The present invention relates to a method of generating electrical power in which a synthesis gas stream, produced in a gasifier, is combusted in an oxygen transport membrane based boiler to generate heat that is used to raise steam and that is in turn used in a steam turbine to generate electrical power. More particularly, the present invention relates to such a method in which a high pressure synthesis gas stream produced in the gasifier is indirectly heated in at least one oxygen transport membrane based partial oxidation reactor using a low pressure synthesis gas slip stream as fuel to combust with oxygen separated from a feed air stream by the oxygen transport membrane in the partial oxidation reactor and expanded in a turbine prior to being combusted in an oxygen transport membrane based boiler.
Coal-fired power plants are utilized throughout the world to generate electricity. Typically, the coal is either in a pulverized form or within a slurry is combusted to generate heat within a boiler to raise steam. The steam is passed into a steam turbine to generate electrical power. There has been recent interest in capturing carbon dioxide from power plants that use coal and other carbonaceous feed stock such as asphalt, heavy oil, petroleum coke, biomass or natural gas. An integrated gasification and combined cycle (IGCC) is proposed as a preferred method of power generation when carbon dioxide capture is required. In IGCC, gasification of fuel produces a synthesis gas containing mainly hydrogen, carbon monoxide and carbon dioxide with some amount of methane and sulfur and chloride containing impurities. In a typical gasifier the carbonaceous feed is reacted with steam and oxygen to produce the synthesis gas. Typically, the oxygen is provided to the gasifier by a cryogenic air separation unit.
In IGCC, the synthesis gas produced as a result of the gasification is typically cooled to a temperature suitable for its further processing in a water-gas shift reactor to increase the hydrogen and carbon dioxide content of the synthesis gas. The water-gas shift reactor also hydrolyzes most of the carbonyl sulfide into hydrogen sulfide. The synthesis gas is then further cooled for carbon dioxide and hydrogen sulfide separation within a solvent scrubbing plant employing physical or chemical absorption for separation of the carbon dioxide and hydrogen sulfides and carbonyl sulfide from the synthesis gas. This allows for the capture and sequestration of the carbon dioxide which is present within the synthesis gas. The resulting hydrogen-rich gas is then fed to a gas turbine that is coupled to an electrical generator to generate electricity. Heat is recovered from the cooling of the raw synthesis gas stream, from cooling the heated discharge from the water-gas shift reactor, and cooling the exhaust from the gas turbine to raise steam and to generate additional electrical power from a steam turbine.
As can be appreciated, the IGCC is environmentally very advantageous in that a clean burning synthesis gas stream is used to power the gas turbine while at the same time, the carbon dioxide produced by the gasification can be captured for use in other industrial processes, for enhanced oil recovery or for sequestration. The disadvantage of such an IGCC cycle is the high energy penalty associated with the air separation and solvent scrubbing plants. Additionally, the recovery of heat energy in several stages is inherently inefficient in that such heat recovery always involves loss and in any case, the heat is recovered at a low temperature. Lastly, the use of solvent scrubbing plants, water-gas shift reactors and gas turbines is an expensive proposition given their high capital costs.
The use of oxygen transport membrane (OTM) systems have also been contemplated in connection with boilers to generate products used to produce electricity, as disclosed in U.S. Pat. Nos. 6,394,043; 6,382,958; 6,562,104; and, more particularly U.S. Pat. Nos. 7,856,829 and 8,196,387. In such OTM based systems, oxygen is separated from the air with the use of a ceramic membrane that is capable of oxygen ion transport at elevated temperatures. The oxygen ionizes on one surface of the membrane by gaining electrons to form the oxygen ions. Under a driving force of a partial pressure differential, the oxygen ions pass through the membrane and either react with a fuel or recombine to elemental oxygen liberating the electrons used in the ionization of the oxygen.
An alternative oxygen transport membrane based system and the closest prior art for advanced power cycle systems are disclosed in U.S. Pat. Nos. 7,856,829 and 8,196,387. These prior art advanced power cycle systems require the oxygen transport membrane to operate in a high pressure environment of about 350 psig, particularly in the POx stages which directly heat the synthesis gas from the gasifier ahead of any expansion stages. One of the recognized problems associated with oxygen transport membranes is that when operating in severe environments, such as high pressure environments, the reliability of the oxygen transport membranes typically suffer resulting in more membrane failures and associated system operating downtime and maintenance costs. In addition, oxygen transport membranes that are designed to operate in higher pressure environments typically require very thick support layers thus significantly increasing the cost of the oxygen transport membranes and associated reactors.
In lieu of operating the oxygen transport membranes at such high pressures, prior art solutions contemplate regulating a portion of the high pressure gasifier stream to lower pressure levels before introduction to the oxygen transport membranes based reactors. Regulating or reducing the high pressure gasifier stream involves specialized equipment and adversely impacts the overall economics and efficiency of the oxygen transport membrane based power system. Also, the prior art solutions requires the oxygen transport membranes to operate at very low fuel utilization or conversions rates making it difficult to control the oxygen flux across the membranes, since oxygen flux is a decreasing function of the fuel utilization or fuel conversion.
What is needed therefore is a method for generating power from a high pressure gasifier stream using an oxygen transport membrane based system designed to operate at lower pressures and is more cost efficient than the current prior art oxygen transport membrane based power cycle systems and solutions. In particular, what is needed is an oxygen transport membrane based power cycle system that facilitates operation of the oxygen transport membrane at low fuel pressures with high fuel utilization or fuel conversion.
