Various medical practices include inserting a catheter into and below the skin of the patient. If proper care is not taken microorganisms result at the operative site. For example, common bacteria associated with peritoneal catheters include staph aureus, pseudomonas aeruginosa and staph epidermidis. Airborne bacterial such as acinetobacter might also be at the site. It would be desirable if some form of infection control device could be provided in conjunction with the catheter to minimize dangers resulting from such microorganisms.
U.S. Pat. No. 5,632,852 discloses an ion generator as part of a connect/disconnect device for plastic tubes. As disclosed therein when plastic tubes are melted in a connect or disconnect procedure aerosol particles are formed. The aerosol particles are confined or contained by providing an ion generator which imparts an electrical charge to the particles. The charged particles are then collected by a collector plate within the device.
An object of this invention is to provide an infection control device which utilizes ozone converted from oxygen in air as the control mechanism.
A further object of this invention is to provide such an ozone infection control process and device which may include structure for holding the catheter itself as well as structure for generating the ozone and controlling its flow to bathe the catheter at the exit site with an ozone/oxygen mixture.
In accordance with this embodiment, an ozone infection control system includes a body portion having a passageway or channel for receiving a catheter. The body portion has a downwardly extending periphery skirt which includes a plurality of air inlet openings spaced around the skirt. A negative ion ozone generator is provided in the body and utilizes a plurality of spaced projections inwardly of the skirt in the path of motion of the air flowing through the inlet openings to generator ozone from the air. A ground disk is mounted within the body portion inwardly of the ozone generator. The path of air extends from the inlet openings to the ozone generator and then to the ground disk and then exits at the catheter passageway to bathe the catheter with antimicrobial ozone at the catheter exit site.
In a preferred practice of this invention the ozone generator is in the form of ring mounted below, but to the top of the body portion. The projections are pointed spikes located at the airflow inlets. The ground disk is preferably a plate mounted inwardly of and below the ozone generator ring. The catheter passageway is a channel centrally located in the body member above the ground disk.
The inventive system may also be practiced where catheters are not used, particularly in non-chronic applications.
The present invention is directed to preventing various microorganisms, as previously described, from causing, for example, pain and discomfort at the exit site of a catheter.
As shown in the various figures the body portion 12 contains a fan shaped catheter housing 14 extending outwardly from the central portion or area of body portion 12. Catheter housing 14 includes a passageway or channel 22 (
The housing 14 may also function as a power housing for the necessary electronics or batteries used for powering device 10, as later described.
As shown in
As illustrated in the various figures a series or plurality of air inlet openings or slots 32 is arranged preferably equally spaced around the peripheral skirt except in the area of boss 14 and its lateral wall 26.
As best shown in
As best illustrated in
As shown in
As illustrated in
A further advantage of webs or ribs 42 is that the webs form channels to also confine the flow of air along its desired path.
In a practice of the invention the ozone could be generated at projections or pointed spikes 36 by the application of 5,000-7,000 volts. If desired, a cover or seal could be provided at the bottom of skirt 20 such as an elastic band or suitable bandage to firmly mount device 10 against the skin and thereby assure confining the airflow in its desired path. In addition, a belt could be mounted around the device 10 to assure its proper placement on the patient. Where a battery is used as the power in housing 14, such battery could be operated at 6-7 volts. A transformer/voltage multiplier 44 (
Any suitable number of inlet openings and projections could be used in the practice of this invention. Preferably, there would be 10 slots 32 and 10 projections 36.
Any suitable materials could be used. For example, the body portion or housing 12 could be made of any suitable plastic. Preferably, the ground plane disk 38 is made of a conductive material, such as stainless steel, to function as a positive or ground in conjunction with the negative polarity of ozone generator 34. Where plastic materials are used for forming the various parts of device 10 such parts could be injection molded. For example, a one piece mold would provide uniform thickness throughout.
By having the ozone generator 34 and ground disk 38 as part of a single unit with webs 42, it is easy to clean device 10 or to dispose of the unit and replace it with a similar unit. The unit would snap into place because of the dimensions and geometry conforming to the corresponding portions of body portion 12.
