Claims
- 1. A method of scavenging oxygen contained in a closed interior cavity of a container comprising exposing the interior cavity of said container to a composition comprising a polymeric matrix carrier having substantially uniformly distributed therein a metal coated inert, high-surface area, porous, particulate material having substantially no ion-exchange capacity with respect to the metal, a surface area of from 1 to 950 m2/gm; a pore volume of at least about 0.007 cc/gm, wherein the metal is in substantially its zero valence state and forms a coating on a major portion of the particulate material's surface area, and subjecting said composition to moisture in an amount sufficient to initiate oxygen scavenging.
- 2. The method of claim 1 wherein the metal coated porous particulate material is formed by vapor deposition.
- 3. The method of claim 1 wherein the porous particulate material is selected from the group consisting of oxides and hydroxides of silicon, aluminum, calcium, magnesium, barium, titanium, iron, zinc, tin and mixtures thereof.
- 4. The method of claim 1 wherein the porous particulate material is selected from the group consisting of the minerals of montmorillonite, kaolite, attapulgite, sepiolite, diatomacious earth, talc, vermiculite and mixtures thereof.
- 5. The method of claim 1 wherein the particulate material has a pore diameter of at least about 3 angstroms.
- 6. The method of claim 5 wherein the metal coated on the porous particulate material is selected from the group consisting of calcium, magnesium, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, tin and mixtures thereof.
- 7. The method of claim 6 wherein the metal is selected from the group consisting of iron, copper, zinc, magnesium, tin, nickel and mixtures thereof.
- 8. The method of claim 7 wherein the metal is copper.
- 9. The method of claim 6 wherein the porous particulate material is selected from the group consisting of oxides and hydroxides of silicon, aluminum, calcium, magnesium, barium, titanium, iron, zinc, tin and mixtures thereof.
- 10. The method of claim 6 wherein the porous particulate material is selected from the group consisting of the minerals of montmorillonite, kaolite, attapulgite, sepiolite, diatomacious earth, talc, vermiculite and mixtures thereof.
- 11. The method of claim 8 wherein the porous particulate material is selected from the group consisting of oxides and hydroxides of silicon, aluminum, calcium, magnesium, barium, titanium, iron, zinc, tin and mixtures thereof.
- 12. The method of claim 8 wherein the porous particulate material is selected from the group consisting of the minerals of montmorillonite, kaolite, attapulgite, sepiolite, diatomacious earth, talc, vermiculite and mixtures thereof.
- 13. The method of claim 1, 5, 6, 7 or 8 wherein the carrier comprises a film or a woven or non-woven mat having said metal coated particulate material contained on the surface of said carrier and said carrier is housed in the interior cavity of the container.
- 14. The method of claims 1, 5, 6, 7 or 8 wherein the metal coated porous particulate material is formed by the steps comprising incipient impregnation of a solution of metal compound, removal of solvent, and reduction of the metal compound to provide metal coating wherein the metal is substantially in its zero valence state.
- 15. The method of claims 1, 5, 6, 7 or 8 wherein the carrier comprises a polymer matrix having at least about 0.1 weight percent of said metal coated particulate material distributed therein based on the weight of the polymer matrix.
- 16. The method of claim 15 wherein the container is composed of a container body and a container closure and the solid oxygen scavenging composition is on the interior surface of the container body, is on the interior surface of the closure or is a gasket between the container body and the container closure.
- 17. The method of claim 15 wherein the composition is deposited on at least a portion of the container as a plastisol, dry blend or lacquer composition.
- 18. The method of claim 15 wherein the polymer matrix is a thermoplastic resin selected from the group consisting of polyethylene, ethylene/vinyl acetate copolymers, vinyl chlorides homopolymers, vinyl chloride copolymers and blends thereof.
Parent Case Info
This application is a divisional application of application Ser. No. 08/864,232, filed May 23, 1997 now U.S. Pat. No. 5,985,169.
US Referenced Citations (9)