Pacemaker retrieval systems and methods

Information

  • Patent Grant
  • 11786272
  • Patent Number
    11,786,272
  • Date Filed
    Thursday, June 10, 2021
    2 years ago
  • Date Issued
    Tuesday, October 17, 2023
    6 months ago
Abstract
A catheter system for retrieving a leadless cardiac pacemaker from a patient is provided. The cardiac pacemaker can include a docking or retrieval feature configured to be grasped by the catheter system. In some embodiments, the retrieval catheter can include a snare configured to engage the retrieval feature of the pacemaker. The retrieval catheter can include a torque shaft selectively connectable to a docking cap and be configured to apply rotational torque to a pacemaker to be retrieved. Methods of delivering the leadless cardiac pacemaker with the delivery system are also provided.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


FIELD

The present disclosure relates to leadless cardiac pacemakers, and more particularly, to features and methods by which they are removed from the heart. More specifically, the present disclosure relates to features and methods for retrieving a leadless cardiac pacemaker from tissue.


BACKGROUND

Cardiac pacing by an artificial pacemaker provides an electrical stimulation of the heart when its own natural pacemaker and/or conduction system fails to provide synchronized atrial and ventricular contractions at rates and intervals sufficient for a patient's health. Such antibradycardial pacing provides relief from symptoms and even life support for hundreds of thousands of patients. Cardiac pacing may also provide electrical overdrive stimulation to suppress or convert tachyarrhythmias, again supplying relief from symptoms and preventing or terminating arrhythmias that could lead to sudden cardiac death.


Cardiac pacing by currently available or conventional pacemakers is usually performed by a pulse generator implanted subcutaneously or sub-muscularly in or near a patient's pectoral region. Pulse generator parameters are usually interrogated and modified by a programming device outside the body, via a loosely-coupled transformer with one inductance within the body and another outside, or via electromagnetic radiation with one antenna within the body and another outside. The generator usually connects to the proximal end of one or more implanted leads, the distal end of which contains one or more electrodes for positioning adjacent to the inside or outside wall of a cardiac chamber. The leads have an insulated electrical conductor or conductors for connecting the pulse generator to electrodes in the heart. Such electrode leads typically have lengths of 50 to 70 centimeters.


Although more than one hundred thousand conventional cardiac pacing systems are implanted annually, various well-known difficulties exist, of which a few will be cited. For example, a pulse generator, when located subcutaneously, presents a bulge in the skin that patients can find unsightly, unpleasant, or irritating, and which patients can subconsciously or obsessively manipulate or “twiddle”. Even without persistent manipulation, subcutaneous pulse generators can exhibit erosion, extrusion, infection, and disconnection, insulation damage, or conductor breakage at the wire leads. Although sub-muscular or abdominal placement can address some concerns, such placement involves a more difficult surgical procedure for implantation and adjustment, which can prolong patient recovery.


A conventional pulse generator, whether pectoral or abdominal, has an interface for connection to and disconnection from the electrode leads that carry signals to and from the heart. Usually at least one male connector molding has at least one terminal pin at the proximal end of the electrode lead. The male connector mates with a corresponding female connector molding and terminal block within the connector molding at the pulse generator. Usually a setscrew is threaded in at least one terminal block per electrode lead to secure the connection electrically and mechanically. One or more O-rings usually are also supplied to help maintain electrical isolation between the connector moldings. A setscrew cap or slotted cover is typically included to provide electrical insulation of the setscrew. This briefly described complex connection between connectors and leads provides multiple opportunities for malfunction.


Other problematic aspects of conventional pacemakers relate to the separately implanted pulse generator and the pacing leads. By way of another example, the pacing leads, in particular, can become a site of infection and morbidity. Many of the issues associated with conventional pacemakers are resolved by the development of a self-contained and self-sustainable pacemaker, or so-called leadless pacemaker, as described in the related applications cited above.


Self-contained or leadless pacemakers or other biostimulators are typically fixed to an intracardial implant site by an actively engaging mechanism such as a screw or helical member that screws into the myocardium.


SUMMARY OF THE DISCLOSURE

A catheter for retrieving a medical device from a patient is provided comprising, a handle, a catheter shaft coupled to the handle, a snare disposed within the catheter shaft and extendable distally beyond the catheter shaft, a docking cap disposed on a distal portion of the catheter shaft, the docking cap being rotatable independent of the catheter shaft, and a torque shaft disposed within the catheter shaft and selectively connectable to the docking cap, the torque shaft configured to rotate within the catheter shaft to apply rotational torque to the docking cap when connected to the docking cap.


In some embodiments, the catheter further comprises an interference feature disposed on an interior surface of the docking cap, the interference feature configured to engage a corresponding interference feature on the medical device to be retrieved. In some embodiments, the interference feature comprises a ridge.


In some embodiments, the catheter further comprises slot disposed inside the docking cap, the slot configured to engage a key on the torque shaft. In one embodiment, the torque shaft is configured to apply rotational torque to the docking cap when the docking cap slot is engaged with the key on the torque shaft.


In another embodiment, a proximal portion of the torque shaft is coupled to a control knob on the handle. In some embodiments, longitudinal movement of the torque knob along the handle causes the torque shaft to engage or disengage the slot in the docking cap. In another embodiment, rotation of the control knob causes the torque shaft and docking cap to rotate when the key on the torque shaft is engaged with the docking cap slot. In yet another embodiment, longitudinal movement of the control knob along the handle moves the torque shaft and snare longitudinally.


In some embodiments of the catheter, the snare comprises a plurality of loops. In other embodiments, the snare comprises a single loop. In one embodiment, the single loop comprises a loop perpendicular to the catheter shaft. In other embodiments, the snare is offset from a longitudinal axis of the catheter when the snare is advanced distally beyond the catheter shaft.


A leadless pacemaker and retrieval system is provided, comprising a leadless cardiac pacemaker having a retrieval feature coupled to the pacemaker with at least one flexible stem, and a delivery catheter comprising a handle, a catheter shaft coupled to the handle, a snare disposed within the catheter shaft and extendable distally beyond the catheter shaft, a docking cap disposed on a distal portion of the catheter shaft, the docking cap being rotatable independent of the catheter shaft and being sized and configured to receive the retrieval feature of the leadless cardiac pacemaker, and a torque shaft disposed within the catheter shaft and selectively connectable to the docking cap, the torque shaft configured to rotate within the catheter shaft to apply rotational torque to the docking cap when connected to the docking cap, and to apply rotational torque to the leadless cardiac pacemaker when the pacemaker is disposed in the docking cap.


In some embodiments, the catheter further comprises an interference feature disposed on an interior surface of the docking cap, the interference feature configured to engage a corresponding interference feature on the pacemaker. In some embodiments, the interference feature comprises a ridge.


In some embodiments, the catheter further comprises slot disposed inside the docking cap, the slot configured to engage a key on the torque shaft. In one embodiment, the torque shaft is configured to apply rotational torque to the docking cap when the docking cap slot is engaged with the key on the torque shaft.


In another embodiment, a proximal portion of the torque shaft is coupled to a control knob on the handle. In some embodiments, longitudinal movement of the torque knob along the handle causes the torque shaft to engage or disengage the slot in the docking cap. In another embodiment, rotation of the control knob causes the torque shaft and docking cap to rotate when the key on the torque shaft is engaged with the docking cap slot. In yet another embodiment, longitudinal movement of the control knob along the handle moves the torque shaft and snare longitudinally.


In some embodiments of the catheter, the snare comprises a plurality of loops. In other embodiments, the snare comprises a single loop. In one embodiment, the single loop comprises a loop perpendicular to the catheter shaft. In other embodiments, the snare is offset from a longitudinal axis of the catheter when the snare is advanced distally beyond the catheter shaft.


A method of retrieving a medical device from a patient is also provided, comprising positioning a snare of a catheter in proximity to a retrieval feature of the medical device, grasping the retrieval feature of the medical device with the snare, pulling the snare proximally into the catheter to position the retrieval feature of the medical device inside a docking cap of the catheter, and applying rotational torque from the docking cap to the medical device to unscrew the medical device from tissue in the patient.


In some embodiments, the medical device comprises a leadless cardiac pacemaker.


In one embodiment, the applying rotational torque step further comprises rotating a torque shaft coupled to the docking cap. In another embodiment, the applying rotational torque step further comprises engaging a key feature on the torque shaft with a matching slot in the docking cap.


In some embodiments, the method further comprises covering the medical device with a protective sheath and removing the device from the patient.


In some embodiments, the grasping step further comprises grasping the retrieval feature with a loop of the snare. In other embodiments, the grasping step further comprises advancing a snare sleeve distally over the snare to collapse the snare.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates one embodiment of a pacemaker retrieval catheter system.



FIGS. 2A-2C show various close-up views of a distal portion of a retrieval catheter system.