In use, catheter portion 30 would be inserted into the exit site of the patient. Device 10 would be mounted to the catheter at the exit site with the lower edge of the peripheral skirt 20 located against the skin of the patient around the catheter exit site. Any added structure such as belts, straps, bandages could be used to assure that device 10 remains in place. The circuitry would be actuated so that generator 34 functions to convert air flowing into the device 10 into ozone or ionized air which then travels through the device 10 to bathe the catheter exit site and then exit from the device 10 through the channel or passageway 24.
While the above description relates to one practice of this invention, the invention has broader application. In that regard, the invention may be considered as relating to a process and a contiguous device for ameliorating a patient suffering from pathogens of the Bacterial, Virus and Fungi genus. The process utilizes the pathogens weak spot of an extremely thin membrane of lipids. In previous disclosures, pathogen necrosis has been shown to occur when temperatures of 250° C. are attained and held for 20 milliseconds destroying the cells' lipid membrane. The same effect can be achieved by Ozone (O3), in very small concentrations of gaseous ozone (<5%) in air destroying the pathogen's lipid wall without added heat.
The Ozone gas has virtually no shelf-life and must be used, as made. In this practice of the invention a device helps form a gaseous ozone shield over chronic skin afflictions including chronic skin punctures of indwelling catheters that are used for infusions, drains and other surgical protocols. Combining a process and device results in a combination of controlled ozone dosage and controlled distribution built into the device at manufacture.
The skin abrasions, cuts, burns and one time surgical procedures, oxygen in the air is a powerful healing agent. Healing, however, is reduced in effectiveness by having pathogens in the air deposit themselves in or near the lesion. This will not only slow healing, but will make healing difficult, particularly when pathogens that have become immune to antibiotics are present. By adding a small continuous well controlled dosage of ozone to the air over the wound site, a field/shield will be formed where pathogens will be reduced or eliminated, allowing the wounds to heal faster. This process is particularly helpful when the wound must heal around a movable foreign object as in indwelling dialysis and urinary catheter applications. Catheters are notorious for infections that develop at a rate of 10%/day and are becoming antibiotic tolerant. This condition can be stopped by the disclosed process and device.
In the above practices of the invention a device such as device 10 would be used but would not need to include any catheter. Instead the device 10 would be placed at the site where it is desired to produce the ozone for obtaining the above noted beneficial effects. The device would thereby create the controlled ozone/oxygen combination.
Number | Name | Date | Kind |
---|---|---|---|
4610670 | Spencer | Sep 1986 | A |
4619642 | Spencer | Oct 1986 | A |
4770735 | Shaposka | Sep 1988 | A |
4793880 | Shaposka | Dec 1988 | A |
4832773 | Shaposka | May 1989 | A |
4864101 | Shaposka | Sep 1989 | A |
4897138 | Shaposka | Jan 1990 | A |
4913756 | Shaposka | Apr 1990 | A |
4933036 | Shaposka | Jun 1990 | A |
5141592 | Shaposka | Aug 1992 | A |
5156701 | Spencer | Oct 1992 | A |
5158630 | Shaposka | Oct 1992 | A |
5209800 | Spencer | May 1993 | A |
5244522 | Spencer | Sep 1993 | A |
5248359 | Shaposka | Sep 1993 | A |
5256229 | Spencer | Oct 1993 | A |
5279685 | Ivansons | Jan 1994 | A |
5397425 | Ivansons | Mar 1995 | A |
5525186 | Ivansons | Jun 1996 | A |
5632852 | Ivansons | May 1997 | A |
5674333 | Spencer | Oct 1997 | A |
5855731 | Spencer | Jan 1999 | A |
5871612 | Spencer | Feb 1999 | A |
5911957 | Khatchatrian et al. | Jun 1999 | A |
6020574 | Ivansons | Feb 2000 | A |
6177652 | Ivansons | Jan 2001 | B1 |
6637489 | Spencer | Oct 2003 | B1 |
7398813 | lvansons | Jul 2008 | B2 |
20030065292 | Darouiche et al. | Apr 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20090016942 A1 | Jan 2009 | US |