The present invention may be characterized as a method of generating electrical power comprising the steps of: (i) generating a synthesis gas stream in a gasifier; (ii) heating the synthesis gas stream via indirect heat exchange with radiant heat generated from at least one oxygen transport membrane based partial oxidation reactor; (iii) expanding the heated synthesis gas stream in at least one expansion stage; (iv) diverting a portion of the expanded synthesis gas stream to the at least one oxygen transport membrane based partial oxidation reactor where such diverted portion of the synthesis gas stream is partially oxidized with permeated oxygen from the oxygen transport membrane based partial oxidation reactor to produce a reaction product stream and the radiant heat; (v) feeding another portion of the expanded synthesis gas stream and the reaction product stream to an oxygen transport membrane based boiler where the synthesis gas stream and reaction product stream react with permeated oxygen and a source of supplemental oxygen to produce steam from a source of boiler feed water and produce a carbon dioxide containing flue gas stream; (vi) extracting energy from the steam by a steam turbine subsystem operatively associated with the oxygen transport membrane based boiler and converting the extracted energy to electrical power; and (vii) purifying the carbon dioxide containing flue gas stream to produce a carbon dioxide-rich stream.
The present invention may also be characterized as an oxygen transport membrane based advanced power cycle system comprising: (a) a source of high pressure synthesis gas; (b) at least one oxygen transport membrane based partial oxidation reactor having one or more oxygen transport membrane elements and one or more metal tubes containing the synthesis gas and disposed adjacent or juxtaposed to the one or more oxygen transport membrane elements; (c) at least one expander disposed downstream of the at least one oxygen transport membrane based partial oxidation reactor, the expander configured to expand the heated synthesis gas stream to produce energy and reduce the pressure of the synthesis gas stream; (d) a recycle conduit configured to divert a portion of the expanded synthesis gas stream to the at least one oxygen transport membrane based partial oxidation reactor where such diverted portion of the synthesis gas stream is the low pressure synthesis gas slip stream that is partially oxidized with the permeated oxygen; (e) an oxygen transport membrane based boiler having one or more oxygen transport membrane elements and one or more steam tubes containing the boiler feed water and disposed adjacent or juxtaposed to the one or more oxygen transport membrane elements in the oxygen transport membrane based boiler, and (f) a steam turbine subsystem operatively associated with the oxygen transport membrane based boiler and configured to convert the steam to electrical power. Optionally, the at least one oxygen transport membrane based partial oxidation reactor and the at least one an oxygen transport membrane based boiler may be disposed in an integrated reactor housing to reduce capital costs associated with the system.
The at least one oxygen transport membrane based partial oxidation reactor is configured to partially oxidize a low pressure synthesis gas slip stream with oxygen permeated through one or more oxygen transport membrane elements to produce a reaction product stream and the first source of radiant heat; and wherein the radiant heat is used to heat the synthesis gas stream in adjacent metal tubes. The oxygen transport membrane based boiler configured to heat the boiler feed water in the steam tubes to produce steam via indirect heat exchange with a second source of radiant heat generated from a combustion of the low pressure synthesis gas with oxygen permeated through the one or more oxygen transport membrane elements in the oxygen transport membrane based boiler. The oxygen transport membrane based boiler is further configured to combust any expanded synthesis gas stream with a source of supplemental oxygen, such as cryogenically produced oxygen from an air separation unit, to produce a carbon dioxide containing flue gas and to further heat the boiler feed water in the steam tubes to produce steam.
Some embodiments of the oxygen transport membrane based advanced power cycle system and associated methods of generating electrical power may also include a carbon dioxide purification subsystem configured to purify the carbon dioxide containing flue gas stream and produce a carbon dioxide-rich stream. Other embodiments of the oxygen transport membrane based advanced power cycle system may also include an air supply and preheat subsystem that includes an oxygen containing feed stream; a regenerative air preheater configured to heat the oxygen containing feed stream; a plurality of conduits for supplying the heated oxygen containing feed stream from the regenerative air preheater to the oxygen transport membrane based partial oxidation reactors and the oxygen transport membrane based boiler; and a plurality of return conduits configured to return a heated, oxygen depleted stream from the oxygen transport membrane based partial oxidation reactors and the oxygen transport membrane based boiler to the regenerative air preheater to heat oxygen containing feed stream.
While the specification concludes with claims distinctly pointing out the subject matter that applicants regard as their invention, it is believed that the invention will be better understood when taken in connection with the accompanying drawings in which:
In a broad sense, the illustrated advanced power cycle system 10 comprises an air supply and preheating subsystem 11; one or more oxygen transport membrane based partial oxidation stages 21; one or more expansion stages 31; an oxygen transport membrane based boiler and power generation subsystem 41; and a carbon dioxide purification unit or subsystem 51.
With reference to
As the heated feed air stream 15 flows along the oxidant-side surface of the heated OTM elements or tubes 28, 48 in the OTM POx reactors 22, 24 and OTM boiler 40, the feed air stream 15 becomes generally depleted of oxygen and heated as a result of convective heat transfer from the OTM elements or tubes 28, 48 and the passing air stream. Modeling of the presently disclosed advanced power cycle system 10 shows that approximately 70% or more of the oxygen within the feed air stream 15 is transported or permeated across the OTM elements or tubes 28, 48. The residual streams are heated, oxygen-depleted streams 16 that exit the OTM boiler 40 or OTM POx reactors 22, 24 where they are combined and preferably used to preheat the incoming feed air stream 14, via a ceramic regenerative air preheater 13.
It should be appreciated that in the present illustrated embodiment, no standard flue gas-to-air preheater exists because air preheating for the feed air stream 14 is handled separately in a regenerative heat exchanger 13, preferably a ceramic regenerator, although the ceramic regenerative heat exchanger 13 could be any type of thermal regenerator that uses a high temperature capable medium to store and transfer heat. Separate air preheaters for each of the OTM POx reactors 22, 24 and for the OTM boiler 40 are not required, although use of multiple regenerators or a modularized regenerator may be used in lieu of the illustrated single regenerator. The illustrated air supply and preheat subsystem 11 also includes a blower or fan 17 needed to convey an oxygen containing feed streams 14 through the single regenerative air preheater 13, downstream and OTM POx reactors 22, 24 and OTM boiler 40.