FIGS. 3A-3B illustrate a protective sheath of a retrieval catheter system.



FIG. 4 shows a proximal portion of a retrieval catheter system including a handle.



FIGS. 5A-5B illustrate operation of the handle of a retrieval catheter system.



FIGS. 6A-6C show various embodiments of a retrieval catheter system including pre-bent curves in the catheter shaft.



FIGS. 7A-7E illustrate several embodiments of a docking cap of a retrieval catheter system.



FIGS. 8A-8C show a pacemaker being retrieved by a retrieval catheter system when the catheter is not aligned with the pacemaker.



FIGS. 9A-9B are various views of one embodiment of a pacemaker having a retrieval feature.



FIGS. 10A-10B are various views of another embodiment of a pacemaker having a retrieval feature.





DETAILED DESCRIPTION

Various embodiments for delivering system comprising one or more leadless cardiac pacemakers or biostimulators are described. A leadless cardiac pacemaker can communicate by conducted communication, representing a substantial departure from conventional pacing systems. For example, an illustrative cardiac pacing system can perform cardiac pacing that has many of the advantages of conventional cardiac pacemakers while extending performance, functionality, and operating characteristics with one or more of several improvements.


In some embodiments of a cardiac pacing system, cardiac pacing is provided without a pulse generator located in the pectoral region or abdomen, without an electrode-lead separate from the pulse generator, without a communication coil or antenna, and without an additional requirement on battery power for transmitted communication.


An embodiment of a cardiac pacing system configured to attain these characteristics comprises a leadless cardiac pacemaker that is substantially enclosed in a hermetic housing suitable for placement on or attachment to the inside or outside of a cardiac chamber. The pacemaker can have two or more electrodes located within, on, or near the housing, for delivering pacing pulses to muscle of the cardiac chamber and optionally for sensing electrical activity from the muscle, and for bidirectional communication with at least one other device within or outside the body. The housing can contain a primary battery to provide power for pacing, sensing, and communication, for example bidirectional communication. The housing can optionally contain circuits for sensing cardiac activity from the electrodes. The housing contains circuits for receiving information from at least one other device via the electrodes and contains circuits for generating pacing pulses for delivery via the electrodes. The housing can optionally contain circuits for transmitting information to at least one other device via the electrodes and can optionally contain circuits for monitoring device health. The housing contains circuits for controlling these operations in a predetermined manner.


In some embodiments, a cardiac pacemaker can be adapted for delivery and implantation into tissue in the human body. In a particular embodiment, a leadless cardiac pacemaker can be adapted for implantation adjacent to heart tissue on the inside or outside wall of a cardiac chamber, using two or more electrodes located on or within the housing of the pacemaker, for pacing the cardiac chamber upon receiving a triggering signal from at least one other device within the body.


Self-contained or leadless pacemakers or other biostimulators are typically fixed to an intracardial implant site by an actively engaging mechanism or primary fixation mechanism such as a screw or helical member that screws into the myocardium. Examples of such leadless biostimulators are described in the following publications, the disclosures of which are incorporated by reference: (1) U.S. application Ser. No. 11/549,599, filed on Oct. 13, 2006, entitled “Leadless Cardiac Pacemaker System for Usage in Combination with an Implantable Cardioverter-Defibrillator”, and published as US2007/0088394A1 on Apr. 19, 2007; (2) U.S. application Ser. No. 11/549,581 filed on Oct. 13, 2006, entitled “Leadless Cardiac Pacemaker”, and published as US2007/0088396A1 on Apr. 19, 2007; (3) U.S. application Ser. No. 11/549,591, filed on Oct. 13, 2006, entitled “Leadless Cardiac Pacemaker System with Conductive Communication” and published as US2007/0088397A1 on Apr. 19, 2007; (4) U.S. application Ser. No. 11/549,596 filed on Oct. 13, 2006, entitled “Leadless Cardiac Pacemaker Triggered by Conductive Communication” and published as US2007/0088398A1 on Apr. 19, 2007; (5) U.S. application Ser. No. 11/549,603 filed on Oct. 13, 2006, entitled “Rate Responsive Leadless Cardiac Pacemaker” and published as US2007/0088400A1 on Apr. 19, 2007; (6) U.S. application Ser. No. 11/549,605 filed on Oct. 13, 2006, entitled “Programmer for Biostimulator System” and published as US2007/0088405A1 on Apr. 19, 2007; (7) U.S. application Ser. No. 11/549,574, filed on Oct. 13, 2006, entitled “Delivery System for Implantable Biostimulator” and published as US2007/0088418A1 on Apr. 19, 2007; and (8) International Application No. PCT/US2006/040564, filed on Oct. 13, 2006, entitled “Leadless Cardiac Pacemaker and System” and published as WO07047681A2 on Apr. 26, 2007.


In addition to the primary fixation mechanism, such as a helix, some pacemakers may further include a secondary fixation mechanism to provide another feature for keeping the biostimulator in place within the body. Secondary fixation mechanisms can be either active (e.g., the secondary fixation mechanism can actively engage tissue, either within or outside the heart), or can be passive (e.g., the secondary fixation mechanism is not attached to tissue but rather prevents the biostimulator from moving around in the body in the case of accidental detachment). Further details on secondary fixation mechanisms can be found in U.S. application Ser. No. 12/698,969.


Self-contained or leadless pacemakers or other biostimulators are typically fixed to an intracardial implant site by an actively engaging mechanism such as a screw or helical member that screws into the myocardium. In case of malfunction, it is highly desirable to be able to retrieve the leadless pacemaker of biostimulators both acutely (during the implantation procedure) or chronically, after a period of time post implantation minimally invasively.



FIG. 1 illustrates a pacemaker retrieval catheter 100 configured for retrieval of a leadless pacemaker 102 from a patient. More specifically, the catheter 100 is configured to remove a leadless cardiac pacemaker from the heart of a patient. The retrieval catheter 100 can include docking cap 104, catheter shaft 106, protective sheath 107, handle 108, snare slider 110, guide catheter shaft 111, deflection arm 112, and flush ports 114a, 114b, and 114c.


The leadless cardiac pacemaker 102 can be, for example, similar to the pacemakers described above in the referenced applications. The catheter shaft can be made from braided shaft (e.g. pebax with stainless steel braid) and can include segments with different stiffness's throughout the shaft. The deflection knob 112 can be used to steer and guide the catheter during removal of the pacemaker. Snare slider 110 can be configured to control operation of the snare for capturing a leadless cardiac pacemaker, and will be described in more detail below. The flush ports 114a, 114b, and 114c can be used to flush saline or other fluids through the catheter, guide catheter and pacemaker capture sheath.


Sheath 107 can be advanced longitudinally over catheter shaft 106 and guide catheter shaft 111 to cover the pacemaker during retrieval and prevent the pacemaker from catching onto or damaging tissue. In some embodiments, the sleeve can include a radio-opaque coating, such as barium sulfate, or alternatively, can include a platinum or metal feature at the distal end of the sleeve, so that under visualization a user can determine when the sleeve is fully covering the pacemaker prior to removal.



FIG. 2A illustrates a close-up view of one embodiment of a distal portion of the pacemaker retrieval catheter 100 shown in FIG. 1. The distal portion of the retrieval catheter can include snare 203 configured to grasp a leadless cardiac pacemaker or other medical device, and docking cap 204 configured to allow docking of the leadless pacemaker with the retrieval catheter after engaging the pacemaker with the snare. FIG. 2A also illustrates catheter shaft 206 terminating at the docking cap 204, and protective sheath 207 positioned along the shaft slightly proximal to the docking cap and leadless pacemaker.


As shown in FIG. 2A, the snare 203 can comprise at least one loop 216 extending from the catheter shaft. As the snare is advanced distally out of the retrieval system from docking cap 204, the loops can expand in size to aid a user in positioning the snare around or in proximity to the pacemaker to be retrieved. In some embodiments, as in FIG. 2A, the snare can include multiple loops, such as three loops. However, any number of loops can be used as long as the catheter shaft contains sufficient volume to accommodate the loops.


In another embodiment, as shown in FIG. 2B, the snare can include only a single loop. Also shown in FIG. 2B, the loops can include any number of features 218 to aid in grasping a pacemaker or medical device for retrieval. In FIG. 2B, the feature 218 can comprise, for example, a notch feature. In some embodiments, the loops of the snare can be positioned off axis from the center of the catheter shaft to aid in keeping the pacemaker in line with the catheter during removal. For example, in FIG. 2B, the single loop snare 203 can include a notch feature 218 and be positioned off axis from the longitudinal axis of the catheter shaft 206. Since the snare is off axis from the catheter, the snare can be looped around retrieval feature 220 of the pacemaker by positioning the catheter adjacent to the pacemaker and allowing the loop to come into contact with the housing of the pacemaker. As the catheter is pulled away from the pacemaker, the snare can slide up the pacemaker, and notch feature 218 can be allowed to engage the retrieval feature of the pacemaker.



