248 | Lehman | Aug 1990 | A |
4971062 | Hasebe et al. | Nov 1990 | A |
4972331 | Chance | Nov 1990 | A |
4974591 | Awazu et al. | Dec 1990 | A |
5028787 | Rosenthal et al. | Jul 1991 | A |
5065749 | Hasebe et al. | Nov 1991 | A |
5084327 | Stengel | Jan 1992 | A |
5119815 | Chance | Jun 1992 | A |
5122974 | Chance | Jun 1992 | A |
5167230 | Chance | Dec 1992 | A |
5190038 | Polson et al. | Mar 1993 | A |
5246003 | DeLonzor | Sep 1993 | A |
5247931 | Norwood | Sep 1993 | A |
5263244 | Centa et al. | Nov 1993 | A |
5275159 | Griebel | Jan 1994 | A |
5279295 | Martens et al. | Jan 1994 | A |
5297548 | Pologe | Mar 1994 | A |
5348004 | Hollub | Sep 1994 | A |
5349952 | Mccarthy et al. | Sep 1994 | A |
5351685 | Potratz | Oct 1994 | A |
5355880 | Thomas et al. | Oct 1994 | A |
5368026 | Swedlow et al. | Nov 1994 | A |
5368224 | Richardson et al. | Nov 1994 | A |
5372136 | Steuer et al. | Dec 1994 | A |
5385143 | Aoyagi | Jan 1995 | A |
5390670 | Centa et al. | Feb 1995 | A |
5413099 | Schmidt et al. | May 1995 | A |
5469845 | DeLonzor et al. | Nov 1995 | A |
5482036 | Diab et al. | Jan 1996 | A |
5483646 | Uchikoga | Jan 1996 | A |
5533507 | Potratz | Jul 1996 | A |
5553614 | Chance | Sep 1996 | A |
5555882 | Richardson et al. | Sep 1996 | A |
5564417 | Chance | Oct 1996 | A |
5575284 | Athan et al. | Nov 1996 | A |
5575285 | Takanashi et al. | Nov 1996 | A |
5577500 | Potratz | Nov 1996 | A |
5611337 | Bukta | Mar 1997 | A |
5630413 | Thomas et al. | May 1997 | A |
5645059 | Fein et al. | Jul 1997 | A |
5645060 | Yorkey | Jul 1997 | A |
5662106 | Swedlow et al. | Sep 1997 | A |
5676141 | Hollub | Oct 1997 | A |
5680857 | Pelikan et al. | Oct 1997 | A |
5692503 | Keunstner | Dec 1997 | A |
5713355 | Richardson et al. | Feb 1998 | A |
5730124 | Yamauchi | Mar 1998 | A |
5746697 | Swedlow et al. | May 1998 | A |
5758644 | Diab et al. | Jun 1998 | A |
5779631 | Chance | Jul 1998 | A |
5782757 | Diab et al. | Jul 1998 | A |
5786592 | Hök | Jul 1998 | A |
5803910 | Potratz | Sep 1998 | A |
5830136 | DeLonzor et al. | Nov 1998 | A |
5830139 | Abreu | Nov 1998 | A |
5831598 | Kauffert et al. | Nov 1998 | A |
5842981 | Larsen et al. | Dec 1998 | A |
5846190 | Woehrle | Dec 1998 | A |
5871442 | Madarasz et al. | Feb 1999 | A |
5873821 | Chance et al. | Feb 1999 | A |
5885213 | Richardson et al. | Mar 1999 | A |
5919134 | Diab | Jul 1999 | A |
5920263 | Huttenhoff et al. | Jul 1999 | A |
5921921 | Potratz et al. | Jul 1999 | A |
5924979 | Swedlow et al. | Jul 1999 | A |
5954644 | Dettling et al. | Sep 1999 | A |
5995855 | Kiani et al. | Nov 1999 | A |
5995856 | Mannheimer et al. | Nov 1999 | A |
5995859 | Takahashi | Nov 1999 | A |
6011985 | Athan et al. | Jan 2000 | A |
6011986 | Diab et al. | Jan 2000 | A |
6064898 | Aldrich | May 2000 | A |
6081742 | Amano et al. | Jun 2000 | A |
6088607 | Diab et al. | Jul 2000 | A |
6120460 | Abreu | Sep 2000 | A |
6150951 | Olejniczak | Nov 2000 | A |
6154667 | Miura et al. | Nov 2000 | A |
6163715 | Larsen et al. | Dec 2000 | A |