The illustrated advanced power cycle system 10 of
Specifically, the one or more oxygen transport membrane based partial oxidation stages is comprised of a pair of OTM POx reactors 22, 24 that operate at lower fuel pressures and higher fuel utilization rates than prior art advanced power cycle systems. The low fuel pressure and high fuel utilization is achieved by recycling a portion of the expanded synthesis gas streams, referred to as the synthesis gas slip stream 27, and combusting the low pressure synthesis gas slip stream 27 with the permeated oxygen 30 in the OTM POx reactors 22, 24. In the illustrated embodiment, the first OTM POx reactor 22 is used to combust enough of the synthesis gas slip stream 27 to raise the temperature of the high pressure synthesis gas stream 23 to about 900° C. or higher. The heated synthesis gas stream 23 is then expanded using a turbo-expander 32 to an intermediate pressure and is directed or fed through a second OTM POx reactor 24. The second OTM POx reactor 24 again oxidizes only enough of the low pressure synthesis gas slip stream 27 with permeated oxygen 30 to further heat the intermediate pressure synthesis gas stream 25 to a temperature of about 930° C. or higher. The intermediate pressure heated synthesis gas stream 25 is then directed or fed through a second turbo-expander 34 and is expanded to near atmospheric pressure. Using the two expansion stages, rather than a single expansion stage, improves the efficiency of the advanced power cycle system 10. In some embodiments, the pair of turbo-expanders 32, 34 may be operatively coupled to one or more generators configured to recover supplemental electrical power from the one or more expansion stages.
In the proposed arrangement of the advanced power cycle system 10, the expansion power of each turbine unit or turbo-expander 32, 34 is similar to that of a General Electric Frame 5 Gas Turbine. Expander performance end efficiency was estimated to be about 85% for the first expansion stage and about 92% for the second expansion stage. As discussed above, a portion of the further expanded synthesis gas 25 is split off downstream of the second turbo-expander 34 and sent back or recycled to the OTM POx reactors 22, 24 to be used as the low pressure synthesis gas slip stream 27.
The OTM POx reactors 22, 24 preferably comprise a plurality of OTM elements or tubes 28 configured to separate and transport oxygen ions from the heated oxygen containing feed stream 15 contacting the oxidant side to the permeate or reactive side of the OTM elements or tubes 28 where the oxygen ions are recombined to form oxygen. The permeated oxygen 30 reacts with a portion of the low pressure synthesis gas slip-stream 27 to produce supplemental reaction products 29 and, more importantly, heat. The heat generated from the partial oxidation of the permeated oxygen 30 and low pressure synthesis gas slip stream 27 is radiated to metallic tubes 26 that contain the high pressure synthesis gas stream disposed near or juxtaposed to the OTM elements or tubes 28. Any unused portion of synthesis gas slip stream 27 together with the reaction products 29 from the partial oxidation occurring within the OTM POx reactors 22, 24 are then mixed back in with the further expanded synthesis gas stream 35 that is fed to the OTM boiler 40.
Advantageously, the recycling of low pressure synthesis gas slip-stream 27 to the permeate or reactive side of the OTM elements or tubes 28 combined with the low pressure air feed stream 15 on the oxidant side OTM elements or tubes 28, 48 allows for the OTM based POx reactors 22, 24 and OTM boiler 40 to operate at low pressure on both sides of the oxygen transport membranes which decreases system costs and minimizes risks associated with operating the OTM ceramic materials under high pressure gradients. Since the recycled synthesis gas slip stream 27 is a low pressure stream, the operational environment of the OTM POx reactors 22, 24 is less severe than prior art systems and the OTM elements or tubes 28 are generally less costly to manufacture. The relative flows of the synthesis gas slip stream 27 directed to each of the POx reactors 22, 24 are preferably controlled to optimize fuel utilization of the advanced power cycle system 10.
Following the second turbo-expander 34, the still mostly un-oxidized and low pressure synthesis gas stream 35 flows to the OTM boiler 40 where a plurality of OTM elements or tubes 48 are disposed that provide or supply the oxygen required to support the combustion of up to about 95% of the low pressure synthesis gas stream 35. In the OTM boiler 40, steam tubes 46 are also arranged proximate or juxtaposed to the OTM elements or tubes 48 for removal of energy needed to keep the gas and surface temperatures of the OTM elements or tubes 48 at around 1000° C. The majority of the synthesis gas stream 35 flowing through the OTM boiler 40 is combusted at or near atmospheric pressure using the permeated oxygen 30 and the resulting heat is used to raise steam to facilitate the removal of energy from the system.
A non-traditional boiler arrangement is preferably used in order to accommodate both the OTM surface temperatures and the steam tube surface temperatures. The section of the boiler containing OTM elements or tubes 48 should preferably be maintained at between 900° C. and 1100° C., and more preferably at about 1000° C. for optimal membrane performance. In addition to the OTM element temperatures, the degree of synthesis gas combustion via the OTM elements or tubes 28, 48 is also an important optimization variable. Thus, use of oxidation catalysts within the OTM elements or tubes may be considered. Depending on OTM oxygen flux and across the OTM elements or tubes 28, 48 and the amount of recycled low pressure synthesis gas slip stream 27 fed to the reactant side of the OTM POx reactors 22, 24, it is estimated that between about 70% and 95% of the total synthesis gas stream may be reacted or combusted with permeated oxygen 30 from OTM elements or tubes 28, 48 the majority of which occurs in OTM boiler 40.