FIG. 2C illustrates the snare 203 grasping a retrieval feature 220 of the leadless cardiac pacemaker 202. In the illustrated embodiment, snare locking sleeve 205 can be advanced distally over the snare from docking cap 204 of the catheter. As the snare locking sleeve advances distally along the snare, it can cause the loops of the snare to reduce in size, thereby grasping or locking onto the retrieval feature 220 of the pacemaker. In some embodiments, the snare locking sleeve 205 can also comprise a torque shaft that runs through the length of the catheter. Details of the torque shaft will be described in more detail below, but generally the torque shaft can be rotated independently of the catheter shaft and coupled to the docking cap of the catheter to apply rotational torque to the docking cap, and thus, to a pacemaker or medical device to be retrieved. In embodiments where the snare includes a plurality of loops, it may be more likely that one of the loops will grasp the pacemaker than in embodiments where the snare comprises only a single loop.



FIG. 3A illustrates a close-up view of the distal portion of the retrieval catheter with the snare locked onto the retrieval feature (not shown) of the leadless pacemaker 302 and docked within docking cap 304. In some embodiments, as will be described in more detail below, the docking cap can include a key or interference feature configured to mate with and engage a corresponding key or feature on the pacemaker itself. In some embodiments, the key or slot on the docking cap can match a unique shape or feature of the retrieval feature of the pacemaker itself. Because the key or slot on or in the docking cap can mate with and engage the key or slot on the pacemaker, the retrieval catheter can be configured to apply torque to the pacemaker to unscrew and remove the pacemaker from tissue. FIG. 3A also illustrates protective sheath positioned slightly proximally to the docking cap 304 along the catheter shaft of the retrieval system.


As shown in FIG. 3A, the docking cap 304 can include ball bearings 309 which allow the docking cap to be free-rotating from the rest of the catheter shaft. This effectively reduces the removal torque and additional forces from the catheter body. The docking cap can be selectively coupled to a torque shaft (not shown) that extends through the length of the catheter to a torque knob on the handle (described below). When the torque shaft is coupled to the docking cap, rotation or actuation of the torque knob rotates the torque shaft, thereby rotating the docking cap 304 at the end of the retrieval catheter. In some embodiments, the docking cap can include a keyed portion or interference feature so as to apply additional torque to the pacemaker when unscrewing.


In FIG. 3B, the protective sheath 307 is shown disposed over the leadless cardiac pacemaker and positioned at the distal end of guide catheter shaft 311. As described above, the protective sheath can be configured to slide over the pacemaker to prevent any sharp edges or features of the pacemaker from tearing, damaging, or catching onto tissue during removal of the pacemaker. The protective sheath can be slidable along a longitudinal axis of the catheter so as to allow for covering and uncovering of the pacemaker with the sheath. In some embodiments, the protective sheath can include other form factors than illustrated in FIG. 3B. For example, in some retrieval scenarios where vegetative growth over the device is significant, the protective sheath may be of a larger diameter to accommodate the increase in size of the device.


The above description of FIGS. 1-3B can be used to illustrate one embodiment of a method of retrieving a medical device or leadless cardiac pacemaker from a patient. First, a retrieval catheter can be advanced into a patient until the docking cap of the catheter is in the vicinity of the pacemaker. Next, the snare of the retrieval catheter can be advanced distally outward from the catheter to surround the retrieval feature of the pacemaker. Once the snare is surrounding the retrieval feature of the pacemaker, the snare locking sleeve/torque shaft can be advanced distally along the snare to close the snare, causing the snare to grasp the retrieval feature of the pacemaker. Next, the snare and snare locking sleeve can be pulled proximally towards the docking cap of the catheter so as to engage the proximal end or retrieval feature of the pacemaker. Rotational torque can then be applied by the catheter to the pacemaker via the torque shaft and docking cap to unscrew the pacemaker from the tissue. The protective sheath can be advanced over the pacemaker, and the pacemaker can then be removed from the patient.



FIG. 4 is a view of the proximal section of the retrieval catheter, showing pacemaker capture sheath 413, handle 408, snare slider 410, deflection arm 412, and flush ports 414a, 414b, and 414c. Deflection and steering of the distal portion of the catheter, including the portion of the catheter with the docking cap (shown above) can be achieved by manipulating the deflection arm 412 of handle 408. Opening and closing the loops of the snare (as illustrated in FIGS. 2A-2C) can be achieved by manipulating the snare slider 410 on the handle in the proximal and distal directions. Although the deflection arm and snare sliders are illustrated as mechanical features, it should be understood that various solutions can be used to steer the catheter and manipulate the snare. For example, the handle can include any number of mechanical features such as rotating knobs or sliding levers, or alternatively, can employ an electronic or hydraulic system with buttons and electric motors or hydraulic pistons. Once the pacemaker is snared and removed from within the heart of the patient (e.g., from within the right ventricle), the pacemaker can be pulled into the capture sheath 413. The capture sheath and pacemaker can then be withdrawn together from an introducer/trocar inserted in the patient (e.g., in the femoral vein). The capture sheath allows the pacemaker to cross a hemostatic seal provided by the introducer without damaging itself or the seal of the introducer.


A portion of the handle can comprise a torque knob 422 which controls rotation of the snare and/or docking cap of the retrieval catheter. The torque knob can be coupled to the docking cap via a torque shaft (not shown) that runs throughout the catheter shaft of the retrieval catheter. The torque knob can also be coupled to the snare, which runs also through the catheter shaft. Rotation of the torque knob clockwise or counter-clockwise can cause rotation of the torque shaft and thus, the docking cap. Longitudinal movement of the torque knob along the handle can slide the snare longitudinally within the catheter.



FIGS. 5A-5B illustrate how manipulation of the various features on the handle control the snare and snare locking sleeve on the distal portion of the catheter. In FIG. 5A, sliding snare slider 510 distally or forward can advance snare locking sleeve 505 over the snare, causing the snare to close around a retrieval feature of the pacemaker 502. As the locking sleeve advances over the snare, the diameter of the snare loop closes which locks the snare loop onto the retrieval feature of the pacemaker. Next, the torque knob 522 can be moved proximally, as shown in FIG. 5B, pulling the snare and snare locking sleeve proximally and causing the pacemaker 502 to come into contact with and dock within docking cap 504. In some embodiments, pulling the snare locking sleeve proximately can cause the snare to engage and become coupled with the docking cap. When the snare locking sleeve (also referred to as a torque shaft) is coupled to the docking cap, rotation of the torque sleeve causes the docking cap to rotate as well.



FIG. 6A illustrates one embodiment of a pacemaker retrieval catheter 600 having a pre-curved catheter shaft. The catheter may include a distal curve 624 to enhance steering and navigation of the retrieval catheter. In some embodiments, the distal curve can improve steering and navigation of the retrieval catheter by providing mechanical support that the tissue and vein structures may lack. In one embodiment of the retrieval system, the distal section of the guide catheter may be pre-curved to a 90 degree angle and 30 mm radius. The catheter may include a flush port on the proximal end to allow aspiration or irrigation of the guide catheter lumen. FIG. 6B is a close-up view of the distal section of the retrieval catheter with the snare retracted and showing the distal curve 624 of the catheter shaft. In some embodiments, the shaft can include a curve angle from 0-180 degrees and curve radius of 20-50 mm. FIG. 6B shows the retrieval catheter in the vicinity of the pacemaker 602, with the snare retracted into the catheter.



FIG. 6C is another close-up view of the distal section of a retrieval catheter with the snare retracted showing a distal curve 606 of approximately 180 degrees. In this embodiment, the 180 degree distal curve enables the retrieval catheter to be able to access pacemakers whose proximal caps are rotated 180 degrees from the point of entry of the catheter.



FIGS. 7A-7C show various views of one embodiment of a docking cap 704. The docking cap of FIGS. 7A-7C can be used in the systems described above. In FIG. 7A, a distal tip of the docking cap can include scallop features 726. As shown in FIG. 7A, the scallop features can comprise a series of curves or cutouts into the distal end of the docking cap. FIG. 7A illustrates four scallop features, however in other embodiments different numbers of scallop features can be used, such as one, two, three, or more than four scallop features. The scallop features are configured to prevent the docking cap from binding in a perpendicular configuration with a leadless pacemaker during retrieval, as will be described below. The scallop features can include not only curved cutouts, as shown, but can also be sloped or beveled inwards towards the interior of the docking cap. This feature can aid the docking cap in assuming an aligned, co-linear configuration with the medical device to be retrieved.