6181958 | Steuer et al. | Jan 2001 | B1 |
6181959 | Schöllermann et al. | Jan 2001 | B1 |
6226539 | Potratz | May 2001 | B1 |
6229856 | Diab et al. | May 2001 | B1 |
6230035 | Aoyagi et al. | May 2001 | B1 |
6266546 | Steuer et al. | Jul 2001 | B1 |
6285895 | Ristolainen et al. | Sep 2001 | B1 |
6312393 | Abreu | Nov 2001 | B1 |
6353750 | Kimura et al. | Mar 2002 | B1 |
6385471 | Mortz | May 2002 | B1 |
6397091 | Diab et al. | May 2002 | B2 |
6397092 | Norris et al. | May 2002 | B1 |
6415236 | Kobayashi et al. | Jul 2002 | B2 |
6419671 | Lemberg | Jul 2002 | B1 |
6438399 | Kurth | Aug 2002 | B1 |
6449501 | Reuss | Sep 2002 | B1 |
6461305 | Schnall | Oct 2002 | B1 |
6466809 | Riley | Oct 2002 | B1 |
6487439 | Skladnev et al. | Nov 2002 | B1 |
6496711 | Athan et al. | Dec 2002 | B1 |
6501974 | Huiku | Dec 2002 | B2 |
6501975 | Diab et al. | Dec 2002 | B2 |
6505133 | Hanna et al. | Jan 2003 | B1 |
6526301 | Larsen et al. | Feb 2003 | B2 |
6544193 | Abreu | Apr 2003 | B2 |
6546267 | Sugiura et al. | Apr 2003 | B1 |
6549795 | Chance | Apr 2003 | B1 |
6580086 | Schulz et al. | Jun 2003 | B1 |
6584336 | Ali et al. | Jun 2003 | B1 |
6591122 | Schmitt | Jul 2003 | B2 |
6594513 | Jobsis et al. | Jul 2003 | B1 |
6596016 | Vreman et al. | Jul 2003 | B1 |
6606509 | Schmitt | Aug 2003 | B2 |
6606511 | Ali et al. | Aug 2003 | B1 |
6615064 | Aldrich | Sep 2003 | B1 |
6618042 | Powell | Sep 2003 | B1 |
6622095 | Kobayashi et al. | Sep 2003 | B2 |
6643530 | Diab et al. | Nov 2003 | B2 |
6654621 | Palatnik et al. | Nov 2003 | B2 |
6654624 | Diab et al. | Nov 2003 | B2 |
6658276 | Kian et al. | Dec 2003 | B2 |
6658277 | Wasserman | Dec 2003 | B2 |
6662030 | Khalil et al. | Dec 2003 | B2 |
6668183 | Hicks et al. | Dec 2003 | B2 |
6671526 | Aoyagi et al. | Dec 2003 | B1 |
6671528 | Steuer et al. | Dec 2003 | B2 |
6678543 | Diab et al. | Jan 2004 | B2 |
6684090 | Ali et al. | Jan 2004 | B2 |
6690958 | Walker et al. | Feb 2004 | B1 |
6697658 | Al-Ali | Feb 2004 | B2 |
6708048 | Chance | Mar 2004 | B1 |
6708049 | Berson et al. | Mar 2004 | B1 |
6711424 | Fine et al. | Mar 2004 | B1 |
6711425 | Reuss | Mar 2004 | B1 |
6731274 | Powell | May 2004 | B2 |
6748253 | Norris et al. | Jun 2004 | B2 |
6778923 | Norris et al. | Aug 2004 | B2 |
6785568 | Chance | Aug 2004 | B2 |
6793654 | Lemberg | Sep 2004 | B2 |
6801797 | Mannheimer et al. | Oct 2004 | B2 |
6801798 | Geddes et al. | Oct 2004 | B2 |
6801799 | Mendelson | Oct 2004 | B2 |
6829496 | Nagai et al. | Dec 2004 | B2 |
6850053 | Daalmans et al. | Feb 2005 | B2 |
6863652 | Huang et al. | Mar 2005 | B2 |
6873865 | Steuer et al. | Mar 2005 | B2 |
6889153 | Dietiker | May 2005 | B2 |
6898451 | Wuori | May 2005 | B2 |
6930608 | Grajales et al. | Aug 2005 | B2 |
6939307 | Dunlop | Sep 2005 | B1 |
6947780 | Scharf | Sep 2005 | B2 |
6949081 | Chance | Sep 2005 | B1 |
6961598 | Diab | Nov 2005 | B2 |
6983178 | Fine et al. | Jan 2006 | B2 |
6993371 | Kiani et al. | Jan 2006 | B2 |
6996427 | Ali et al. | Feb 2006 | B2 |
7003339 | Diab et al. | Feb 2006 | B2 |
7024235 | Melker et al. | Apr 2006 | B2 |