While combustion of the low pressure synthesis gas stream 35 with permeated oxygen 30 Following the last section of OTM elements or tubes 48 in the OTM boiler 40, some synthesis gas still remains unreacted in the gas stream, typically between about 5% and 30% of the original synthesis gas stream 20. A source of oxygen 60 from a cryogenic air separation plant (not shown) is then used to combust the remaining synthesis gas within the low pressure gas stream 35, further increasing the temperature of the carbon dioxide containing flue gas 44 to roughly 1400° C. The carbon dioxide containing flue gas 44 is then cooled in a heat recovery train (not shown) preferably first by radiative heat transfer and then via convective heat transfer against high pressure water in a standard economizer. Enough supplemental oxygen 60 from the cryogenic air separation unit is used in the downstream section or combustion section of the OTM boiler 40 to preferably yield about 1.2 mol % excess oxygen in the carbon dioxide containing flue gas 44. Once the carbon dioxide containing flue gas 44 has cooled to sub-economizer temperatures the cooled carbon dioxide containing flue gas 44 continues to cool against low pressure boiler feed water. Due to the high moisture level in the cooled flue gas 44 some latent heat is transferable to the boiler feed water stream. In addition, some amount of energy is also available from the gasifier subsystem which optionally may be used to preheat the boiler feed water.
A cryogenic air separation unit (not shown) is used to supply gaseous oxygen to the gasifier (not shown) and the supplemental combustor operatively associated with the OTM boiler 40. This cryogenically supplied oxygen 60 accounts for roughly 33% of the total oxygen consumed by the presently disclosed process, with the other 67% supplied using the OTM elements or tubes 28, 48 in the OTM POx reactors 22, 24 and OTM boiler 40. The oxygen purity delivered by the air separation unit is preferably only about 95.5 mol % oxygen. The cryogenic air separation unit design is preferably a commercially available low purity, low pressure air separation unit, known to those persons skilled in the art cryogenic air separation plants.
The carbon dioxide containing flue gas 44 from the OTM boiler 40 is then directed to a Carbon Dioxide Processing Unit 55 or CPU. The CPU compresses and purifies the flue gas to a carbon dioxide stream 45 suitable for sequestration. Following the latent heat removal operation, the CPU compresses the carbon dioxide containing flue gas to roughly 375 psi in a five stage compression train with an average stage polytropic efficiency of about 85% and a mechanical efficiency of about 98.5%. Preferably, the compressed flue gas stream is also treated for removal of mercury, water and selected acids and preferably subjected to an auto-refrigerative process for inert removal. The auto-refrigerative process purifies the carbon dioxide stream to about 95% or greater purity with 97% recovery of carbon dioxide. This cryogenic process also produces a vent stream which is enriched in atmospheric gases (e.g., N2, O2, Ar). Following the cryogenic portion of the CPU, the purified carbon dioxide stream is further compressed to 2000 psi.
Although not shown in detail, the present advanced power cycle system 10 may also include a synthesis gas pretreatment subsystem 70 for H2S and COS control following the gasifier and before the high pressure synthesis gas flows to the first OTM POx reactor. The preferred synthesis gas pretreatment process is a warm gas cleanup process using a solid regenerable sorbent. In the preferred warm gas cleanup process, the high temperature and high pressure synthesis gas product exiting the gasifier is brought into contact with a solid metal oxide sorbent, typically ZnO such that the H2S and COS in the synthesis gas form a metal sulfide, typically ZnS. A portion of the solid sorbent is continually withdrawn from the absorber unit, regenerated and re-introduced back to the absorber unit. During the regenerating process, the spent solid sorbent is regenerated with air at near atmospheric pressure, producing ZnO and a SOx containing gas stream. The regenerated ZnO sorbent is then returned to the absorber while the SOx containing gas stream is processed for SOx control, using techniques generally known to those skilled in the art.
The key advantages and operating characteristics of the present advanced power cycle system include: (i) ability to maintain and control the membrane flux at high fuel utilizations; (ii) the OTM elements or tubes are at low pressures and the high pressure synthesis gas is contained and heated in much stronger metal tubes or heat exchangers; (iii) the flow of the synthesis gas to the multiple OTM POx stages or reactors provides an independent control variable for temperature management; (iv) design allows for standardized OTM modules which could be used in both the OTM boiler and the OTM POx reactors; (v) the use of recycled low pressure synthesis gas slip stream eliminates the need to regulate the high pressure synthesis gas exiting the gasifier or the synthesis gas pretreatment process. More importantly, the present advanced power cycle system offers process efficiency and potential cost advantages over the prior art OTM based systems used in power generation applications.
For example, because the presently disclosed advanced power cycle system and method employ a plurality of similar OTM elements or tubes placed directly within the OTM boiler as well as the OTM POx reactors where the permeated oxygen is consumed on the reactive-side of the OTM elements or tubes to produce heat, it is possible to use standardized designs the OTM elements or tubes that are similar in structure and performance. Also, because the partial oxidation and combustion reactions occurs at or on the surface of the OTM elements or tubes an extremely low oxygen partial pressure is achieved on the reactive side of the membrane elements and a driving force for oxygen ion transport from the oxidant-side to the reactant-side of the OTM elements or tubes is established since the feed air streams have a much higher oxygen partial pressure. This, in turn, allows the present advanced power cycle system to use low pressure rated OTM materials and designs while also permitting control the OTM oxygen flux with high fuel utilizations.
In addition to the aforementioned advantages and operating characteristics, the low pressure operation of the OTM elements or tubes allows for the integration of the OTM POx reactors 22, 24 and OTM boiler 40 into a single reactor housing 75 as depicted in
In the embodiment of
In the illustrated embodiment, the OTM boiler 40 is bifurcated or split into two distinct sections 40A, 40B. The first section or upstream section 40A is an OTM based section that reacts a portion of the low pressure expanded synthesis gas slip stream 27 with permeated oxygen 30 produced by the OTM elements or tubes 48 in the OTM boiler 40. The second downstream section 40B or combustion section of the OTM boiler 40 is configured to complete the combustion of any remaining low pressure synthesis gas in the slip stream 27 as well as the low pressure synthesis gas slip stream 35 through the addition of a small amount of cryogenically produced oxygen 60 into the reactor housing 75. The proposed integration of two OTM POx reactors 22, 24 and OTM boiler 40 into one integrated reactor housing 75 greatly reduces the capital cost of the overall advanced power cycle system 10. This is of course made possible by utilizing the low pressure synthesis gas slipstream 27 described above.
