1. Field of the Invention
The present invention relates to devices for depleting oxygen from red blood cells to enhance storage life. The present invention relates to methods for depleting oxygen from red blood cells.
2. Background of the Art
Adequate blood supply and the storage thereof is a problem facing every major hospital and health organization around the world. Often, the amount of blood supply in storage is considerably smaller than the need therefor. This is especially true during crisis periods such as natural catastrophes, war and the like, when the blood supply is often perilously close to running out. It is at critical times such as these that the cry for more donations of fresh blood is often heard. However, unfortunately, even when there is no crisis period, the blood supply and that kept in storage must be constantly monitored and replenished, because stored blood does not maintain its viability for long.
Stored blood undergoes steady deterioration which is, in part, caused by hemoglobin oxidation and degradation and adenosine triphosphate (ATP) and 2-3,biphosphoglycerate (DPG) depletion. Oxygen causes hemoglobin (Hb) carried by the red blood cells (RBCs) to convert to met-Hb, the breakdown of which produces toxic products such as hemichrome, hemin and free Fe3+. Together with the oxygen, these products catalyze the formation of hydroxyl radicals (OH.cndot.), and both the OH.cndot. and the met-Hb breakdown products damage the red blood cell lipid membrane, the membrane skeleton, and the cell contents. As such, stored blood is considered unusable after 6 weeks, as determined by the relative inability of the red blood cells to survive in the circulation of the transfusion recipient. The depletion of DPG prevents adequate transport of oxygen to tissue thereby lowering the efficacy of transfusion immediately after administration (levels of DPG recover once in recipient after 8-48 hrs). In addition, these deleterious effects also result in reduced overall efficacy and increased side effects of transfusion therapy with stored blood before expiration date, but possibly older than two weeks are used.
There is, therefore, a need to be able to deplete oxygen levels in red blood cells prior to storage on a long-term basis without the stored blood undergoing the harmful effects caused by the oxygen and hemoglobin interaction.
Accordingly, the present disclosure provides for a disposable device that is able to remove oxygen from red blood cells.
The present disclosure provides for an oxygen depletion device. The device has a cartridge; a plurality of hollow fibers extending within the cartridge from an entrance to an exit thereof; an amount of an oxygen scavenger packed within the cartridge and contiguous to and in between the plurality of hollow fibers. The hollow fibers are adapted to receiving and conveying red blood cells.
The present disclosure provides for an oxygen depletion device. The device has a receptacle of a solid material having an inlet and an outlet adapted to receiving and expelling a flushing gas and a plurality of hollow fibers extending within the receptacle from an entrance to an exit thereof. The hollow fibers are adapted to receiving and conveying red blood cells.
The present disclosure provides for a method for removing oxygen from red blood cells. The method has the step of passing the red blood cells through an oxygen device. The device has a cartridge; a plurality of hollow fibers extending within the cartridge from an entrance to an exit thereof; and an amount of an oxygen scavenger packed within the cartridge and contiguous to and in between the plurality of hollow fibers. The hollow fibers are adapted to receiving and conveying red blood cells
The present disclosure provides for a method for removing oxygen from red blood cells. The method has the step of passing the red blood cells through an oxygen device. The device has a receptacle of a solid material having an inlet and an outlet adapted to receiving and expelling a flushing gas; and a plurality of hollow fibers films extending within the receptacle from an entrance to an exit thereof. The hollow fibers are adapted to receiving and conveying red blood cells.
The present disclosure and its features and advantages will become more apparent from the following detailed description with reference to the accompanying drawings.
a illustrates an embodiment of a depletion device that depletes oxygen from red blood cells prior to storage by a flushing inert gas around a hollow fiber inside the assembly.
b illustrates an embodiment of a depletion device that depletes oxygen from red blood cells prior to storage by a flushing inert gas around a hollow fiber inside the assembly.
c illustrates an embodiment of a depletion device that depletes oxygen from red blood cells prior to storage by a flushing inert gas around a hollow fiber inside the assembly.
a illustrates another embodiment of a depletion device that depletes oxygen from red blood cells prior to storage.
b illustrates another embodiment of a depletion device that depletes oxygen from red blood cells prior to storage.
c illustrates another embodiment of a depletion device that depletes oxygen from red blood cells prior to storage.
a illustrates another embodiment of a depletion device that depletes oxygen from red blood cells prior to storage wherein oxygen is scavenged by scavenger materials in the core of the cylinder, surrounded by hollow fibers.
b illustrates another embodiment of a depletion device that depletes oxygen from red blood cells prior to storage wherein oxygen is scavenged by scavenger materials in the core of the cylinder, surrounded by hollow fibers.
