In the following description, like reference characters designate like or corresponding parts throughout the several views. Also in the following description, it is to be understood that such terms as “forward,” “rearward,” “left,” “right,” “upwardly,” “downwardly,” and the like are words of convenience and are not to be construed as limiting terms.
The conversion includes sealing traditional machine 2. As discussed above, traditional machines are not concerned with preventing the escape of excess or potentially harmful off-gas into the washroom environment. They commonly contain drains, vents, overflow drains, chemical feed boxes, etc., that could allow undesirable amounts of off-gas exposure or the undesirable release of ozonated water.
Sealing will preferably include inserting a gas-trap 42 (discussed in more detail below) downstream of drain 12. Sealing may also include sealing an overflow drain 16 of machine 2. Overflow drains, e.g., drain 16, are commonly used in traditional machines, especially commercial grade machines, to allow excess pressure, fluid or soap to be released during the washing cycle if, for example, the drain becomes clogged. Applicants prefer to seal overflow drain 16 by plumbing it through line 17 into drain line 12a upstream of gas-trap 42.
Sealing may also include sealing chemical feed box 10, for example, by covering it with a sealable plate or cover, for example, that is configured to allow the addition of chemicals as needed and prevent off-gas escape. In preferred embodiments, chemical feed box 10 will be configured to serve as an ozone-kill injection system, such as those discussed below, and thus should be sealed in such a manner that allows for the injection of a reducing agent. In such embodiments, it may also be necessary to configure the feed box, which is normally configured to inject chemicals at the beginning or middle of a wash cycle, so that it injects chemicals at the desired time, for example, at the end of the wash cycle. Such a modification may be made by modifying the existing logic used by the machine or by adding new logic.
Sealing may also include sealing vacuum breaker body 18 positioned upstream of water intake 8. Vacuum breaker box 18 functions to prevent wash bath liquid from being pulled back into water supply 6. Breaker box 18 may be insufficient however to prevent off-gas escape. Sealing is preferably achieved by installing check valve 18a to prevent ozone off-gas from traveling to breaker body 18.
Sealing may also include sealing the vent 20 of machine 2. As mentioned above, vent 20 prevents pressure build-up in the washer and accommodate draining, and is normally open into the wash room environment. If the washer contained ozone off-gas, that gas would be released directly into the wash room environment. In one embodiment, applicants seal by plumbing vent 20 to off-gas control 50. In a preferred embodiment, applicant plumb vent 20 to tee 22 with line 22a. Upper line 22b off tee 22 connects to off-gas control system 50. Off-gas control system 50 preferably includes ozone destruct 52, e.g., the TERMINATOR series from Ozotech Inc., or D412 from Pacific Ozone, others may prefer to construct their own. Ozone destruct 52 preferably includes a catalyst (not shown), which converts ozone back to oxygen.
In many embodiments, it may also be preferable to include an exhaust fan 54 as part of the off-gas system, for pulling off-gas to the off-gas control system. Additionally, it may be desirable to have line 22c off tee 22 connect to drain line 12a in between drain 12 and gas-trap 42 to control off-gas coming from drained liquid.
The present invention also includes connecting an ozone source 44 for adding ozonated water to machine 2. The ozone source may be an indirect ozone source or a direct ozone source. As used herein, a direct ozone source is a source that has been ozonated by bubbling ozone into the water supply, for example, either inside or outside of the washer. An indirect ozone source is a source that has been ozonated by dissolving ozone, e.g., with a venturi, into the water supply. Preferably, ozone source 44 is an ozone generator, such as the ECG Series, provided by Pacific Ozone, which has been configured to use venturi 44a to dissolve ozone into water coming from water source 6 as it is being fed into machine 2 through line 9. Flow-specific venturis may be preferred to optimize the injection and dissolution of ozone. For example, venturi 44a may be configured to dissolve ozone into a high flow rate and venturi 44b may be configured to dissolve ozone into a low flow rate. In such embodiments, it may also be desirable to use an oxygen concentrator 45 (e.g., AERO 590 by Glenn Medical, or the ONYX by Airsep) in communication with ozone generator 44. Applicants believe that such a configuration may allow for more efficient ozone generation. Methods of the present invention may be achieved by feeding ozonated water into water intake 8 of machine 2, e.g., a cold or hot water intake. Others may feed ozonated water into a drain or a new opening designed for feeding ozonated water, etc.