While the present invention has been characterized in various ways and described in relation to preferred embodiments, as will occur to those skilled in the art, numerous, additions, changes and modifications thereto can be made to the present method and system without departing from the spirit and scope of the present invention as set forth in the appended claims.
This application claims priority to and the benefit of U.S. provisional patent application Ser. No. 61/746,820 filed on Dec. 28, 2012, the disclosure of which is incorporated by reference herein.
This invention was made with Government support under Cooperative Agreement No. DE-FC26-07NT43088, awarded by the United States Department of Energy. The Government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
2593507 | Wainer | Apr 1952 | A |
2692760 | Flurschutz | Oct 1954 | A |
3282803 | Poepel et al. | Nov 1966 | A |
3317298 | Klomp et al. | May 1967 | A |
3770621 | Collins et al. | Nov 1973 | A |
3861723 | Kunz et al. | Jan 1975 | A |
3868817 | Marion | Mar 1975 | A |
3930814 | Gessner | Jan 1976 | A |
3976451 | Blackmer et al. | Aug 1976 | A |
4013592 | Matsuoka et al. | Mar 1977 | A |
4128776 | Bonaquist et al. | Dec 1978 | A |
4153426 | Wintrell | May 1979 | A |
4162993 | Retalick | Jul 1979 | A |
4175153 | Dobo et al. | Nov 1979 | A |
4183539 | French et al. | Jan 1980 | A |
4206803 | Finnemore et al. | Jun 1980 | A |
4261167 | Paull et al. | Apr 1981 | A |
4292209 | Marchant et al. | Sep 1981 | A |
4350617 | Retalick et al. | Sep 1982 | A |
4357025 | Eckart | Nov 1982 | A |
4365021 | Pirooz | Dec 1982 | A |
4373575 | Hayes | Feb 1983 | A |
4402871 | Retalick | Sep 1983 | A |
4609383 | Bonaventura et al. | Sep 1986 | A |
4631238 | Ruka | Dec 1986 | A |
4650814 | Keller | Mar 1987 | A |
4651809 | Gollnick et al. | Mar 1987 | A |
4720969 | Jackman | Jan 1988 | A |
4734273 | Haskell | Mar 1988 | A |
4749632 | Flandermeyer et al. | Jun 1988 | A |
4783085 | Wicks et al. | Nov 1988 | A |
4791079 | Hazbun | Dec 1988 | A |
4862949 | Bell, III | Sep 1989 | A |
4866013 | Anseau et al. | Sep 1989 | A |
5021137 | Joshi et al. | Jun 1991 | A |
5035726 | Chen et al. | Jul 1991 | A |
5061297 | Krasberg | Oct 1991 | A |
5143751 | Richards et al. | Sep 1992 | A |
5169506 | Michaels | Dec 1992 | A |
5169811 | Cipollini et al. | Dec 1992 | A |
5171646 | Rohr | Dec 1992 | A |
5185301 | Li et al. | Feb 1993 | A |
5205990 | Lawless | Apr 1993 | A |
5240480 | Thorogood et al. | Aug 1993 | A |
5259444 | Wilson | Nov 1993 | A |
5286686 | Haig et al. | Feb 1994 | A |
5298469 | Haig et al. | Mar 1994 | A |
5302258 | Renlund et al. | Apr 1994 | A |
5306411 | Mazanec et al. | Apr 1994 | A |
5342705 | Minh et al. | Aug 1994 | A |
5432705 | Minh et al. | Aug 1994 | A |
5356730 | Minh et al. | Oct 1994 | A |
5417101 | Weich | May 1995 | A |
5454923 | Nachlas et al. | Oct 1995 | A |
5478444 | Liu et al. | Dec 1995 | A |
5534471 | Carolan et al. | Jul 1996 | A |
5547494 | Prasad et al. | Aug 1996 | A |
5569633 | Carolan et al. | Oct 1996 | A |
5599509 | Toyao et al. | Feb 1997 | A |
5643355 | Phillips et al. | Jul 1997 | A |
5649517 | Poola et al. | Jul 1997 | A |
5707911 | Rakhimov et al. | Jan 1998 | A |
5750279 | Carolan et al. | May 1998 | A |
5804155 | Farrauto et al. | Sep 1998 | A |
5820654 | Gottzman et al. | Oct 1998 | A |
5820655 | Gottzmann et al. | Oct 1998 | A |
5837125 | Prasad et al. | Nov 1998 | A |
5855762 | Phillips et al. | Jan 1999 | A |
5864576 | Nakatani et al. | Jan 1999 | A |
5902379 | Phillips et al. | May 1999 | A |
5927103 | Howard | Jul 1999 | A |
5932141 | Rostrop-Nielsen et al. | Aug 1999 | A |
5944874 | Prasad et al. | Aug 1999 | A |
5964922 | Keskar et al. | Oct 1999 | A |
5975130 | Ligh et al. | Nov 1999 | A |
5980840 | Kleefisch et al. | Nov 1999 | A |
6010614 | Keskar et al. | Jan 2000 | A |
6035662 | Howard et al. | Mar 2000 | A |
6048472 | Nataraj et al. | Apr 2000 | A |
6051125 | Pham et al. | Apr 2000 | A |
6070471 | Westphal et al. | Jun 2000 | A |
6077323 | Nataraj et al. | Jun 2000 | A |
6110979 | Nataraj et al. | Aug 2000 | A |
6113673 | Loutfy et al. | Sep 2000 | A |
6114400 | Nataraj et al. | Sep 2000 | A |
6139810 | Gottzmann et al. | Oct 2000 | A |