c illustrates another embodiment of a depletion device that depletes oxygen from red blood cells prior to storage wherein oxygen is scavenged by scavenger materials in the core of the cylinder, surrounded by hollow fibers.
a illustrates another embodiment of a depletion device that depletes oxygen from red blood cells wherein oxygen is scavenged by scavenger materials surrounding cylinders of hollow fibers.
b illustrates another embodiment of a depletion device that depletes oxygen from red blood cells wherein oxygen is scavenged by scavenger materials surrounding cylinders of hollow fibers.
c illustrates another embodiment of a depletion device that depletes oxygen from red blood cells wherein oxygen is scavenged by scavenger materials surrounding cylinders of hollow fibers.
Referring to
RBCs pass through hollow porous fibers 115. Porous fibers are capable of high oxygen permeability rates. Suitable materials for porous fibers include polyolefins, TEFLON® (polytetrafluoroethylene), polyesters, polyvinylidene fluoride (PVDF), polysulfone, and other hydrophobic polymers as well as inorganic materials (ceramics). Oxygen depletion takes place as RBCs pass through membrane 115. ODD provides a simple structure having a large surface area to remove oxygen and maintain constant flow of blood therethrough. The oxygen depletion or removal is accomplished by irreversible reaction of ferrous ion in oxygen sorbent 110 with ambient oxygen to form ferric oxide. ODD 101 does not need agitation for oxygen removal and can be manufactured easily to withstand centrifugation as part of a blood collection system as necessary.
Referring to
a through 4c and 5a through 5c, also disclose scavenging depletion devices. Depletion takes place with the use of scavengers or sorbents and without the use of external gases. In both types of depletion devices however, oxygen depletion is effective to enhance DPG and ATP, respectively, prior to storage in blood storage bags.
Referring to
Referring to
a through 4c disclose a depletion device 70 having a core 75 containing scavenging materials for O2. Core 75 is packed by a gas permeable film with very low liquid permeability. Hollow fibers 80 are wound around core 75, and a plastic cylinder 82 contains and envelopes hollow fibers 80. In this particular embodiment, the active surface area for depletion is approximately 0.8796 m2 as shown in Table 3 below.
a through 5c disclose a depletion device 85 containing fiber bundles 87 enclosed in gas permeable film with very low liquid permeability. Fiber bundles 87 are surrounded by scavenger materials 89 for O2. Fiber bundles 87 and scavenger materials 89 are contained within a plastic cylinder 90. The active surface area for depletion is approximately 0.8796 m2 as shown in Table 4 below.
In the oxygen depletion devices disclosed herein, the hollow fibers may be packed in any suitable configuration within the cartridge, such as linear or longitudinal, spiral, or coil, so long as they can receive and convey red blood cells.
A further use of the depletion devices is to add back oxygen prior to transfusion by flushing with pure oxygen or air. This use is for special cases, such as massive transfusions, where the capacity of the lung to reoxygenate transfused blood is not adequate, or sickle cell anemia.
Similarly, depletion devices can be used to obtain intermediate levels or states of depletion of oxygen depending needs of the patient to obtain optimal levels in the transfused blood depending upon the patients needs.
It is within the scope of the present invention to remove oxygen from the RBCs or to strip oxygen from the blood prior to storage in the storage bags. An oxygen scavenger can be used to remove the oxygen from the RBCs prior to storage in the blood bags. As used herein, “oxygen scavenger” is a material that irreversibly binds to or combines with oxygen under the conditions of use. For example, the oxygen can chemically react with some component of the material and be converted into another compound. Any material where the off-rate of bound oxygen is zero can serve as an oxygen scavenger. Examples of oxygen scavengers include iron powders and organic compounds. The term “oxygen sorbent” may be used interchangeably herein with oxygen scavenger. For example, oxygen scavengers are provided by Multisorb Technologies (Buffalo, N.Y.). Such materials can be blended to a desired ratio to achieve desired results.
It will be appreciated that scavengers can be incorporated into storage receptacles and bags in any known form, such as in sachets, patches, coatings, pockets, and packets.
Although the present invention describes in detail certain embodiments, it is understood that variations and modifications exist known to those skilled in the art that are within the invention. Accordingly, the present invention is intended to encompass all such alternatives, modifications and variations that are within the scope of the invention as set forth in the disclosure.
The present application is a Continuation application of U.S. patent application Ser. No. 12/903,057, filed on Oct. 12, 2010 now abandoned, which claims priority based on U.S. Provisional Application No. 61/250,661, filed Oct. 12, 2009, both of which are incorporated herein by reference in its entirety.