7027849 | Al-Ali | Apr 2006 | B2 |
7030749 | Al-Ali | Apr 2006 | B2 |
7035697 | Brown | Apr 2006 | B1 |
7047054 | Benni | May 2006 | B2 |
7047056 | Hannula et al. | May 2006 | B2 |
7062307 | Norris et al. | Jun 2006 | B2 |
7127278 | Melker et al. | Oct 2006 | B2 |
7162306 | Caby et al. | Jan 2007 | B2 |
7190985 | Petersen et al. | Mar 2007 | B2 |
7209775 | Bae et al. | Apr 2007 | B2 |
7221971 | Diab et al. | May 2007 | B2 |
7236811 | Schmitt | Jun 2007 | B2 |
7263395 | Chan et al. | Aug 2007 | B2 |
7272426 | Schmid | Sep 2007 | B2 |
7302284 | Baker, Jr. et al. | Nov 2007 | B2 |
7313427 | Benni | Dec 2007 | B2 |
7315753 | Baker, Jr. et al. | Jan 2008 | B2 |
7336983 | Baker, Jr. et al. | Feb 2008 | B2 |
7373193 | Al-Ali et al. | May 2008 | B2 |
7400919 | Petersen et al. | Jul 2008 | B2 |
7500950 | Al-Ali | Mar 2009 | B2 |
20010002206 | Diab et al. | May 2001 | A1 |
20010005773 | Larsen et al. | Jun 2001 | A1 |
20010020122 | Steuer et al. | Sep 2001 | A1 |
20010039376 | Steuer et al. | Nov 2001 | A1 |
20010044700 | Kobayashi et al. | Nov 2001 | A1 |
20020026106 | Khalil et al. | Feb 2002 | A1 |
20020035318 | Mannheimer et al. | Mar 2002 | A1 |
20020038079 | Steuer et al. | Mar 2002 | A1 |
20020042558 | Mendelson | Apr 2002 | A1 |
20020049389 | Abreu | Apr 2002 | A1 |
20020062071 | Diab et al. | May 2002 | A1 |
20020068859 | Knopp | Jun 2002 | A1 |
20020111748 | Kobayashi et al. | Aug 2002 | A1 |
20020128544 | Diab et al. | Sep 2002 | A1 |
20020133068 | Huiku | Sep 2002 | A1 |
20020156354 | Larson | Oct 2002 | A1 |
20020161287 | Schmitt | Oct 2002 | A1 |
20020161290 | Chance | Oct 2002 | A1 |
20020165439 | Schmitt | Nov 2002 | A1 |
20020198443 | Ting | Dec 2002 | A1 |
20030023140 | Chance | Jan 2003 | A1 |
20030028357 | Noris et al. | Feb 2003 | A1 |
20030055324 | Wasserman | Mar 2003 | A1 |
20030060693 | Monfre et al. | Mar 2003 | A1 |
20030139687 | Abreu | Jul 2003 | A1 |
20030144584 | Mendelson | Jul 2003 | A1 |
20030220548 | Schmitt | Nov 2003 | A1 |
20030220576 | Diab | Nov 2003 | A1 |
20040010188 | Wasserman | Jan 2004 | A1 |
20040054270 | Pewzner et al. | Mar 2004 | A1 |
20040087846 | Wasserman | May 2004 | A1 |
20040107065 | Al-Ali | Jun 2004 | A1 |
20040127779 | Steuer et al. | Jul 2004 | A1 |
20040152965 | Diab et al. | Aug 2004 | A1 |
20040171920 | Mannheimer et al. | Sep 2004 | A1 |
20040176670 | Takamura et al. | Sep 2004 | A1 |
20040176671 | Fine et al. | Sep 2004 | A1 |
20040230106 | Schmitt et al. | Nov 2004 | A1 |
20050020894 | Norris et al. | Jan 2005 | A1 |
20050075548 | Al-Ali et al. | Apr 2005 | A1 |
20050080323 | Kato | Apr 2005 | A1 |
20050101850 | Parker | May 2005 | A1 |
20050113651 | Wood et al. | May 2005 | A1 |
20050113656 | Chance | May 2005 | A1 |
20050143634 | Baker, Jr. et al. | Jun 2005 | A1 |
20050168722 | Forstner et al. | Aug 2005 | A1 |
20050177034 | Beaumont | Aug 2005 | A1 |
20050192488 | Bryenton et al. | Sep 2005 | A1 |
20050203357 | Debreczeny et al. | Sep 2005 | A1 |
20050228248 | Dietiker | Oct 2005 | A1 |
