The detailed description of how to make and use the invention will be facilitated by referring to the accompanying drawings.
Referring to
At least two independent ports are advantageous for most general aviation applications, as the pilot's needs are greater than passengers', both by law and for safety reasons. Thus the conserver will preferably have at least two distribution ports serviced by valves 3. Each valve will preferably have an associated breath sensor 4. In the example shown, four passenger ports and one pilot port are shown, each with its own valve and sensor. Also, by way of example, one controller (CPU) 2 is shown which controls valve timing for each valve independently and manages the oxygen supply and distribution for the whole plane. Of course, multiple controllers could also be employed. The control of the valve timing determines the bolus volume, and therefore gas usage rate for each port. The oxygen source pressure sensor 5 allows the source of oxygen to be monitored for safety purposes and also for the bolus delivery timing to be adjusted to maintain proper oxygen volume delivery even as the source pressure varies with altitude or as a finite oxygen source is depleted beyond the regulator's set-point. Rate limited oxygen concentrators generally produce oxygen based on a pressure ratio between a high pressure, PH, and a low pressure, PL where, the backpressure in the system changes with altitude, which would make current conserver technologies give unreliable bolus volume doses. The ambient pressure sensor 6 allows adjustment and response to the changing ambient pressure conditions without manual intervention by the flight crew. The ambient pressure sensor may also be used as a trigger for activating the oxygen supply when altitude is reached. Alternatively, ambient pressure could be acauired from the aircraft's instrumentation. A variety of user inputs or pre-programmed modes allow for significant flexibility in how gas is used by each passenger and pilot, thereby allowing for a variety of ways to reduce gas utilization while maintaining safety. The user interface panel (UIP) 7 enables the conserver to be adapted to suit the number of passengers in a plane and to adjust the amount of oxygen delivered to each patient independently. The UIP also functions to notify the flight crew of any errors or alarm conditions detected in the oxygen supply and delivery system. The backup oxygen input system 7 allows the conserver system and CPU to switch over to a backup supply in situations where the primary source is depleted or when the demanded delivery rate exceeds the capacity of the primary oxygen source. In cases of emergency or unexpected changes in altitude this backup system can ensure proper oxygen delivery without flight crew intervention.
Various exemplary modes of operation include:
1. Individual pilot and passenger flow settings:
Other modes of operation may suggest themselves to one skilled in the art given the flexibility of the novel conserver.
A visual confirmation that oxygen is being delivered such as an LED indicator is advantageous as well.
Another embodiment of the distributed conserver design could include a number of satellite conservers in communication with a main control unit at the oxygen source. This concept is similar in principle to the communication concepts identified in referenced patent application Ser. No. 11/274,755 However, in an aircraft environment, each seat could have an integrated conserving device with a common supply. With a rate limited supply, each seat conserver would communicate via hardwire or RF communication to the source controller to balance the oxygen demand to the oxygen supply, in order to achieve modes of operation such as described above. In this embodiment, the source unit would provide the CPU functions described above.
This application claims priority to U.S. provisional application Ser. No. 60/846,677, Filed Sep. 22, 2006
| Number | Date | Country | |
|---|---|---|---|
| 60846677 | Sep 2006 | US |