This invention was made with government support under grants awarded by the National Institutes of Health (NIH) and the National Heart Lung and Blood Institute (NHLBI). The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
4086924 | Latham, Jr. | May 1978 | A |
4228032 | Talcott | Oct 1980 | A |
4300559 | Gajewski et al. | Nov 1981 | A |
4370160 | Ziemelis | Jan 1983 | A |
4381775 | Nose' et al. | May 1983 | A |
4540416 | Hattori et al. | Sep 1985 | A |
4572899 | Walker et al. | Feb 1986 | A |
4585735 | Meryman et al. | Apr 1986 | A |
4654053 | Sievers et al. | Mar 1987 | A |
4670013 | Barnes et al. | Jun 1987 | A |
4701267 | Watanabe et al. | Oct 1987 | A |
4713176 | Schoendorfer et al. | Dec 1987 | A |
4748121 | Beaver et al. | May 1988 | A |
4749551 | Borgione | Jun 1988 | A |
4769175 | Inoue | Sep 1988 | A |
4769318 | Hamasaki et al. | Sep 1988 | A |
4837047 | Sato et al. | Jun 1989 | A |
4880548 | Pall et al. | Nov 1989 | A |
4880786 | Sasakawa et al. | Nov 1989 | A |
4902701 | Batchelor et al. | Feb 1990 | A |
4925572 | Pall | May 1990 | A |
5000848 | Hodgins et al. | Mar 1991 | A |
5023054 | Sato et al. | Jun 1991 | A |
5037419 | Valentine et al. | Aug 1991 | A |
5152905 | Pall et al. | Oct 1992 | A |
5192320 | Anazawa et al. | Mar 1993 | A |
5208335 | Ramprasad et al. | May 1993 | A |
5229012 | Pall et al. | Jul 1993 | A |
5254248 | Nakamura et al. | Oct 1993 | A |
5353793 | Bornn | Oct 1994 | A |
5356375 | Higley | Oct 1994 | A |
5362442 | Kent | Nov 1994 | A |
5386014 | Nho et al. | Jan 1995 | A |
5387624 | Morita et al. | Feb 1995 | A |
5417986 | Reid et al. | May 1995 | A |
5427663 | Austin et al. | Jun 1995 | A |
5443743 | Gsell | Aug 1995 | A |
5476764 | Bitensky | Dec 1995 | A |
5506141 | Weinreb et al. | Apr 1996 | A |
5529821 | Ishikawa et al. | Jun 1996 | A |
5617873 | Yost et al. | Apr 1997 | A |
5624794 | Bitensky et al. | Apr 1997 | A |
5635358 | Wilding et al. | Jun 1997 | A |
5691452 | Gawryl et al. | Nov 1997 | A |
5693230 | Asher | Dec 1997 | A |
5698250 | DelDuca et al. | Dec 1997 | A |
5730989 | Wright | Mar 1998 | A |
5750115 | Van Den Bosch | May 1998 | A |
5783094 | Kraus et al. | Jul 1998 | A |
5783148 | Cottingham et al. | Jul 1998 | A |
5789151 | Bitensky et al. | Aug 1998 | A |
5811142 | DelDuca et al. | Sep 1998 | A |
5846427 | Kessler et al. | Dec 1998 | A |
5972710 | Weigl et al. | Oct 1999 | A |
6027623 | Ohkawa | Feb 2000 | A |
6047203 | Sackner et al. | Apr 2000 | A |
6090062 | Sood et al. | Jul 2000 | A |
6150085 | Hess et al. | Nov 2000 | A |
6162396 | Bitensky et al. | Dec 2000 | A |
6187572 | Platz et al. | Feb 2001 | B1 |
6210601 | Hottle et al. | Apr 2001 | B1 |
6231770 | Bormann et al. | May 2001 | B1 |
6254628 | Wallace et al. | Jul 2001 | B1 |
6337026 | Lee et al. | Jan 2002 | B1 |
6368871 | Christel et al. | Apr 2002 | B1 |
6387461 | Ebner et al. | May 2002 | B1 |
6403124 | Dottori | Jun 2002 | B1 |
6413713 | Serebrennikov | Jul 2002 | B1 |
6439577 | Jorgensen et al. | Aug 2002 | B2 |
6447987 | Hess et al. | Sep 2002 | B1 |
6468732 | Malin et al. | Oct 2002 | B1 |
6475147 | Yost et al. | Nov 2002 | B1 |
6482585 | Dottori | Nov 2002 | B2 |
6527957 | Deniega et al. | Mar 2003 | B1 |
6564207 | Abdoh | May 2003 | B1 |
6610772 | Clauberg et al. | Aug 2003 | B1 |
6688476 | Breillatt, Jr. et al. | Feb 2004 | B2 |
6695803 | Robinson et al. | Feb 2004 | B1 |
6697667 | Lee et al. | Feb 2004 | B1 |
6723051 | Davidson et al. | Apr 2004 | B2 |
6761695 | Yost et al. | Jul 2004 | B2 |
6773407 | Yost et al. | Aug 2004 | B2 |
6817979 | Nihtilä | Nov 2004 | B2 |
6866783 | Baurmeister et al. | Mar 2005 | B2 |
6955648 | Mozayeni et al. | Oct 2005 | B2 |
7104958 | Crutchfield et al. | Sep 2006 | B2 |
7208120 | Bitensky et al. | Apr 2007 | B2 |