6153163 | Prasad et al. | Nov 2000 | A |
RE37134 | Wilson | Apr 2001 | E |
6214066 | Nataraj et al. | Apr 2001 | B1 |
6214314 | Nataraj et al. | Apr 2001 | B1 |
6290757 | Lawless | Sep 2001 | B1 |
6293084 | Drnevich et al. | Sep 2001 | B1 |
6296686 | Prasad et al. | Oct 2001 | B1 |
6333015 | Lewis | Dec 2001 | B1 |
6352624 | Crome et al. | Mar 2002 | B1 |
6360524 | Drnevich et al. | Mar 2002 | B1 |
6368491 | Cao et al. | Apr 2002 | B1 |
6382958 | Bool, III et al. | May 2002 | B1 |
6394043 | Bool, III et al. | May 2002 | B1 |
6402988 | Gottzmann et al. | Jun 2002 | B1 |
6430966 | Meinhardt et al. | Aug 2002 | B1 |
6468328 | Sircar et al. | Oct 2002 | B2 |
6475657 | Del-Gallo et al. | Nov 2002 | B1 |
6492290 | Dyer et al. | Dec 2002 | B1 |
6532769 | Meinhardt et al. | Mar 2003 | B1 |
6537514 | Prasad et al. | Mar 2003 | B1 |
6562104 | Bool, III et al. | May 2003 | B2 |
6592731 | Lawless | Jul 2003 | B1 |
6638575 | Chen et al. | Oct 2003 | B1 |
6641626 | Van Calcar et al. | Nov 2003 | B2 |
6652626 | Plee | Nov 2003 | B1 |
6681589 | Brudnicki | Jan 2004 | B2 |
6695983 | Prasad et al. | Feb 2004 | B2 |
6783750 | Shah et al. | Aug 2004 | B2 |
6786952 | Risdal et al. | Sep 2004 | B1 |
6811904 | Gorte et al. | Nov 2004 | B2 |
6846511 | Visco et al. | Jan 2005 | B2 |
6916570 | Vaughey et al. | Jul 2005 | B2 |
7077133 | Yagi et al. | Jul 2006 | B2 |
7125528 | Besecker et al. | Oct 2006 | B2 |
7153559 | Ito et al. | Dec 2006 | B2 |
7179323 | Stein et al. | Feb 2007 | B2 |
7229537 | Chen et al. | Jun 2007 | B2 |
7261751 | Dutta et al. | Aug 2007 | B2 |
7320778 | Whittenberger | Jan 2008 | B2 |
7351488 | Visco et al. | Apr 2008 | B2 |
7374601 | Bonchonsky et al. | May 2008 | B2 |
7396442 | Bagby et al. | Jul 2008 | B2 |
7427368 | Drnevich | Sep 2008 | B2 |
7470811 | Thiebaut | Dec 2008 | B2 |
7510594 | Wynn et al. | Mar 2009 | B2 |
7534519 | Cable et al. | May 2009 | B2 |
7556676 | Nagabhushana et al. | Jul 2009 | B2 |
7588626 | Gopalan et al. | Sep 2009 | B2 |
7658788 | Holmes et al. | Feb 2010 | B2 |
7786180 | Fitzpatrick | Aug 2010 | B2 |
7833314 | Lane et al. | Nov 2010 | B2 |
7846236 | Del-Gallo et al. | Dec 2010 | B2 |
7856829 | Shah et al. | Dec 2010 | B2 |
7871579 | Tentarelli | Jan 2011 | B2 |
7901837 | Jacobson et al. | Mar 2011 | B2 |
7906079 | Whittenberger et al. | Mar 2011 | B2 |
7968208 | Hodgson | Jun 2011 | B2 |
8070922 | Nelson et al. | Dec 2011 | B2 |
8128988 | Yasumoto et al. | Mar 2012 | B2 |
8196387 | Shah et al. | Jun 2012 | B2 |
8201852 | Linhorst et al. | Jun 2012 | B2 |
8262755 | Repasky et al. | Sep 2012 | B2 |
8323378 | Swami et al. | Dec 2012 | B2 |
8323463 | Christie et al. | Dec 2012 | B2 |
8349214 | Kelly et al. | Jan 2013 | B1 |
8419827 | Kelly et al. | Apr 2013 | B2 |
8435332 | Christie et al. | May 2013 | B2 |
8455382 | Carolan et al. | Jun 2013 | B2 |
6191573 | Garing et al. | Nov 2013 | B1 |
8658328 | Suda et al. | Feb 2014 | B2 |
8795417 | Christie et al. | Aug 2014 | B2 |
8894944 | Larsen et al. | Nov 2014 | B2 |
20020073938 | Bool et al. | Jun 2002 | A1 |
20020078906 | Prasad et al. | Jun 2002 | A1 |
20020155061 | Prasad et al. | Oct 2002 | A1 |
20030039601 | Halvorson et al. | Feb 2003 | A1 |
20030039608 | Shah et al. | Feb 2003 | A1 |
20030054154 | Chen et al. | Mar 2003 | A1 |
20030068260 | Wellington | Apr 2003 | A1 |
20030230196 | Kim | Dec 2003 | A1 |
20040042944 | Sehlin et al. | Mar 2004 | A1 |
20040043272 | Gorte | Mar 2004 | A1 |
20040065541 | Sehlin | Apr 2004 | A1 |
20040089973 | Hoang | May 2004 | A1 |
20040221722 | Prasad et al. | Nov 2004 | A1 |
20050037299 | Gottzmann | Feb 2005 | A1 |
20050058871 | Li et al. | Mar 2005 | A1 |
20050061663 | Chen et al. | Mar 2005 | A1 |
20050137810 | Esposito, Jr. | Jun 2005 | A1 |
20050214612 | Visco et al. | Sep 2005 | A1 |
20050248098 | Sisk et al. | Nov 2005 | A1 |
20050263405 | Jacobson et al. | Dec 2005 | A1 |
20060029539 | Dutta et al. | Feb 2006 | A1 |
20060054301 | McRay et al. | Mar 2006 | A1 |
20060062707 | Crome et al. | Mar 2006 | A1 |
20060127656 | Gopalan et al. | Jun 2006 | A1 |
20060127749 | Christie et al. | Jun 2006 | A1 |
20060191408 | Gopalan et al. | Aug 2006 | A1 |
20060236719 | Lane et al. | Oct 2006 | A1 |