FIG. 7B is a cutaway view of the docking cap of FIG. 7A, and illustrates a keyed portion or interference feature 728 disposed on the inside of the docking cap 704. The keyed portion can be configured to align with or engage a matching keyed portion or feature on the medical device to be retrieved. For example, using the leadless cardiac pacemaker described above as an example, the retrieval feature of the pacemaker can include a corresponding keyed portion or feature designed to engage the keyed portion 728 of the docking cap. When the docking cap is rotated, the keyed portions can engage one another to provide additional torque to the pacemaker, such as when unscrewing the pacemaker from tissue.



FIG. 7C illustrates a perspective view of a docking cap including an interference feature 728 disposed inside the docking cap 704. FIG. 7C illustrates a retrieval feature 720 of a medical device, such as a leadless cardiac pacemaker, disposed within the docking cap and coming into contact with the interference feature 728 of the docking cap. As shown in FIG. 7C, the retrieval feature can be disposed within the docking cap at an angle, yet still engaging the interference feature of the pacemaker. As will be described in more detail below, when the retrieval feature 720 is attached to the pacemaker with a flexible stem or flexible attachment, it allows the retrieval feature to bend as it is pulled within the docking cap. This allows the docking cap to still apply rotational torque to the retrieval feature and the pacemaker via interference feature 728 even when the pacemaker is not aligned longitudinally with the retrieval catheter and docking cap.



FIG. 7D illustrates a top down view of the docking cap 704, looking into the docking portion from the distal end. As shown, the docking cap can include a recessed slot 730 sized and shaped to receive a key feature of the torque shaft (or snare locking sleeve) of the retrieval catheter. In FIG. 7C, the recessed slot 730 is illustrated as being square in shape. This recessed slot is therefore sized and configured to receive a key on the torque shaft having a square shape. It should be understood that any size or shape recessed slot can be used, and that a corresponding key feature on the torque shaft should be similarly sized and shaped to mate with the slot.


When the key feature of the torque shaft is aligned with the recessed slot 730 of the docking cap, the torque shaft is effectively coupled to the docking cap of the catheter. This coupling allows the torque shaft to apply rotational torque to the docking cap. If the torque shaft is advanced distally through the slot 730 so that the slot does not align with the key feature of the torque shaft, then the torque shaft is not coupled to the docking cap, and the two are free to rotate relative to another. Thus, when the torque shaft (also referred to herein as the snare slider) is advanced distally to close the snare, the torque shaft can become decoupled from the docking cap. When the torque shaft and snare are then pulled proximately into the docking cap, the key feature of the torque shaft can align with the slot 730 of the docking cap, allowing the torque shaft to apply torque to the docking cap to unscrew the pacemaker from tissue. The key feature of the torque shaft is also shown in FIG. 7E.



FIG. 7D also illustrates a lumen 731 disposed in the docking cap. The lumen can be, for example, a hollow portion of the torque shaft. The lumen of the torque shaft can house the snare, described above, allowing the snare to be advanced distally from the docking cap. Also as described above, when the snare is advanced distally from the docking cap, advancing the torque shaft distally over the snare can cause the loop(s) of the snare to close around a pacemaker to be retrieved.



FIG. 7E illustrates another cutaway view of the docking cap. In FIG. 7E, the torque shaft or snare locking sleeve 705 has been advanced slightly within the docking cap, illustrating key feature 733 of the torque shaft being decoupled from slot 730 of the docking cap. When the key torque shaft is decoupled from the docking cap, as described above, rotation of the torque shaft does not cause the docking cap to rotate. However, if the key feature 733 of FIG. 7E was pulled back proximally to engage slot 730 of the docking cap, then the torque shaft and docking cap would be coupled together, and rotation of the torque shaft would apply rotational torque to the docking cap.



FIGS. 8A-8B illustrate various embodiments of a docking cap 804 having scallop features 826 engaging a medical device or pacemaker 802. As described above in FIG. 7A, scallop features 826 on a distal portion of the docking cap can prevent the docking cap from binding perpendicularly with a medical device during retrieval. In FIG. 8A, the retrieval catheter and docking cap 804 are shown approaching the pacemaker 802 in a substantially perpendicular configuration. The catheter is shown without the snare (as described above) for simplicity. Referring to FIG. 8B, once the snare (not shown) has grasped the retrieval feature 820 of pacemaker 802, the catheter, and docking cap 804, can swing upwards, as indicated by arrows AA, due to the scallop features 826 of the docking cap. FIG. 8C illustrates the docking cap 804 and retrieval catheter in the co-linear configuration with retrieval feature 820 of pacemaker 802, as a result of scallop features 826.



FIGS. 9A-9B and 10A-10B show multiple views of various embodiments of retrieval features on a leadless cardiac pacemaker. The retrieval features illustrated in these figures can be grasped by the snare of the retrieval catheters described herein, and can also be configured to dock within the docking cap of the retrieval catheter.


In FIGS. 9A-9B, the retrieval feature comprises a “button” or circular grasping feature 932. The grasping feature 932 can be attached to the pacemaker 902 via at least one flexible stem 934. The flexible stem allows for easier capturing of the pacemaker into the docking cap by allowing the grasping feature and stem(s) to “bend” into the docking cap when the retrieval catheter is off-axis from the pacemaker during a retrieval attempt. The flexible stem(s) also allow the grasping feature 932 to orient itself within the snare and to compensate for the asymmetry of the snare to allow it to align the docking cap with the pacemaker. Additionally, the flexible stem deflection permits torque transmission from the catheter to the leadless pacemaker. The flexible stem can be made of materials such as nitinol, stainless steel or titanium cable, MP35N, or other similar materials. The flexible stem may be connected to the grasping feature and the proximal end of the leadless pacemaker by laser welding, soldering, or other manufacturing processes know in the art.


Also shown in FIG. 9A, a proximal portion of the pacemaker 902 can include a key feature 936. The key feature 936 can be sized and configured to mate with the interference feature within the docking cap, as described above. The key feature of the pacemaker and the interference feature of the docking cap and catheter can allow the torque shaft and docking cap of the catheter to apply rotational torque to the pacemaker, such as to unscrew the pacemaker from tissue during retrieval.



FIGS. 10A-10B illustrate another embodiment of a “hook shaped” retrieval feature 1032 on the pacemaker 1002. The hook shaped proximal cap can allow for easier grasping by the snare. The “hook shaped” retrieval feature can provide an easily accessible yet atraumatic surface for the snare to grasp. In some embodiments, a base portion 1034 of the hook shaped feature can comprise a flexible material, as described above with respect to the flexible stems of the “button” shaped retrieval feature in FIGS. 9A-9B. The hook shaped retrieval feature can also include cutouts 1038 that can serve a similar purpose to the key feature described above in FIGS. 9A-9B. The cutouts can engage, for example, similarly shaped features in the docking cap or retrieval catheter to allow the catheter to apply rotational torque to the pacemaker for unscrewing the pacemaker from tissue.


As described above, the docking cap itself can include cutouts or recessed slots configured to mate with or engage the retrieval feature of the pacemaker. For example, the circular retrieval feature of FIGS. 9A-9B can mate with a similarly shaped recessed slot within the docking cap. Similarly, the hook shaped retrieval feature of FIGS. 10A-10B can mate with a similarly shaped recessed slot within the docking cap.


As for additional details pertinent to the present invention, materials and manufacturing techniques may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts commonly or logically employed. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Likewise, reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “and,” “said,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the subject specification, but rather only by the plain meaning of the claim terms employed.