7347887 | Bulow et al. | Mar 2008 | B2 |
7361277 | Bormann et al. | Apr 2008 | B2 |
7431995 | Smith et al. | Oct 2008 | B2 |
7452601 | Ebner et al. | Nov 2008 | B2 |
7721898 | Yagi et al. | May 2010 | B2 |
7723017 | Bitensky et al. | May 2010 | B2 |
7754798 | Ebner et al. | Jul 2010 | B2 |
7775376 | Bonaguidi et al. | Aug 2010 | B2 |
8071282 | Bitensky et al. | Dec 2011 | B2 |
20010027156 | Egozy et al. | Oct 2001 | A1 |
20020062078 | Crutchfield et al. | May 2002 | A1 |
20020066699 | Boggs et al. | Jun 2002 | A1 |
20020085952 | Ellingboe et al. | Jul 2002 | A1 |
20020086329 | Shvets et al. | Jul 2002 | A1 |
20020099570 | Knight | Jul 2002 | A1 |
20020182241 | Borenstein et al. | Dec 2002 | A1 |
20030003575 | Vacanti et al. | Jan 2003 | A1 |
20030062299 | Lee et al. | Apr 2003 | A1 |
20030124504 | Bitensky et al. | Jul 2003 | A1 |
20030183801 | Yang et al. | Oct 2003 | A1 |
20030189003 | Kraus et al. | Oct 2003 | A1 |
20040026341 | Hogberg et al. | Feb 2004 | A1 |
20040168982 | Bitensky et al. | Sep 2004 | A1 |
20050038342 | Mozayeni et al. | Feb 2005 | A1 |
20050137517 | Blickhan et al. | Jun 2005 | A1 |
20050139806 | Havens et al. | Jun 2005 | A1 |
20050208462 | Bitensky et al. | Sep 2005 | A1 |
20050230856 | Parekh et al. | Oct 2005 | A1 |
20050233302 | Hess et al. | Oct 2005 | A1 |
20060081524 | Sengupta et al. | Apr 2006 | A1 |
20060118479 | Shevkoplyas et al. | Jun 2006 | A1 |
20070078113 | Roth et al. | Apr 2007 | A1 |
20070240569 | Ooya | Oct 2007 | A1 |
20080243045 | Pasqualini | Oct 2008 | A1 |
20090017128 | Monzyk et al. | Jan 2009 | A1 |
20090269837 | Shevkoplyas et al. | Oct 2009 | A1 |
20100221697 | Sehgal | Sep 2010 | A1 |
20100313755 | Koros et al. | Dec 2010 | A1 |
20120024156 | Yoshida et al. | Feb 2012 | A1 |
20120129148 | Hess et al. | May 2012 | A1 |
20120219633 | Sowemimo-Coker | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
3722984 | Jan 1989 | DE |
0 100 419 | Feb 1984 | EP |
0 217 759 | Apr 1987 | EP |
0 299 381 | Jan 1989 | EP |
0 890 368 | Jan 1999 | EP |
2 581 289 | Nov 1986 | FR |
1 044 649 | Oct 1966 | GB |
58-194879 | Nov 1983 | JP |
63-63616 | Mar 1988 | JP |
01-104271 | Apr 1989 | JP |
5-503075 | May 1993 | JP |
5-503304 | Jun 1993 | JP |
5-305123 | Nov 1993 | JP |
06-121920 | May 1994 | JP |
2700170 | Jan 1998 | JP |
2000-516963 | Dec 2000 | JP |
2002-253936 | Sep 2002 | JP |
2005-535279 | Nov 2005 | JP |
10-0721054 | May 2006 | KR |
1718766 | Jan 1990 | SU |
WO 8102239 | Aug 1981 | WO |
WO 8600809 | Feb 1986 | WO |
WO 8902274 | Mar 1989 | WO |
WO 9104659 | Apr 1991 | WO |
WO 9208348 | May 1992 | WO |
WO 9529662 | Nov 1995 | WO |
WO 9629864 | Oct 1996 | WO |
WO 9948963 | Sep 1999 | WO |
WO 03043571 | May 2003 | WO |
WO 2006-057473 | Jun 2006 | WO |
WO 2006057473 | Jun 2006 | WO |
WO 2011014855 | Feb 2011 | WO |
Entry |
---|
International Search Report and Written Opinion dated Apr. 27, 2011 for corresponding International Patent Application No. PCT/US2010/044045. |
International Search Report and Written Opinion dated Feb. 18, 2011 for corresponding International Patent Application No. PCT/US2010/052084. |
International Search Report and Written Opinion dated Dec. 6, 2010 for corresponding International Patent Application No. PCT/US2010/052376. |
International Preliminary Report on Patentability Dated May 24, 2012 From Corresponding PCT Application No. PCT/US2010/52376. |
Alcantar et al., “Polyethylene glycol-coated biocompatible surfaces,” Journal of Biomedical Materials Research, 51(3):343-351 (2000). |
Anderson et al., “Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities,” Lab Chip, 4:98-103 (2004). |
Barbee et al., “The Fahraeus Effect,” Microvascular Research, 3:6-16 (1971). |