20070004809 | Lattner et al. | Jan 2007 | A1 |
20070039466 | Nawata et al. | Feb 2007 | A1 |
20070041894 | Drnevich | Feb 2007 | A1 |
20070065687 | Kelly et al. | Mar 2007 | A1 |
20070082254 | Hiwatashi | Apr 2007 | A1 |
20070104793 | Akash | May 2007 | A1 |
20070137478 | Stein et al. | Jun 2007 | A1 |
20070158329 | Cao | Jul 2007 | A1 |
20070163889 | Kato et al. | Jul 2007 | A1 |
20070212271 | Kennedy | Sep 2007 | A1 |
20070289215 | Hemmings et al. | Dec 2007 | A1 |
20070292342 | Hemmings et al. | Dec 2007 | A1 |
20070292742 | Hemmings et al. | Dec 2007 | A1 |
20080000350 | Mundschau et al. | Jan 2008 | A1 |
20080000353 | Rarig et al. | Jan 2008 | A1 |
20080006532 | Mukundan et al. | Jan 2008 | A1 |
20080023338 | Stoots et al. | Jan 2008 | A1 |
20080029388 | Elangovan et al. | Feb 2008 | A1 |
20080047431 | Nagabhushana | Feb 2008 | A1 |
20080141672 | Shah et al. | Jun 2008 | A1 |
20080168901 | Carolan et al. | Jul 2008 | A1 |
20080169449 | Mundschau | Jul 2008 | A1 |
20080226544 | Nakamura | Sep 2008 | A1 |
20080302013 | Repasky et al. | Dec 2008 | A1 |
20090023050 | Finnerty et al. | Jan 2009 | A1 |
20090029040 | Christie et al. | Jan 2009 | A1 |
20090031895 | Del-Gallo et al. | Feb 2009 | A1 |
20090084035 | Wei | Apr 2009 | A1 |
20090107046 | Leininger | Apr 2009 | A1 |
20090120379 | Bozzuto et al. | May 2009 | A1 |
20090220837 | Osada | Sep 2009 | A1 |
20100015014 | Gopalan et al. | Jan 2010 | A1 |
20100074828 | Singh | Mar 2010 | A1 |
20100076280 | Bernstein et al. | Mar 2010 | A1 |
20100116133 | Reed et al. | May 2010 | A1 |
20100116680 | Reed et al. | May 2010 | A1 |
20100122552 | Schwartz | May 2010 | A1 |
20100143824 | Tucker et al. | Jun 2010 | A1 |
20100178219 | Verykios et al. | Jul 2010 | A1 |
20100193104 | Ryu et al. | Aug 2010 | A1 |
20100200418 | Licht | Aug 2010 | A1 |
20100266466 | Froehlich et al. | Oct 2010 | A1 |
20100276119 | Doty | Nov 2010 | A1 |
20100313762 | Roeck et al. | Dec 2010 | A1 |
20110067405 | Armstrong et al. | Mar 2011 | A1 |
20110076213 | Carolan et al. | Mar 2011 | A1 |
20110111320 | Suda et al. | May 2011 | A1 |
20110120127 | Lippmann et al. | May 2011 | A1 |
20110132367 | Patel | Jun 2011 | A1 |
20110142722 | Hemmings et al. | Jun 2011 | A1 |
20110143255 | Jain et al. | Jun 2011 | A1 |
20110180399 | Christie et al. | Jul 2011 | A1 |
20110200520 | Ramkumar | Aug 2011 | A1 |
20110141672 | Repasky | Oct 2011 | A1 |
20110240924 | Repasky | Oct 2011 | A1 |
20110253551 | Lane et al. | Oct 2011 | A1 |
20120000360 | Richet et al. | Jan 2012 | A1 |
20120067060 | Greeff | Mar 2012 | A1 |
20130009100 | Kelly et al. | Jan 2013 | A1 |
20130009102 | Kelly | Jan 2013 | A1 |
20130015405 | Quintero | Jan 2013 | A1 |
20130072374 | Lane et al. | Mar 2013 | A1 |
20130072375 | Lane et al. | Mar 2013 | A1 |
20130156958 | Belov et al. | Jun 2013 | A1 |
20140044604 | Lane et al. | Feb 2014 | A1 |
20140056774 | Kelly et al. | Feb 2014 | A1 |
20140060643 | Martin et al. | Mar 2014 | A1 |
20140183866 | Kromer et al. | Jul 2014 | A1 |
20140206779 | Lackner | Jul 2014 | A1 |
20140319424 | Chakravarti et al. | Oct 2014 | A1 |
20140319427 | Chakravarti et al. | Oct 2014 | A1 |
20140323597 | Stuckert et al. | Oct 2014 | A1 |
20140323598 | Chakravarti et al. | Oct 2014 | A1 |
20140323599 | Chakravarti et al. | Oct 2014 | A1 |
20150098872 | Kelly et al. | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
10330859 | Feb 2004 | DE |
102004038435 | Feb 2006 | DE |
0 926 096 | Jun 1999 | EP |
0 984 500 | Mar 2000 | EP |
0 989 093 | Mar 2000 | EP |
1 504 811 | Feb 2005 | EP |
1717420 | Nov 2006 | EP |
1743694 | Jan 2007 | EP |
2873451 | May 2015 | EP |
688657 | Mar 1953 | GB |
689522 | Apr 1953 | GB |
697377 | Sep 1953 | GB |
713553 | Nov 1954 | GB |
1199483 | Jul 1970 | GB |
1348375 | Mar 1974 | GB |
56-136605 | Oct 1981 | JP |
WO 9842636 | Oct 1998 | WO |
WO 0017418 | Mar 2000 | WO |
WO 0109059 | Feb 2001 | WO |
WO 2007060141 | May 2007 | WO |
WO 2007086949 | Aug 2007 | WO |
WO 2008024405 | Feb 2008 | WO |
WO 2010052641 | May 2010 | WO |
WO 2011083333 | Jul 2011 | WO |
WO 2011121095 | Oct 2011 | WO |
WO 2012118730 | Sep 2012 | WO |
WO 2013009560 | Jan 2013 | WO |
WO 2013062413 | May 2013 | WO |
WO 2013089895 | Jun 2013 | WO |