Claims
  • 1. A leadless pacemaker transport system, comprising: a catheter shaft extending along a longitudinal axis;a docking cap disposed on the catheter shaft and having an interior configured to receive a retrieval feature of a leadless pacemaker;a torque shaft disposed within the catheter shaft, wherein the torque shaft connects to the docking cap; anda handle having a first handle portion coupled to the catheter shaft and a second handle portion coupled to the torque shaft, wherein the first handle portion rotates relative to the second handle portion to apply rotational torque through the torque shaft to the docking cap.
  • 2. The leadless pacemaker transport system of claim 1, wherein the docking cap is rotatable relative to the catheter shaft.
  • 3. The leadless pacemaker transport system of claim 2 further comprising a bearing between the docking cap and the catheter shaft to allow the docking cap to rotate relative to the catheter shaft.
  • 4. The leadless pacemaker transport system of claim 1 further comprising a snare disposed within the catheter shaft and extendable distally beyond the catheter shaft, wherein the snare includes one or more loops.
  • 5. The leadless pacemaker transport system of claim 4, wherein the one or more loops includes a plurality of loops.
  • 6. The leadless pacemaker transport system of claim 4, wherein the handle includes a snare slider to extend the snare beyond the catheter shaft.
  • 7. The leadless pacemaker transport system of claim 1, wherein the handle includes a deflection knob to steer the catheter shaft.
  • 8. A leadless pacemaker system, comprising: a leadless pacemaker including a retrieval feature; anda leadless pacemaker transport system comprising: a catheter shaft extending along a longitudinal axis,a docking cap disposed on the catheter shaft and having an interior configured to receive the retrieval feature of the leadless pacemaker,a torque shaft disposed within the catheter shaft, wherein the torque shaft connects to the docking cap, anda handle having a first handle portion coupled to the catheter shaft and a second handle portion coupled to the torque shaft, wherein the first handle portion rotates relative to the second handle portion to apply rotational torque through the torque shaft to the docking cap.
  • 9. The leadless pacemaker system of claim 8, wherein the docking cap is rotatable relative to the catheter shaft.
  • 10. The leadless pacemaker system of claim 9 further comprising a bearing between the docking cap and the catheter shaft to allow the docking cap to rotate relative to the catheter shaft.
  • 11. The leadless pacemaker system of claim 8 further comprising a snare disposed within the catheter shaft and extendable distally beyond the catheter shaft, wherein the snare includes one or more loops.
  • 12. The leadless pacemaker system of claim 11, wherein the one or more loops includes a plurality of loops.
  • 13. The leadless pacemaker system of claim 11, wherein the handle includes a snare slider to extend the snare beyond the catheter shaft.
  • 14. The leadless pacemaker system of claim 8, wherein the handle includes a deflection knob to steer the catheter shaft.
  • 15. A method, comprising: positioning a retrieval feature of a leadless pacemaker inside an interior of a docking cap of a leadless pacemaker transport system, wherein the docking cap is disposed on a catheter shaft, and wherein a torque shaft is disposed within the catheter shaft and connects to the docking cap; androtating a first handle portion of a handle relative to a second handle portion of the handle to apply rotational torque through the torque shaft to the docking cap, wherein the first handle portion is coupled to the catheter shaft and the second handle portion is coupled to the torque shaft.
  • 16. The method of claim 15, wherein the docking cap is rotatable relative to the catheter shaft.
  • 17. The method of claim 16 further comprising a bearing between the docking cap and the catheter shaft to allow the docking cap to rotate relative to the catheter shaft.
  • 18. The method of claim 15 further comprising moving a snare slider of the handle to extend a snare distally beyond the catheter shaft, wherein the snare includes one or more loops.
  • 19. The method of claim 18, wherein the one or more loops includes a plurality of loops.
  • 20. The method of claim 15 further comprising moving a deflection knob of the handle to steer the catheter shaft.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a Continuation application of co-pending U.S. patent application Ser. No. 16/214,709, filed Dec. 10, 2018, which is a Continuation application of U.S. patent application Ser. No. 14/816,302, filed Aug. 3, 2015, now issued as U.S. Pat. No. 10,188,425, entitled “Pacemaker Retrieval Systems and Methods,” which is a Continuation application of U.S. patent application Ser. No. 13/324,802, filed Dec. 13, 2011, now issued as U.S. Pat. No. 9,126,032, entitled “Pacemaker Retrieval Systems and Methods,” which claims the benefit of U.S. Provisional Patent Application No. 61/422,622, filed Dec. 13, 2010, titled “Pacemaker Retrieval Systems and Methods”, each of which is incorporated herein by reference in its entirety.