Barclay et al., “A Method for Detecting Chaos in Canine Myocardial Microcirculatory Red Cell Flux,” Microcirculation, 7(5):335-346 (2000). |
Bardy et al., “Technetium-99m Labeling by Means of Stannous Pyrophosphate: Application to Bleomycin and Red Blood Cells,” Journal of Nuclear Medicine, 16(5):435-437 (1975). |
Barras et al., “Einfluss der Rejuvenation auf die rheologischen Eigenschaften gelagerter Erythrozyten,” VASA, 23(4):305-311 (1994). |
Beutler et al., “Storage of red cell concentrates in CPD-A2 for 42 and 49 days,” The Journal of Laboratory and Clinical Medicine, 102(1):53-62 (1983). |
Borenstein et al., “Microfabrication Technology for Vascularized Tissue Engineering,” Biomedical Microdevices, 4(3):167-175 (2002). |
Brody et al., “Deformation and Flow of Red Blood Cells in a Synthetic Lattice: Evidence for an Active Cytoskeleton,” Biophysical Journal, 68:2224-2232 (1995). |
Carmen, “The Selection of Plastic Materials for Blood Bags,” Transfusion Medicine Reviews, 7(1):1-10 (1993). |
Carr et al., “Nonlinear Dynamics of Microvascular Blood Flow,” Annals of Biomedical Engineering, 28:641-652 (2000). |
Cell Deformability, RheoSCAN (RheoScan-AnD300/RheoScan-D300), obtained on Dec. 11, 2012, from: http://www.rheoscan.com/products/products/products-01.html. |
Chilton et al., “Privacy Protection of Health Information: Patient Rights and Pediatrician Responsibilities,” Pediatrics, 104(4):973-977 (1999). |
Cokelet et al., “Fabrication of in Vitro Microvascular Blood Flow Systems by Photolithography,” Microvascular Research, 46:394-400 (1993). |
Dale et al., “Human Vaccination with Escherichia coli J5 Mutant Induces Cross-Reactive Bactericidal Antibody against Neisseria gonorrhoeae Lipooligosaccharide,” The Journal of Infectious Diseases, 166:316-325 (1992). |
De Angelis et al., “Erythrocyte Shape Control in Stored Blood: The Effect of Additive Solutions on Shape Recovery,” Haematologica, 73:7-12 (1988). |
Deible et al., “Molecular barriers to biomaterial thrombosis by modification of surface proteins with polyethylene glycol,” Biomaterials, 19:1885-1893 (1998). |
De Venuto et al. “Rejuvenation of Human Red Blood Cells During Liquid Storage,” Transfusion, 14(4):338-344 (1974). |
Dumaswala et al., “Studies in Red Blood Cell Preservation: 9. The Role of Glutamine in Red Cell Preservation,” Vox Sang, 67:255-259 (1994). |
Dumaswala et al., “Glutamine- and Phosphate-Containing Hypotonic Storage Media Better Maintain Erythrocyte Membrane Physical Properties,” Blood, 88(2):697-704 (1996). |
Dumaswala et al., “Improved Red Blood Cell Preservation Correlates With Decreased Loss of Bands 3, 4.1, Acetylcholinestrase, and Lipids in Microvesicles,” Blood, 87(4):1612-1616 (1996). |
Dumont et al., “Anaerobic storage of red blood cells in a novel additive solution improves in vivo recovery,” Transfusion, 49(3):458-464 (2009). |
Effenhauser et al., “Integrated Capillary Electrophoresis on Flexible Silicone Microdevices: Analysis of DNA Restriction Fragments and Detection of Single DNA Molecules on Microchips,” Anal. Chem., 69:3451-3457 (1997). |
European Search Report completed on Feb. 11, 2005, in European Patent Application No. 02 78 2307.9. |
Fahraeus et al., “The Viscosity of the Blood in Narrow Capillary Tubes,” Am. J. Physiol., 96(3):562-568 (1931). |
Fang et al., “Inhibition of Lipopolysaccharide-Associated Endotoxin Activities In Vitro and In Vivo by the Human Anti-Lipid A Monoclonal Antibody SdJ5-1.17.15,” Infection and Immunity, 61(9):3873-3878 (1993). |
Frame et al., “A System for Culture of Endothelial Cells in 20-50-μm Branching Tubes,” Microcirculation, 2 (4):377-385 (1995). |
Fung et al., “High-Resolution Data on the Geometry of Red Blood Cells”, Biorheology, 18:369-385 (1981). |