20050267346 | Faber et al. | Dec 2005 | A1 |
20050283059 | Iyer et al. | Dec 2005 | A1 |
20060009688 | Lamego et al. | Jan 2006 | A1 |
20060015021 | Cheng | Jan 2006 | A1 |
20060020181 | Schmitt | Jan 2006 | A1 |
20060030763 | Mannheimer et al. | Feb 2006 | A1 |
20060052680 | Diab | Mar 2006 | A1 |
20060058683 | Chance | Mar 2006 | A1 |
20060064024 | Schnall | Mar 2006 | A1 |
20060195028 | Hannula et al. | Aug 2006 | A1 |
20060224058 | Mannheimer | Oct 2006 | A1 |
20060247501 | Ali | Nov 2006 | A1 |
20060258921 | Addison et al. | Nov 2006 | A1 |
20070225582 | Diab et al. | Sep 2007 | A1 |
20080017800 | Benni | Jan 2008 | A1 |
20080033265 | Diab et al. | Feb 2008 | A1 |
Number | Date | Country |
---|---|---|
19647877 | May 1998 | DE |
194105 | May 1991 | EP |
1491135 | Dec 2004 | EP |
3170866 | Jul 1991 | JP |
3238813 | Oct 1991 | JP |
7124138 | May 1995 | JP |
7136150 | May 1995 | JP |
3116255 | Dec 2000 | JP |
2002224088 | Aug 2002 | JP |
2003153881 | May 2003 | JP |
2003153882 | May 2003 | JP |
2003194714 | Jul 2003 | JP |
2003210438 | Jul 2003 | JP |
2004008572 | Jan 2004 | JP |
2004113353 | Apr 2004 | JP |
2004194908 | Jul 2004 | JP |
2004248819 | Sep 2004 | JP |
2004261364 | Sep 2004 | JP |
2004290545 | Oct 2004 | JP |
2004329928 | Nov 2004 | JP |
WO9101678 | Feb 1991 | WO |
WO9309711 | May 1993 | WO |
WO9843071 | Oct 1998 | WO |
WO9932030 | Jul 1999 | WO |
WO0021438 | Apr 2000 | WO |
WO2005009221 | Feb 2005 | WO |
Entry |
---|
U.S. Appl. No. 12/172,981, filed Jul. 14, 2008, Petersen. |
U.S. Appl. No. 11/495,415, filed Jul. 28, 2006, Petersen. |
U.S. Appl. No. 10/787,854, filed Feb. 25, 2004, Petersen. |
Leahy, Martin J., et al.; “Sensor Validation in Biomedical Applications,” IFAC Modelling and Control in Biomedical Systems, Warwick, UK; pp. 221-226 (1997). |
Barreto, Armando B., et al.; “Adaptive LMS Delay Measurement in dual Blood Volume Pulse Signals for Non-Invasive Monitoring,” IEEE, pp. 117-120 (1997). |
East, Christine E., et al.; “Fetal Oxygen Saturation and Uterine Contractions During Labor,” American Journal of Perinatology, vol. 15, No. 6, pp. 345-349 (Jun. 1998). |
Edrich, Thomas, et al.; “Can the Blood Content of the Tissues be Determined Optically During Pulse Oximetry Without Knowledge of the Oxygen Saturation?—An In-Vitro Investigation,” Proceedings of the 20th Annual International conference of the IEEE Engie in Medicine and Biology Society, vol. 20, No. 6, p. 3072-3075, 1998. |
Such, Hans Olaf; “Optoelectronic Non-invasive Vascular Diagnostics Using multiple Wavelength and Imaging Approach,” Dissertation, (1998). |
Todd, Bryan, et al.; “The Identification of Peaks in Physiological Signals,” Computers and Biomedical Research, vol. 32, pp. 322-335 (1999). |
Goldman, Julian M.; “Masimo Signal Extraction Pulse Oximetry,” Journal of Clinical Monitoring and Computing, vol. 16, pp. 475-483 (2000). |
Coetzee, Frans M.; “Noise-Resistant Pulse Oximetry Using a Synthetic Reference Signal,” IEEE Transactions on Biomedical Engineering, vol. 47, No. 8, Aug. 2000, pp. 1018-1026. |