US Referenced Citations (591)
Number Name Date Kind
1340250 Pruyn May 1920 A
2664324 Gunnar et al. Dec 1953 A
3199508 Roth Aug 1965 A
3212496 Preston Oct 1965 A
3218638 Honig Nov 1965 A
3241556 Zacouto Mar 1966 A
3478746 Greatbatch Nov 1969 A
3603881 Thornton Sep 1971 A
3727616 Lenzkes Apr 1973 A
3757778 Graham Sep 1973 A
3823708 Lawhorn Jul 1974 A
3828790 Curtiss et al. Aug 1974 A
3830228 Foner Aug 1974 A
3835864 Rasor et al. Sep 1974 A
3836798 Greatbatch Sep 1974 A
3870051 Brindley Mar 1975 A
3872251 Auerbach et al. Mar 1975 A
3905364 Cudahy et al. Sep 1975 A
3940692 Neilson Feb 1976 A
3943926 Arvizu Barragan Mar 1976 A
3946744 Auerbach Mar 1976 A
3952750 Mirowski et al. Apr 1976 A
4027663 Fischler et al. Jun 1977 A
4072154 Anderson et al. Feb 1978 A
4083366 Gombrich et al. Apr 1978 A
4102344 Conway et al. Jul 1978 A
4146029 Ellinwood, Jr. Mar 1979 A
4151513 Barthel et al. Apr 1979 A
4151540 Sander et al. Apr 1979 A
4152540 Brown et al. May 1979 A
4173221 McLaughlin et al. Nov 1979 A
4187854 Citron et al. Feb 1980 A
4210149 Heilman et al. Jul 1980 A
RE30366 Rasor et al. Aug 1980 E
4223678 Langer et al. Sep 1980 A
4250888 Grosskopf Feb 1981 A
4256115 Bilitch Mar 1981 A
4296756 Dunning et al. Oct 1981 A
4310000 Lindemans Jan 1982 A
4318412 Stanly et al. Mar 1982 A
4336810 Anderson et al. Jun 1982 A
4350169 Dutcher et al. Sep 1982 A
4374382 Markowitz Feb 1983 A
4406288 Horwinski et al. Sep 1983 A
4411271 Markowitz Oct 1983 A
4418695 Buffet Dec 1983 A
4424551 Stevenson et al. Jan 1984 A
4428378 Anderson et al. Jan 1984 A
4440173 Hudziak et al. Apr 1984 A
4442840 Wojciechowicz, Jr. Apr 1984 A
4453162 Money et al. Jun 1984 A
4458692 Simson Jul 1984 A
4481950 Duggan Nov 1984 A
4513743 Van et al. Apr 1985 A
4516579 Irnich May 1985 A
4522208 Buffet Jun 1985 A
4524774 Hildebrandt Jun 1985 A
4531527 Reinhold et al. Jul 1985 A
4543955 Schroeppel Oct 1985 A
4550370 Baker Oct 1985 A
4552127 Schiff Nov 1985 A
4552154 Hartlaub Nov 1985 A
4562846 Cox et al. Jan 1986 A
4582056 McCorkle, Jr. Apr 1986 A
4586508 Batina et al. May 1986 A
4606352 Geddes et al. Aug 1986 A
4607639 Tanagho et al. Aug 1986 A
4612934 Borkan Sep 1986 A
4625730 Fountain et al. Dec 1986 A
4665906 Jervis May 1987 A
4679144 Cox et al. Jul 1987 A
4681111 Silvian Jul 1987 A
4681117 Brodman et al. Jul 1987 A
4702253 Nappholz et al. Oct 1987 A
4719920 Alt et al. Jan 1988 A
4722342 Amundson Feb 1988 A
4750495 Moore et al. Jun 1988 A
4763340 Yoneda et al. Aug 1988 A
4763655 Wirtzfeld et al. Aug 1988 A
4787389 Tarjan Nov 1988 A
4791931 Slate Dec 1988 A
4793353 Borkan Dec 1988 A
4794532 Leckband et al. Dec 1988 A
4802481 Schroeppel Feb 1989 A
4809697 Causey et al. Mar 1989 A
4827940 Mayer et al. May 1989 A
4830006 Haluska et al. May 1989 A
4844076 Lesho et al. Jul 1989 A
4846195 Alt Jul 1989 A
4858610 Callaghan et al. Aug 1989 A
4860750 Frey et al. Aug 1989 A
4875483 Vollmann et al. Oct 1989 A
4880004 Baker et al. Nov 1989 A
4883064 Olson et al. Nov 1989 A
4886064 Strandberg Dec 1989 A
4896068 Nilsson Jan 1990 A
4903701 Moore et al. Feb 1990 A
4905708 Davies Mar 1990 A
4926863 Alt May 1990 A
4974589 Sholder Dec 1990 A
4987897 Funke Jan 1991 A
4995390 Cook et al. Feb 1991 A
5010887 Thornander Apr 1991 A
5012806 De Bellis May 1991 A
5014701 Pless et al. May 1991 A
5040533 Fearnot Aug 1991 A
5040534 Mann et al. Aug 1991 A
5040536 Riff Aug 1991 A
5042497 Shapland Aug 1991 A
5052399 Olive et al. Oct 1991 A
5058581 Silvian Oct 1991 A
5065759 Begemann et al. Nov 1991 A
5076270 Stutz, Jr. Dec 1991 A
5076272 Ferek-Petric Dec 1991 A
5085224 Galen et al. Feb 1992 A
5086772 Larnard et al. Feb 1992 A
5088488 Markowitz et al. Feb 1992 A
5095903 DeBellis Mar 1992 A
5098440 Hillstead Mar 1992 A
5109845 Yuuchi et al. May 1992 A
5111816 Pless et al. May 1992 A
5113859 Funke May 1992 A
5113869 Nappholz et al. May 1992 A
5133350 Duffin Jul 1992 A
5133733 Rasmussen et al. Jul 1992 A
5135004 Adams et al. Aug 1992 A
5170784 Ramon et al. Dec 1992 A
5170802 Mehra Dec 1992 A
5171233 Amplatz et al. Dec 1992 A
5179947 Meyerson et al. Jan 1993 A
5179962 Dutcher Jan 1993 A
5184616 Weiss Feb 1993 A
5193539 Schulman et al. Mar 1993 A
5193540 Schulman et al. Mar 1993 A
5193550 Duffin Mar 1993 A
5197978 Hess Mar 1993 A
5217010 Tsitlik et al. Jun 1993 A
5231989 Middleman Aug 1993 A
5247945 Heinze et al. Sep 1993 A
5259394 Bens Nov 1993 A
5267150 Wilkinson Nov 1993 A
5282841 Szyszkowski Feb 1994 A
5284136 Hauck et al. Feb 1994 A
5291902 Carman Mar 1994 A
5300093 Koestner et al. Apr 1994 A
5304206 Baker et al. Apr 1994 A
5304209 Adams et al. Apr 1994 A
5313953 Yomtov et al. May 1994 A
5318596 Barreras et al. Jun 1994 A
5331966 Bennett et al. Jul 1994 A
5333095 Stevenson et al. Jul 1994 A
5336244 Weijand Aug 1994 A
5342401 Spano et al. Aug 1994 A
5354317 Alt Oct 1994 A
5358514 Schulman et al. Oct 1994 A
5373852 Harrison et al. Dec 1994 A
5383912 Cox et al. Jan 1995 A
5383915 Adams Jan 1995 A
5404877 Nolan et al. Apr 1995 A
5405367 Schulman et al. Apr 1995 A
5406444 Selfried et al. Apr 1995 A
5411532 Mortazavi May 1995 A
5411535 Fujii et al. May 1995 A
5411537 Munshi et al. May 1995 A
5417222 Dempsey et al. May 1995 A
5419337 Dempsey et al. May 1995 A
5431171 Harrison et al. Jul 1995 A
5446447 Carney et al. Aug 1995 A
5456261 Luczyk Oct 1995 A
5466246 Silvian Nov 1995 A
5469857 Laurent et al. Nov 1995 A
5480415 Cox et al. Jan 1996 A
5481262 Urbas et al. Jan 1996 A
5522876 Rusink Jun 1996 A
5531779 Dahl et al. Jul 1996 A
5531781 Alferness et al. Jul 1996 A
5531783 Giele et al. Jul 1996 A
5539775 Tuttle et al. Jul 1996 A
5549654 Powell Aug 1996 A
5549659 Johansen et al. Aug 1996 A
5551427 Altman Sep 1996 A
5556421 Prutchi et al. Sep 1996 A
5562717 Tippey et al. Oct 1996 A
5571143 Hoegnelid et al. Nov 1996 A
5571148 Loeb et al. Nov 1996 A
5579775 Dempsey et al. Dec 1996 A
5586556 Spivey et al. Dec 1996 A
5591217 Barreras Jan 1997 A
5598848 Swanson et al. Feb 1997 A
5649952 Lam Jul 1997 A
5650759 Hittman et al. Jul 1997 A
5654984 Hershbarger et al. Aug 1997 A
5662689 Elsberry et al. Sep 1997 A
5669391 Williams Sep 1997 A
5674259 Gray Oct 1997 A
5676153 Smith et al. Oct 1997 A
5693076 Kaemmerer Dec 1997 A
5694940 Unger et al. Dec 1997 A
5694952 Lidman et al. Dec 1997 A
5697958 Paul et al. Dec 1997 A
5702427 Ecker et al. Dec 1997 A
5709704 Nott et al. Jan 1998 A
5725559 Alt et al. Mar 1998 A
5728154 Crossett et al. Mar 1998 A
5730143 Schwarzberg Mar 1998 A
5735880 Prutchi et al. Apr 1998 A
5738102 Lemelson Apr 1998 A
5740811 Hedberg et al. Apr 1998 A
5741314 Daly et al. Apr 1998 A
5766231 Erickson et al. Jun 1998 A
5792205 Alt et al. Aug 1998 A
5807399 Laske Sep 1998 A
5810735 Halperin et al. Sep 1998 A
5814076 Brownlee Sep 1998 A
5814087 Renirie Sep 1998 A
5814089 Stokes et al. Sep 1998 A
5817104 Bilitz et al. Oct 1998 A
5824016 Ekwall Oct 1998 A
5871451 Unger et al. Feb 1999 A
5876353 Riff Mar 1999 A
5876425 Gord et al. Mar 1999 A
5891178 Mann et al. Apr 1999 A
5899928 Sholder et al. May 1999 A
5935079 Swanson et al. Aug 1999 A
5954761 Machek et al. Sep 1999 A
5957861 Combs et al. Sep 1999 A
5984861 Crowley Nov 1999 A
5987352 Klein et al. Nov 1999 A
5995876 Kruse et al. Nov 1999 A
5999857 Weijand et al. Dec 1999 A
6002969 Machek et al. Dec 1999 A
6004269 Crowley et al. Dec 1999 A
6061596 Richmond et al. May 2000 A
6076016 Feierbach Jun 2000 A
6077274 Ouchi et al. Jun 2000 A
6080187 Alt et al. Jun 2000 A
6086577 Ken et al. Jul 2000 A