Gañán-Calvo et al., “Current and Droplet Size in the Electrospraying of Liquids. Scaling Laws,” J. Aerosol Sci., 28(2):249-275 (1997). |
Green et al., “10. Liposomal Vaccines,” Immunobiology of Proteins and Peptides VII, Plenum Press, New York, pp. 83-92 (1995). |
Greenwalt et al., “Studies in Red Blood Cell Preservation. 7. In vivo and in Vitro Studies with a Modified Phosphate-Ammonium Additive Solution,” Vox Sang, 65:87-94 (1993). |
Greenwalt et al., “Studies in Red Blood Cell Preservation. 8. Liquid Storage of Red Cells in Glycerol-Containing Additive Solution,” Vox. Sang, 67:139-143 (1994). |
Greenwalt et al., “Studies in red blood cell preservation. 10. 51Cr Recovery of Red Cells after Liquid Storage in a Glycerol-Containing Additive Solution,” Vox Sang, 70:6-10 (1996). |
Greenwalt et al., “The effect of hypotonicity, glutamine, and glycine on red cell preservation,” Transfusion, 37:269-276 (1997). |
Griffith, “Temporal chaos in the microcirculation,” Cardiovascular Research, 31:342-358 (1996). |
Hamasaki et al., “Acid-citrate-dextrose-phosphoenolpyruvate medium as a rejuvenant for blood storage,” Transfusion, 23(1):1-7 (1983). |
Hess, “Extended Liquid Storage of Red Blood Cells,” Blood Donors and the Supply of Blood and Blood Products, National Academy Press, Washington, D.C., pp. 99-102 (1996). |
Hess et al., “Successful storage of RBCs for 9 weeks in a new additive solution,” Transfusion, 40:1007-1011 (2000). |
Hess, “Storage of red blood cells under anaerobic conditions,” Vox Sanguinis, 93:183 (2007). |
Hodgson et al., “Prophylactic use of human endotoxin-core hyperimmune gammaglobulin to prevent endotoxaemia in colostrum-deprived, gnotobiotic lambs challenged orally with Escherichia coli,” FEMS Immunology and Medical Microbiology, 11:171-180 (1995). |
Högman et al., “Cell Shape and Total Adenylate Concentration as Important Factors for Posttransfusion Survival of Erythrocytes,” Biomed. Biochim. Acta, 42:S327-S331 (1983). |
Högman et al.,“Effects of Oxygen on Red Cells during Liquid Storage at +4° C,” Vox Sang., 51:27-34 (1986). |
Högman et al., “Effects of Oxygen and Mixing on red cells stored in plastic bags at +4° C,” Biomed. Biochim. Acta., 46:S290-S294 (1987). |
Högman et al., “Shall Red Cell Units Stand Upright, Lie Flat or be Mixed During Storage? In Vitro Studies of Red Cells Collected in 0.5 CPD and Stored in RAS2 (Erythrosol®),” Transfus. Sci., 16(2):193-199 (1995). |
Huang et al., “Continuous Particle Separation Through Deterministic Lateral Displacement,” Science, 304:987-990 (2004). |
International Preliminary Report on Patentability completed on Feb. 14, 2012, in International Patent Application No. PCT/US2010/52084. |
International Preliminary Report on Patentability completed on May 21, 2012, in International Patent Application No. PCT/US2010/52376. |
International Preliminary Report on Patentability completed on Oct. 18, 2011, in International Patent Application No. PCT/US2010/031055. |
International Search Report completed on Jul. 8, 1996, in International Patent Application No. PCT/US96/09005. |
International Search Report completed on Nov. 10, 2003, in International Patent Application No. PCT/US02/36735. |
International Search Report completed on May 20, 2010, in International Patent Application No. PCT/US2010/31055. |
International Search Report completed on Apr. 26, 2011, in International Patent Application No. PCT/US2010/044045. |
International Search Report completed on Dec. 21, 2011, in International Patent Application No. PCT/US11/49168. |
International Search Report completed on Feb. 12, 2012, in International Patent Application No. PCT/US11/59372. |