Applicants prefer to connect at least one solenoid valve, e.g. 46a or 46b, in between water source 6 and machine 2 for regulating the flow of ozonated water into machine 2. In preferred embodiments, methods of the present invention include connecting a first solenoid valve 46a for regulating or allowing a high flow rate of water, and connecting a second solenoid valve 46b for regulating or allowing a low flow rate of water. Because ozone from ozone generator 44 is injected into water traveling in line 9, solenoid valves also regulate the flow of ozonated water. For example, high flow valve 46a may be used to regulate a high flow having liquid flow rate of about 5 to about 70 gal/min and including an ozone level of about 2 to about 20 ppm, and low flow valve 46b may be used to regulate a low flow ozone source having a liquid flow rate of about 2 to about 20 gal/min and an ozone level of about 2 to about 20 ppm. Using such a configuration, high flow valve 46a can be used to add ozonated water during a fill cycle until a desired water level is reached, and low flow valve 46b can be used to add ozonated water to machine 2 to maintain or to optimize ozone levels during operation. Flow rates are preferably adjusted based on the size or capacity of the washing machine, and may be based on the table below. Ozone concentration may vary depending on the soil level or wash cycle selected. For example, the table below provides an example of preferred flow rates and ozone concentrations depending on washing machine capacity and soil level.
Applicants have provided the above table to teach preferred embodiments, and it should not be used to limit the scope of the invention.
Applicants prefer to feed ozone from ozone generator 44 into the water supply downstream of solenoid valves at points 44a and 44b. Others however may prefer to feed upstream of solenoid valves, and such embodiments would also be considered within the scope of the present invention. It may also be desirable in some embodiments, to using a single venturi in inject ozone after line 9 has merged downstream of the pair of solenoid valves. Further, applicants prefer to feed ozone at a constant rate to the water supply which allow ozone concentration to be regulated by adjusting water flow. Ozone may also be fed to the water supply at a variable rate, which could be adjusted by, for example, a programmable logic controller (PLC).
In other embodiments, e.g., pay-per-use embodiments or multiple washer embodiments, it may be desirable to maintain reservoirs of ozonated water for filling. In these types of embodiments, or other embodiments, others may prefer a direct ozone source or a single gas-trap for multiple machines, or a single off-gas control for multiple machines, or any combination thereof. For example, reservoirs may include a first reservoir having a first ozone concentration and a second reservoir having a second ozone concentration. All such embodiments are considered to be within the scope of the present invention.
The method of the current embodiment also includes regulating the addition of ozone to machine 2. In most embodiments, regulating is achieved primarily through the control of ozone generator 44, or water source 6, or solenoids, e.g., 46a or 46b, or any such combination. For example, regulating may include the installing external logic devices to control ozone generators, water sources or solenoids. External logic sources are also considered to be inclusive of timing devices. Alternatively or additionally, regulating may include interfacing existing controls or logic of machine 2 with any parts of the ozone system. For example, logic for regulating the addition of hot and cold water to the traditional machine may be used to control the addition of ozonated water through the high flow or low flow solenoids.
Other embodiments of the present invention include open-loop ozone systems that are manufactured as open-loop ozone machines rather than converted from traditional machines.