6093146 Filangeri Jul 2000 A
6096065 Crowley Aug 2000 A
6099534 Bates et al. Aug 2000 A
6102874 Stone et al. Aug 2000 A
6112116 Fischell et al. Aug 2000 A
6115628 Stadler et al. Sep 2000 A
6115630 Stadler et al. Sep 2000 A
6115636 Ryan Sep 2000 A
6119031 Crowley Sep 2000 A
6125290 Miesel Sep 2000 A
6125291 Miesel et al. Sep 2000 A
6128526 Stadler et al. Oct 2000 A
6129751 Lucchesi et al. Oct 2000 A
6132390 Cookston et al. Oct 2000 A
6132456 Sommer et al. Oct 2000 A
6134459 Roberts et al. Oct 2000 A
6134470 Hartlaub Oct 2000 A
6139510 Palermo Oct 2000 A
6141584 Rockwell et al. Oct 2000 A
6141588 Cox et al. Oct 2000 A
6141592 Pauly Oct 2000 A
6144866 Miesel et al. Nov 2000 A
6148230 Kenknight Nov 2000 A
6152882 Prutchi Nov 2000 A
6163723 Roberts et al. Dec 2000 A
6164284 Schulman et al. Dec 2000 A
6167310 Grevious Dec 2000 A
6178349 Kieval Jan 2001 B1
6178356 Chastain et al. Jan 2001 B1
6185443 Crowley Feb 2001 B1
6185452 Schulman et al. Feb 2001 B1
6185464 Bonner et al. Feb 2001 B1
6188932 Lindegren Feb 2001 B1
6190324 Kieval et al. Feb 2001 B1
6198952 Miesel Mar 2001 B1
6201993 Kruse et al. Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6208900 Ecker et al. Mar 2001 B1
6214025 Thistle et al. Apr 2001 B1
6223081 Kerver Apr 2001 B1
6230059 Duffin May 2001 B1
6236882 Lee et al. May 2001 B1
6240321 Janke et al. May 2001 B1
6243608 Pauly et al. Jun 2001 B1
6248080 Miesel et al. Jun 2001 B1
6263245 Snell Jul 2001 B1
6265100 Saaski et al. Jul 2001 B1
6266554 Hsu et al. Jul 2001 B1
6266564 Hill et al. Jul 2001 B1
6272379 Fischell et al. Aug 2001 B1
6280409 Stone et al. Aug 2001 B1
6280451 Bates et al. Aug 2001 B1
6289229 Crowley Sep 2001 B1
6290721 Heath Sep 2001 B1
6306088 Krausman et al. Oct 2001 B1
6310960 Saaski et al. Oct 2001 B1
6315721 Schulman et al. Nov 2001 B2
6324418 Crowley et al. Nov 2001 B1
6324421 Stadler et al. Nov 2001 B1
RE37463 Altman Dec 2001 E
6343227 Crowley Jan 2002 B1
6343233 Werner et al. Jan 2002 B1
6347245 Lee et al. Feb 2002 B1
6358202 Arent Mar 2002 B1
6361522 Scheiner et al. Mar 2002 B1
6363282 Nichols et al. Mar 2002 B1
6364831 Crowley Apr 2002 B1
6370434 Zhang et al. Apr 2002 B1
6381492 Rockwell et al. Apr 2002 B1
6381493 Stadler et al. Apr 2002 B1
6381494 Gilkerson et al. Apr 2002 B1
6383209 Crowley May 2002 B1
6385593 Linberg May 2002 B2
6386882 Linberg May 2002 B1
6397100 Stadler et al. May 2002 B2
6399886 Avellanet Jun 2002 B1
6402689 Scarantino et al. Jun 2002 B1
6405073 Crowley et al. Jun 2002 B1
6405083 Rockwell et al. Jun 2002 B1
6409674 Brockway et al. Jun 2002 B1
6409675 Turcott Jun 2002 B1
6412490 Lee Jul 2002 B1
6418346 Nelson et al. Jul 2002 B1
6423056 Ishikawa et al. Jul 2002 B1
6424866 Mika et al. Jul 2002 B2
6428484 Battmer et al. Aug 2002 B1
6434429 Kraus et al. Aug 2002 B1
6438410 Hsu et al. Aug 2002 B2
6438417 Rockwell et al. Aug 2002 B1
6442433 Linberg Aug 2002 B1
6444970 Barbato Sep 2002 B1
6445953 Bulkes et al. Sep 2002 B1
6458145 Ravenscroft et al. Oct 2002 B1
6459928 Mika et al. Oct 2002 B2
6459937 Morgan et al. Oct 2002 B1
6466820 Juran et al. Oct 2002 B1
6468263 Fischell et al. Oct 2002 B1
6470215 Kraus et al. Oct 2002 B1
6471645 Warkentin et al. Oct 2002 B1
6472991 Schulman et al. Oct 2002 B1
6477424 Thompson et al. Nov 2002 B1
6480733 Turcott Nov 2002 B1
6482154 Haubrich et al. Nov 2002 B1
6484055 Marcovecchio Nov 2002 B1
6484057 Ideker et al. Nov 2002 B2
6490487 Kraus et al. Dec 2002 B1
6496715 Lee et al. Dec 2002 B1
6498951 Larson et al. Dec 2002 B1
6500168 Jellie Dec 2002 B1
6501983 Natarajan et al. Dec 2002 B1
6512949 Combs et al. Jan 2003 B1
6512959 Gomperz et al. Jan 2003 B1
6522926 Kieval et al. Feb 2003 B1
6522928 Whitehurst et al. Feb 2003 B2
6539257 Kenknight Mar 2003 B1
6542781 Koblish et al. Apr 2003 B1
6556860 Groenewegen Apr 2003 B1
6558321 Burd et al. May 2003 B1
6564807 Schulman et al. May 2003 B1
6567680 Swetlik et al. May 2003 B2
6571120 Hutten May 2003 B2
6574509 Kraus et al. Jun 2003 B1
6574511 Lee Jun 2003 B2
6580946 Struble Jun 2003 B2
6580948 Haupert et al. Jun 2003 B2
6584351 Ekwall Jun 2003 B1
6584352 Combs et al. Jun 2003 B2
6589187 Dirnberger et al. Jul 2003 B1
6592518 Denker et al. Jul 2003 B2
6594523 Levine Jul 2003 B1
6597948 Rockwell et al. Jul 2003 B1
6597952 Mika et al. Jul 2003 B1
6609023 Fischell et al. Aug 2003 B1
6611710 Gomperz et al. Aug 2003 B2
6615075 Mlynash et al. Sep 2003 B2
6622043 Kraus et al. Sep 2003 B1
6647292 Bardy et al. Nov 2003 B1
6648823 Thompson Nov 2003 B2
6649078 Yu Nov 2003 B2
6654638 Sweeney Nov 2003 B1
6658285 Potse et al. Dec 2003 B2
6658297 Loeb Dec 2003 B2
6658301 Loeb et al. Dec 2003 B2
6659959 Brockway et al. Dec 2003 B2
6669631 Norris et al. Dec 2003 B2
6681135 Davis et al. Jan 2004 B1
6684100 Sweeney et al. Jan 2004 B1
6687540 Marcovecchio Feb 2004 B2
6687546 Lebel et al. Feb 2004 B2
6689117 Sweeney et al. Feb 2004 B2
6690959 Thompson Feb 2004 B2
6694191 Starkweather et al. Feb 2004 B2
6695885 Schulman et al. Feb 2004 B2
6697672 Andersson Feb 2004 B2
6697676 Dahl et al. Feb 2004 B2
6697677 Dahl et al. Feb 2004 B2
6699200 Cao et al. Mar 2004 B2
6702857 Brauker et al. Mar 2004 B2
6704602 Berg et al. Mar 2004 B2
6711440 Deal et al. Mar 2004 B2
6716238 Elliott Apr 2004 B2
6721597 Bardy et al. Apr 2004 B1
6728572 Hsu et al. Apr 2004 B2
6728574 Ujhelyi et al. Apr 2004 B2
6728576 Thompson et al. Apr 2004 B2
6731976 Penn et al. May 2004 B2
6731979 Macdonald May 2004 B2
6733485 Whitehurst et al. May 2004 B1
6735474 Loeb et al. May 2004 B1
6735475 Whitehurst et al. May 2004 B1
6738670 Almendinger et al. May 2004 B1
6741877 Shults et al. May 2004 B1
6741886 Yonce May 2004 B2
6746404 Schwartz Jun 2004 B2
6754538 Linberg Jun 2004 B2
6760620 Sippens Groenewegen Jul 2004 B2
6764446 Wolinsky et al. Jul 2004 B2
6768923 Ding et al. Jul 2004 B2
6783499 Schwartz Aug 2004 B2
6785576 Verness Aug 2004 B2
6786860 Maltan et al. Sep 2004 B2
6792314 Byers et al. Sep 2004 B2
6799069 Weiner et al. Sep 2004 B2
6804559 Kraus et al. Oct 2004 B1
6804561 Stover Oct 2004 B2
6809507 Morgan et al. Oct 2004 B2
6811533 Lebel et al. Nov 2004 B2
6813519 Lebel et al. Nov 2004 B2
6821154 Canfield et al. Nov 2004 B1
6823217 Rutten et al. Nov 2004 B2
6824512 Warkentin et al. Nov 2004 B2
6829508 Schulman et al. Dec 2004 B2
6839596 Nelson et al. Jan 2005 B2
6848052 Hamid et al. Jan 2005 B2
6850801 Kieval et al. Feb 2005 B2
6856835 Bardy et al. Feb 2005 B2
6862465 Shults et al. Mar 2005 B2
6862480 Cohen et al. Mar 2005 B2
6865420 Kroll Mar 2005 B1
6869404 Schulhauser et al. Mar 2005 B2
6871099 Whitehurst et al. Mar 2005 B1
6878112 Linberg et al. Apr 2005 B2
6879695 Maltan et al. Apr 2005 B2
6879855 Schulman et al. Apr 2005 B2
6882875 Crowley Apr 2005 B1
6889081 Hsu May 2005 B2
6893395 Kraus et al. May 2005 B1
6895279 Loeb et al. May 2005 B2
6895281 Amundson et al. May 2005 B1
6896651 Gross et al. May 2005 B2
6897788 Khair et al. May 2005 B2
6901294 Whitehurst et al. May 2005 B1
6901296 Whitehurst et al. May 2005 B1
6907285 Denker et al. Jun 2005 B2
6907293 Grill et al. Jun 2005 B2
6912420 Scheiner et al. Jun 2005 B2
6917833 Denker et al. Jul 2005 B2
6925328 Foster et al. Aug 2005 B2
6931327 Goode et al. Aug 2005 B2
6999821 Jenney et al. Feb 2006 B2
7001372 Richter Feb 2006 B2
7004176 Lau Feb 2006 B2
7023359 Goetz et al. Apr 2006 B2
7027876 Casavant et al. Apr 2006 B2
7146222 Boling Dec 2006 B2
7146225 Guenst et al. Dec 2006 B2
7164950 Kroll et al. Jan 2007 B2