International Search Report completed on Jun. 18, 2012, in International Patent Application No. PCT/US12/30930. |
International Search Report completed on Sep. 24, 2012, in International Patent Application No. PCT/US12/50380. |
Jain, et al., “Determinants of Leukocyte Margination in Rectangular Microchannels,” PLoS ONE, 4(9):1-8 (2009). |
Jayasinghe et al., “Controlled deposition of nanoparticle clusters by electrohydrodynamic atomization,” Nanotechnology, 15:1519-1523 (2004). |
Jiang et al., “Microfluidic synthesis of monodisperse PDMS microbeads as discrete oxygen sensors,” Soft Matter, 8:923-926 (2011). |
Jo et al., “Surface modification using silanated poly(ethylene glycol)s,” Biomaterials, 21:605-616 (2000). |
Johnson et al., “Regulation of blood flow in single capillaries,” American Journal of Physiology, 212:1405-1415 (1967). |
Kaihara et al., “Silicon Micromachining to Tissue Engineer Branched Vascular Channels for Liver Fabrication,” Tissue Engineering, 6(2):105-117 (2000). |
Kiani et al., “Fluctuations in microvascular blood flow parameters caused by hemodynamic mechanisms,” American Journal of Physiology, 266(5):H1822-H1828 (1994). |
Kikuchi et al., “Modified Cell-Flow Microchannels in a Single-Crystal Silicon Substrate and Flow Behavior of Blood Cells,” Microvascular Research, 47:126-139 (1994). |
Koch et al., “Peripheral blood leukocyte NO production and oxidative stress in multiple sclerosis,” Multiple Sclerosis, 14:159-165 (2008). |
Koch et al., “Duration of Red-Cell Storage and Complications After Cardiac Surgery,” The New England Journal of Medicine, 358:1229-1239 (2008). |
Krogh, “Studies on the physiology of capillaries. II. The reactions to local stimuli of the blood-vessels in the skin and web of the frog,” The Journal of Physiology, 55:412-422 (1921). |
Kuraoka, et al., “Ship-in-a-bottle synthesis of a cobalt phthalocyanine/porous glass composite membrane for oxygen separation,” Journal of Membrane Science, 286(1-2):12-14 (2006). |
Lugowski et al., “Anti-endotoxin antibodies directed against Escherichia coli R-1 oligosaccharide core-tetanus toxoid conjugate bind to smooth, live bacteria and smooth lipopolysaccharides and attenuate their tumor necrosis factor stimulating activity,” FEMS Immunology and Medical Microbiology, 16:31-38 (1996). |
Mazor et al., “Prolonged Storage of Red Cells: The Effect of pH, Adenine Phosphate,” Vox Sanguinis, 66:264-269 (1994). |
McDonald et al., “Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices,” Accounts of Chemical Research, 35(7):491-499 (2002). |
Meryman et al., “Prolonged storage of red cells at 4° C,” Transfusion, 26(6):500-505 (1986). |
Meryman et al., “Extending the storage of red cells at 4° C,” Transfus. Sci., 15(2):105-115 (1994). |
Moll et al., “Dean vortices applied to membrane process. Part II: Numerical approach,” Journal of Membrane Science, 288:321-335 (2007). |
Moroff et al., “Proposed standardization of methods for determining the 24-hour survival of stored red cells,” Transfusion, 24:109-114 (1984). |
Murphy et al., “Increased Mortality, Postoperative Morbidity, and Cost After Red Blood Cell Transfusion in Patients Having Cardiac Surgery,” Circulation, 116:2544-2552 (2007). |
Ng et al., “Components for integrated poly(dimethylsiloxane) microfluidic systems,” Electrophoresis, 23:3461-3473 (2002). |
Ohkuma et al., “The preservative-exchange method using a sextuple-bag system for a 10-week storage period of red blood cells,” Transfusion Medicine, 1:257-262 (1991). |
Poxton, “Antibodies to lipopolysaccharide,” Journal of Immunological Methods, 186:1-15 (1995). |
Pries et al., “Biophysical aspects of blood flow in the microvasculature,” Cardiovascular Research, 32:654-667 (1996). |