Those of ordinary skill in the art will recognize that the opposite side or front of the washer includes a door, similar to the door shown in
System 100 also includes ozone source 122. In the embodiment depicted, ozone source is considered to be an ozone generator 122 similar, for example, to those described above. It may also be inclusive of an oxygen concentrator, similar to those mentioned above. In this embodiment, it is preferable to have ozone generator 122 attached to, or integral with, washer 102. Ozone generator 122 ozonates water traveling through water feed line 124, which is in fluid communication with water intake 112b. Water feed line 124 can be opened and closed, e.g. through solenoid valve 123 to allow or prevent water flow. Applicants prefer to locate additional solenoid valves, e.g. 126a or 126b, along line 124 to provide variable levels of ozonation. In preferred embodiments, line 124 is split into lines 124a and 124b. Line 124a includes a first solenoid valve 126a to allow and regulate a high water flow rate (e.g., 5 to 70 gal/min). Line 124b includes a second solenoid valve 126b to allow and regulate a low water flow rate (e.g., about 2 to 20 gal/min). With a 60 pound machine for example, the high flow rate may be about 5 to about 15 or 20 gal/min and the low flow rate may be about 2 to about 4 gal/min. Line 124a and line 124b also each include a venturi 130a and 130b in ozone communication with ozone generator 122. Ozone generator 122 injects ozone indirectly into water traveling through lines 124a or 124b through venturi 130a or 130b. Venturi 130a may be configured for its respective high flow rate, and venturi 130b may be configured for its respective low flow rate.
For example, during a fill cycle, solenoid valve 126a is opened to allow a high flow of water to travel to tub fill 116. As water travels through line 124a, venturi 130a injects and dissolves ozone into the passing water stream. This ozonated water fills the wash quickly with water having a first level of ozonation, for example, of about 2 ppm (may vary according to table above). After the fill cycle, ozone levels can be increased and maintained by opening solenoid valve 126b, which allows water to flow at a much slower rate. As water travels through line 124b, venturi 130b injects and dissolves ozone into the water stream where it is dissolved in larger concentrations due to the slow water flow, (see for example, ozone concentrations in the above table). This ozonated water can be used to bring the wash bath to, or maintain it at, desired or high ozone concentrations. Rather than use two venturis as shown, some may prefer to use a single venturi injecting along line 124c, and such embodiments are considered to be within the scope of the present invention.
While applicants prefer injecting ozone into either water line at a constant rate, others may prefer to adjust the rate of ozone being injected, for example, with a Programmable Logic Controller (PLC). Others may prefer other embodiments. For example, some may prefer to use a single water line and adjust the flow rate of water flowing within that single line to achieve similar results. In other embodiments, it may be desirable, rather than using an ozone generator, to add ozonated water that has previously been ozonated, for example, water that has been ozonated in an external ozonation tank. For example, ozone source 122 may be considered a reservoir having ozonated water. Such embodiments may be ideal, for example, in large washing facilities using multiple machines. In other embodiments, it may be desirable to have a first reservoir having a first ozone concentration optimized for one type of laundry and a second reservoir having a second ozone concentration optimized for a second type of laundry. All such embodiments are considered to be within the scope of the present invention.
In preferred embodiments, gas-trap 132 is located in between drain 104, which is in fluid communication with the wash tub, and sewer 106. The gas-trap is described in more detail in
System 100 includes an off-gas control system 140 operably attached to washer 102, which is configured to allow washer 102 to safely wash with a liquid wash bath having about 2 ppm to about 10 ppm, or about 2 ppm to about 15 ppm of ozone, or more. Off-gas control system includes ozone destruct 146, which preferably includes a catalyst for converting ozone to oxygen. Ozone destruct 146 connects vent 142 through upper branch 144a of tee 144. Off-gas from the drained liquid may also be sent to ozone destruct 146 through lower line 144b of tee 144, which connects upstream of gas-trap 132 or to gas-trap 132. Ozone off-gas may be allowed to reach ozone destruct 146 passively, however, applicants prefer to include exhaust fan 150 in fluid communication with ozone destruct 146 and vent 142 to assist in actively pulling ozone off-gas to ozone destruct 146.
System 100 also includes an ozone-kill injection system 152. Ozone-kill injection system includes a reservoir 154 for holding a reducing agent, and an injector 156 for injecting the reducing agent. Preferably, the injection system is configured to inject the reducing agent into the wash bath at a desired time, which is preferably prior to opening the washer door. Using such a system, the high levels of ozone in the wash bath can quickly be diminished and thus reduce off-gas exposure. As shown, injector 156 injects the reducing agent into injection orifice 160, which is in fluid communication with the wash bath. In many embodiments, it may also be desirable to aerosolize or inject by misting to reduce ozone off-gas within the washer. Others may prefer to inject in other ways, for example by injecting into tub fill 116. Combining various methods of injecting is also considered to be within the scope of the present invention.