WO 2014074559 | May 2014 | WO |
WO 2014077531 | May 2014 | WO |
WO 2014107707 | Jul 2014 | WO |
WO 2014176022 | Oct 2014 | WO |
Entry |
---|
Lee Rosen, Nick Degenstein; Minish Shah; Jamie Wilson; Sean Kelly; John Peck; and Max Christie; “Development of Oxygen Transport Membranes for Coal-Based Power Generation”; ScienceDirect (Available online at www.sciencedirect.com); Energy Procedia 4 (2011) pp. 750-755. |
Switzer et al., “Cost and Feasibility Study on the Praxair Advanced Boiler for the CO2 Capture Project's Refinery Scenario”, Carbon Dioxide Capture for Deep Geologic Formations, vol. 1, D.C.Thomas and S.M. Benson (Eds.), Copyright 2005 Published by Elsevier Ltd., Chapter 32, pp. 561-579. |
David Studer; Demonstration of a cylinder fill system based on solid electrolyte oxygen separator (SEOS) technology: Early field assessment at a USAF maintenance facility, (Air Products & Chemicals Inc.); AFRL-RH-BR-TR-2010-0046; Jun. 2010. |
Zhu et al.; Development of Interconnect Materials for Solid Oxide Fuel Cells; Materials Science and Engineering A348, Apr. 23, 2002, pp. 227-243. |
F. Bidrawn et al., “Efficient Reduction of CO2 in a Solid Oxide Electrolyzer” Electrochemical and Solid State Letters, vol. 11, No. 9, Jun. 20, 2008, pp. B167-B170, XP002644615, col. 1, 2. |
Ebbesen et al., “Electrolysis of carbon dioxide in Solid Oxide Electrolysis Cells”, Journal of Power Sources, Elsevier SA, CH, vol. 193, No. 1, Aug. 1, 2009, pp. 349-358, XP026150424, ISSN: 0378-7753, DOI: 10.1016/J. JPOWSOUR. 2009. 02. 093. |
The U.S. Department of Energy, “Evaluation of Fossil Fuel Power Plants with CO2 Recovery”, Final Report (Feb. 2002). |
The U.S. Department of Energy—Office of Fossil Energy and U.S. Department of Energy/NETL, “Evaluation of Innovative Fossil Fuel Power Plants with CO2 Removal”, Interim Report (Dec. 2000). |
Sylvain Deville; “Freeze-Casting of Porous Ceramics: A Review of Current Achievements and Issues”; Advanced Engineering Materials 2008, 10, No. 3, pp. 155-169. |
Neville Holt, “Gasification Process Selection—Trade-offs and Ironies”, Presented at the Gasification Technologies Conference 2004, Oct. 3-6, 2004 JW Marriott Hotel, Washington, DC, pp. 1-10. |
Dyer et al., “Ion Transport Membrane Technology for Oxygen Separation and Syngas Production”, Solid State Ionics 134 (2000) p. 21-33. |
Andrea Montebelli et al., “Methods for the catalytic activation of metallic structured substrates”, Catalysis Science & Technology, 2014, pp. 2846-2870. |
Joseph J. Beaman, D.Sc.; “Oxygen Storage on Zeolites”; Prepared by USAF School of Aerospace Medicine, Human Systems Divisions (AFSC), Brooks Air Force Base, TX 78235-5301; USAFSAM-TR-88-26; AD-A209 352; pp. 1-77; Jan. 1989. |
Radtke et al., “Renaissance of Gasification based on Cutting Edge Technologies”, VGB PowerTech (2005), XP-001235150, pp. 106-115. |
L. N. Protasova et al., “Review of Patent Publications from 1990 to 2010 on Catalytic Coatings on Different Substrates, Including Microstructured Channels: Preparation, Deposition Techniques, Applications”, Recent Patents on Chemical Engineering, 2012, pp. 28-44. |
Zhimin Zhong, “Stoichiometric lanthanum chromite based ceramic interconnects with low sintering temperature”, Solid State of Ionics, North Holland Pub. Company, Amsterdam, NL, vol. 177 No. 7-8, Mar. 15, 2006, pp. 757-764, XP027895768,ISSN: 0167-2738. |
Babcock & Wilcox, Steam 40, “Sulfur Dioxide Control” (1992), pp. 35-1-35-15. |
M.F. Lu et al., Thermomechanical transport and anodic properties of perovskite-type (LaSr) CrFeO, Journal of Power Sources, Elsevier SA, CH, vol. 206, Jan. 15, 2012, pp. 59-69, XP028403091. |
Okawa et al., Trial Design for a CO2 Recovery Power Plant by Burning Pulverized Coal in O2/CO2, Energy Convers. Mgmt., vol. 38, Supplement (1997) pp. S123-S127. |
Ciacchi et al., “Tubular zirconia-yttria electrolyte membrane technology for oxygen separation”, Solid State Ionics 152-153, 2002, pp. 763-768. |
Friedemann Marschner et al., “Gas Production”, Ullmann's Encyclopedia of Industrial Chemistry, Jun. 15, 2000, pp. 1-21, XP002253967. |
Number | Date | Country | |
---|---|---|---|
20140183866 A1 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
61746820 | Dec 2012 | US |