Sambuceti et al., “Why should we study the coronary microcirculation?,” Am J Physiol Heart Circ Physiol, 279:H2581-H2584 (2000). |
Shevkoplyas et al., “Direct measurement of the impact of impaired erythrocyte deformability on microvascular network perfusion in a microfluidic device,” Lab Chip, 6:914-920 (2006). |
Shimizu et al., “Multicenter Clinical Evaluation of Red Cell Concentrates Stored up to 6 Weeks in MAP, a new additive solution,” Japanese Journal of Clinical Hematology, 33(2):148-156 (1992). |
Skalak et al., “Deformation of Red Blood Cell in Capillaries,” Science, 164(3880):717-719 (1969). |
Sohmer et al., “Phosphoenolypyruvate (PEP) Effects on Fresh and Stored Red Blood Cells,” Proceedings of the Society for Experimental Biology and Medicine, 171:24-33 (1982). |
Sutton et al., “A Novel Instrument for Studying the Flow Behaviour of Erythrocytes through Microchannels Simulating Human Blood Capillaries,” Microvascular Research, 53:272-281 (1997). |
Szymanski et al., “Effect of rejuvenation and frozen storage on 42-day-old AS-1 RBCs,” Transfusion, 41:550-555 (2001). |
The International Committee for Standardization in Hematology, “Recommended Methods for Radioisotope Red Cell Survival Studies,” Blood, 38(3):378-386 (1971). |
Tinmouth et al., “The Clinical Consequences of the Red Cell Storage Lesion,” Transfusion Medicine Reviews, 15(2):91-107 (2001). |
Tracey et al., “A Silicon Micromachined Device for Use in Blood Cell Deformability Studies,” IEEE Transactions on Biomedical Engineering, 42(8):751-761 (1995). |
Tsukada et al., “Direct Measurement of Erythrocyte Deformability in Diabetes Mellitus with a Transparent Microchannel Capillary Model and High-Speed Video Camera System,” Microvascular Research, 61:231-239 (2001). |
Valeri et al., “The survival, function, and hemolysis of human RBCs stored at 4° C in additive solution (AS-1, AS-3, or AS-5) for 42 days and then biochemically modified, frozen, thawed, washed, and stored at 4° C in sodium chloride and glucose solution for 24 hours,” Transfusion, 40:1341-1345 (2000). |
Wang et al., “Fabrication of PLGA microvessel scaffolds with circular microchannels using soft lithography,” Journal of Micromechanics and Microengineering, 17(10):2000-2005 (2007). |
Weinberg et al., “Transfusions in the Less Severely injured: Does Age of Transfused Blood Affect Outcomes?,” The Journal of Trauma, 65(4):794-798 (2008). |
Wilding et al., “Manipulation and Flow of Biological Fuids in Straight Channels Micromachined in Silicon,” Clinical Chemistry, 40(1):43-47 (1994). |
Wood et al., “The Viability of Human Blood Stored in Phosphate Adenine Media,” Transfusion, 7(6):401-408 (1967). |
Wu et al., “Polymer microchips bonded by O2-plasma activation,” Electrophoresis, 23:782-790 (2002). |
Yoshida et al., “Extended storage of red blood cells under anaerobic conditions,” Vox Sanguinis, 92:22-31 (2007). |
Yoshida et al., “Storage of red blood cells under anaerobic conditions: reply,” Vox Sanguinis, 93:184 (2007). |
Yoshida et al., “The effects of additive solution pH and metabolic rejuvenation on anaerobic storage of red cells,” Transfusion, 48:2096-2105 (2008). |
Yoshida et al., “Anaerobic storage of red blood cells,” Blood Transfus, 8:220-236 (2010). |
Zhang et al., “Modification of Si(100) surface by the grafting of poly(ethylene glycol) for reduction in protein adsorption and platelet adhesion,” J Biomed Mater Res, 56:324-332 (2001). |
Zimrin et al., “Current issues relating to the transfusion of stored red blood cells,” Vox Sanguinis, 96:93-103 (2009). |
Number | Date | Country | |
---|---|---|---|
20120100523 A1 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
61250661 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12903057 | Oct 2010 | US |
Child | 13115532 | US |