The preferred reducing agent is hydrogen peroxide, which may be injected in amounts ranging from less than a milliliter to several milliliters, depending on, for example, the concentration of ozone and the volume of the water bath. Applicants prefer this method because it provides quick and reliable reduction of off-gas. Others, however, may prefer to inject water or some other fluid in an attempt to dilute rather than reduce the ozone. If such a technique is used, ozone levels will preferably be reduced to below about 1 ppm. Such embodiments are also considered to be inclusive of the present invention.
Using the present invention, the liquid wash bath located within the washer can safely have and utilize ozone concentrations greater than about 2 ppm ozone when washing. In preferred embodiments, the liquid wash bath has an ozone concentration of about 2 ppm to about 15 ppm or higher, but in many embodiments, applicant believes an ozone concentration of about 3 ppm to about 5 ppm will be suitable. Using such concentrations of ozone, detergents, alkali, bleaches, etc., will not be necessary. For example, for most standard uses, the liquid wash bath will consist essentially of water and ozone and laundry during washing, prior to the addition of any reducing agent. In certain applications, however, e.g., very heavily soiled clothes, it may be desirable to include detergent, etc., or to use hot water from a hot water feed. Such embodiments are also considered to be within the scope of the present invention.
The system of the present invention may also include an ozone sensor 160 for measuring ozone concentration. As shown, sensor 160 is located on feed line 124 in between ozone generator and tub feed 116. Others may prefer either single or multiple sensors at a variety of locations. For example, sensors may also be located in a single or plurality of baths, drains, etc., or any combination thereof. All such embodiments are considered to be within the scope of the present invention.
Those of ordinary skill in the art will recognize that the components shown on the rear of machine 102 may be either internal or external or have portions that are both.
Once the desired water level is reached within the wash tub, a wash cycle is started 212 and a low flow fill 214, preferably at a second higher ozone concentration begins. Low flow 214 can be used to bring the ozone concentration up to the desired level or maintain ozone concentrations at the desired levels during wash cycle 212. After the wash cycle, the wash tub is drained and the wash cycle counter is incremented 216. A wash cycle determination is made 220. After the first wash cycle, the high flow fill 206 is initiated and the cycle progresses as described above. After the second wash cycle, the ozone-kill injection system is activated 222. The ozone-kill injection system may also be activated by the opening of the washer door. Logic may additionally include a rinse cycle, e.g., of cold water.
Numerous characteristics and advantages have been set forth in the foregoing description, together with details of structure and function. The novel features are pointed out in the appended claims. The disclosure, however, is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts, within the principle of the invention, to the full extent indicated by the broad general meaning of the terms in which the general claims are expressed.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Moreover, all ranges disclosed herein are to be understood to encompass any and all subranges subsumed therein, and every number between the end points. For example, a stated range of “1 to 10” should be considered to include any and all subranges between (and inclusive of) the minimum value of 1 and the maximum value of 10; that is, all subranges beginning with a minimum value of 1 or more, e.g. 1 to 6.1, and ending with a maximum value of 10 or less, e.g., 5.5 to 10, as well as all ranges beginning and ending within the end points, e.g. 2 to 9, 3 to 8, 3 to 9, 4 to 7, and finally to each number 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 contained within the range. Additionally, any reference referred to as being “incorporated herein” is to be understood as being incorporated in its entirety.
It is further noted that, as used in this specification, the singular forms “a,” “an,” and “the” include plural referents unless expressly and unequivocally limited to one referent.
This application claims the benefit of the filing date of U.S. Provisional Application Ser. No. 60/853,535 filed Oct. 23, 2006.
Number | Date | Country | |
---|---|---|---|
60853535 | Oct 2006 | US |