Kaestle, S.; “Determining Artefact Sensitivity of New Pulse Oximeters in Laboratory Using Signals Obtained from Patient,” Biomedizinische Technik, vol. 45 (2000). |
Belal, Suliman Yousef, et al.; “A fuzzy system for detecting distorted plethysmogram pulses in neonates and paediatric patients,” Physiol. Meas., vol. 22, pp. 397-412 (2001). |
Chan, K.W., et al.; “17.3: Adaptive Reduction of Motion Artifact from Photoplethysmographic Recordings using a Variable Step-Size LMS Filter,” IEEE, pp. 1343-1346 (2002). |
Cyrill, D., et al.; “Adaptive Comb Filter for Quasi-Periodic Physiologic Signals,” Proceedings of the 25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, Sep. 17-21, 2003; pp. 2439-2442. |
Stetson, Paul F.; “Determining Heart Rate from Noisey Pulse Oximeter Signals Using Fuzzy Logic,” The IEEE International Conference on Fuzzy Systems, St. Louis, Missouri, May 25-28, 2003; pp. 1053-1058. |
Lee, C.M., et al.; “Reduction of motion artifacts from photoplethysmographic recordings using wavelet denoising approach,” IEEE EMBS Asian-Pacific Conference on Biomedical Engineering, Oct. 20-22, 2003; pp. 194-195. |
A. Johansson; “Neural network for photoplethysmographic respiratory rate monitoring,” Medical & Biological Engineering & Computing, vol. 41, pp. 242-248 (2003). |
Addison, Paul S., et al.; “A novel time-frequency-based 3D Lissajous figure method and its application to the determination of oxygen saturation from the photoplethysmogram,” Institute of Physic Publishing, Meas. Sci. Technol., vol. 15, pp. L15-L18 (2004). |
J. Huang, et al.; “Low Power Motion Tolerant Pulse Oximetry,” Abstracts, A7, p. S103. (undated). |
Hamilton, Patrick S., et al.; “Effect of Adaptive Motion-Artifact Reduction on QRS Detection,” Biomedical Instrumentation & Technology, pp. 197-202 (undated). |
Odagiri, Y.; “Pulse Wave Measuring Device,” Micromechatronics, vol. 42, No. 3, pp. 6-11(undated) (Article in Japanese—contains English summary of article). |
Cysewska-Sobusaik, Anna; “Metrological Problems With noninvasive Transillumination of Living Tissues,” Proceedings of SPIE, vol. 4515, pp. 15-24 (2001). |
Maletras, Francois-Xavier, et al.; “Construction and calibration of a new design of Fiber Optic Respiratory Plethysmograph (FORP),” Optomechanical Design and Engineering, Proceedings of SPIE, vol. 4444, pp. 285-293 (2001). |
Relente, A.R., et al.; “Characterization and Adaptive Filtering of Motion Artifacts in Pulse Oximetry using Accelerometers,” Proceedings of the Second joint EMBS/BMES Conference, Houston, Texas, Oct. 23-26, 2002; pp. 1769-1770. |
R. Neumann, et al.; “Fourier Artifact suppression Technology Provides Reliable SpO2,” Abstracts, A11, p. S105. (undated). |
Number | Date | Country | |
---|---|---|---|
20130123593 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10787854 | Feb 2004 | US |
Child | 11495415 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12172981 | Jul 2008 | US |
Child | 13663244 | US | |
Parent | 11495415 | Jul 2006 | US |
Child | 12172981 | US |