7181505 Haller et al. Feb 2007 B2
7187971 Sommer et al. Mar 2007 B2
7200437 Nabutovsky et al. Apr 2007 B1
7212870 Helland May 2007 B1
7277754 McCabe et al. Oct 2007 B2
7289853 Campbell et al. Oct 2007 B1
7363090 Halperin et al. Apr 2008 B2
7558631 Cowan et al. Jul 2009 B2
7565195 Kroll et al. Jul 2009 B1
7616991 Mann et al. Nov 2009 B2
7630767 Poore et al. Dec 2009 B1
7634313 Kroll et al. Dec 2009 B1
7848823 Drasler et al. Dec 2010 B2
7937148 Jacobson May 2011 B2
7945333 Jacobson May 2011 B2
7998163 Salahieh et al. Aug 2011 B2
8010209 Jacobson Aug 2011 B2
8103361 Moser Jan 2012 B2
8986362 Snow et al. Mar 2015 B2
9126032 Khairkhahan et al. Sep 2015 B2
10188425 Khairkhahan et al. Jan 2019 B2
20010031999 Carter et al. Oct 2001 A1
20020032467 Shemer et al. Mar 2002 A1
20020065543 Gomperz May 2002 A1
20020077686 Westlund et al. Jun 2002 A1
20020116028 Greatbatch et al. Aug 2002 A1
20020147488 Doan et al. Oct 2002 A1
20030078618 Fey et al. Apr 2003 A1
20030105506 Krishnan et al. Jun 2003 A1
20030141995 Lin Jul 2003 A1
20030158584 Cates et al. Aug 2003 A1
20030163184 Scheiner et al. Aug 2003 A1
20030199941 Nielsen et al. Oct 2003 A1
20040011366 Schulman et al. Jan 2004 A1
20040059392 Parramon et al. Mar 2004 A1
20040116939 Goode Jun 2004 A1
20040133242 Chapman et al. Jul 2004 A1
20040138693 Eskuri et al. Jul 2004 A1
20040143262 Visram et al. Jul 2004 A1
20040147973 Hauser Jul 2004 A1
20040158124 Okada Aug 2004 A1
20040167587 Thompson Aug 2004 A1
20040172116 Seifert et al. Sep 2004 A1
20040193223 Kramer et al. Sep 2004 A1
20040220637 Zdeblick et al. Nov 2004 A1
20040249417 Ransbury et al. Dec 2004 A1
20040260349 Stroebel Dec 2004 A1
20050038474 Wool Feb 2005 A1
20050038491 Haack Feb 2005 A1
20050043765 Williams et al. Feb 2005 A1
20050075682 Schulman et al. Apr 2005 A1
20050096702 Denker et al. May 2005 A1
20050131478 Kim et al. Jun 2005 A1
20050149138 Min et al. Jul 2005 A1
20050165465 Pianca et al. Jul 2005 A1
20050267555 Marnfeldt et al. Dec 2005 A1
20050288722 Eigler et al. Dec 2005 A1
20060064149 Belacazar et al. Mar 2006 A1
20060085039 Hastings et al. Apr 2006 A1
20060085041 Hastings et al. Apr 2006 A1
20060085042 Hastings et al. Apr 2006 A1
20060105613 Carroll May 2006 A1
20060108335 Zhao et al. May 2006 A1
20060121475 Davids et al. Jun 2006 A1
20060135999 Bodner et al. Jun 2006 A1
20060136004 Cowan et al. Jun 2006 A1
20060161222 Haubrich et al. Jul 2006 A1
20060235431 Goode Oct 2006 A1
20060241705 Neumann et al. Oct 2006 A1
20060247750 Seifert et al. Nov 2006 A1
20060282150 Olson et al. Dec 2006 A1
20070016263 Armstrong et al. Jan 2007 A1
20070032816 O'Connell et al. Feb 2007 A1
20070043414 Fifer et al. Feb 2007 A1
20070055184 Echt et al. Mar 2007 A1
20070088394 Jacobson Apr 2007 A1
20070088396 Jacobson Apr 2007 A1
20070088397 Jacobson Apr 2007 A1
20070088398 Jacobson Apr 2007 A1
20070088400 Jacobson Apr 2007 A1
20070088405 Jacobson Apr 2007 A1
20070088418 Jacobson Apr 2007 A1
20070123923 Lindstrom et al. May 2007 A1
20070142709 Marton et al. Jun 2007 A1
20070156225 George et al. Jul 2007 A1
20070179552 Dennis et al. Aug 2007 A1
20070270675 Kane et al. Nov 2007 A1
20070276004 Hirsch et al. Nov 2007 A1
20070276444 Gelbart et al. Nov 2007 A1
20070293904 Gelbart et al. Dec 2007 A1
20080004535 Smits Jan 2008 A1
20080021532 Kveen et al. Jan 2008 A1
20080039738 Dinsmoor et al. Feb 2008 A1
20080071339 Stalker et al. Mar 2008 A1
20080086168 Cahill Apr 2008 A1
20080091255 Caparso et al. Apr 2008 A1
20080119911 Rosero May 2008 A1
20080221582 Gia et al. Sep 2008 A1
20080243106 Coe et al. Oct 2008 A1
20080243218 Bottomley et al. Oct 2008 A1
20080249558 Cahill Oct 2008 A1
20080269591 Halperin et al. Oct 2008 A1
20090018599 Hastings et al. Jan 2009 A1
20090082827 Kveen et al. Mar 2009 A1
20090082828 Ostroff Mar 2009 A1
20090149902 Kumar et al. Jun 2009 A1
20090163926 Sos Jun 2009 A1
20090171408 Solem Jul 2009 A1
20100069983 Peacock et al. Mar 2010 A1
20100198288 Ostroff Aug 2010 A1
20100211149 Morgan et al. Aug 2010 A1
20100249828 Mavani et al. Sep 2010 A1
20100292541 Hashiba et al. Nov 2010 A1
20100305653 Lund et al. Dec 2010 A1
20100305656 Imran et al. Dec 2010 A1
20100312332 Forster et al. Dec 2010 A1
20110004117 Neville et al. Jan 2011 A1
20110015729 Jimenez et al. Jan 2011 A1
20110071586 Jacobson Mar 2011 A1
20110077708 Ostroff Mar 2011 A1
20110112548 Fifer et al. May 2011 A1
20110208260 Jacobson Aug 2011 A1
20110218587 Jacobson Sep 2011 A1
20110270340 Pellegrini et al. Nov 2011 A1
20110282423 Jacobson Nov 2011 A1
20120245665 Friedman et al. Sep 2012 A1
20130041422 Jacobson Feb 2013 A1
Foreign Referenced Citations (19)
Number Date Country
1741465 Jan 2007 EP
04-506167 Oct 1992 JP
05-245215 Sep 1993 JP
06-507096 Aug 1994 JP
2006-516449 Jul 2006 JP
2006-526483 Nov 2006 JP
9312714 Jul 1993 WO
9916363 Apr 1999 WO
0059376 Oct 2000 WO
0234333 May 2002 WO
0332807 Apr 2003 WO
2004012811 Feb 2004 WO
2006065394 Jun 2006 WO
2007046768 Apr 2007 WO
2007047681 Apr 2007 WO
2007059386 May 2007 WO
2008058265 May 2008 WO
2010088116 Aug 2010 WO
2012082735 Jun 2012 WO
Non-Patent Literature Citations (41)
Entry
Amendment Filed Apr. 21, 2015; Related U.S. Appl. No. 13/324,802.
Beeby et al.; Micromachined silicon generator for harvesting power from vibrations; (Proceedings) PowerMEMS 2004; Kyoto, Japan; pp. 104-107; Nov. 28-30, 2004.
Bordacher et al.; Impact and prevention of far-field sensing in fallback mode switches; PACE; vol. 26 (pt. II); pp. 206-209; Jan. 2003.
Brandt et al.; Far-field QRS complex sensing: prevalence and timing with bipolar atrial leads; PACE; vol. 23; pp. 315-320; Mar. 2000.
Brown, Eric S.; The atomic battery; Technology Review: Published by MIT; 4 pgs.; Jun. 16, 2005.
Carroll et al.; U.S. Appl. No. 13/956,946 entitled “Biostimulator Circuit with Flying Cell,” filed Aug. 1, 2013.
Decision to grant a European patent of the European Patent Office dated Oct. 12, 2017 for related European Patent Application No. 16173491.8.
Decision to grant a European patent of the European Patent Office dated Oct. 13, 2016 for related European Patent Application No. 11848333.8.
European Office Action of the European Patent Office dated Oct. 21, 2015 for related European Patent Application No. 11848333.8.
European search report of the European Patent Office dated Jul. 26, 2016 for related European Patent Application No. 16173491.8.
Examiner Initiated Interview Summary dated Jul. 27, 2015; Related U.S. Appl. No. 13/324,802.
Intention to Grant of the European Patent Office dated Apr. 11, 2016 for related European Patent Application No. 11848333.8.
Intention to Grant of the European Patent Office dated Apr. 11, 2016 for related European Patent Application No. 16173491.8.
International Preliminary Report on Patentability of the International Searching Authority dated Jun. 27, 2013 for Yelated PCT Application No. PCT/US11/64671.
International Search Report and Written Opinion of the International Searching Authority dated Apr. 5, 2012 for related PCT Application No. PCT/US11/64671.
Imich et al.; Do we need pacemakers resistant to magnetic resonance imaging; Europace; vol. 7; pp. 353-365; Feb. 2005.
Imich; Electronic security systems and active implantable medical devices; Journal of PACE; vol. 25; No. 8; pp. 1235-1258; Aug. 2002.
Jacobson et al.; U.S. Appl. No. 13/277,151 entitled “Leadless cardiac pacemaker with conducted communication,” filed Oct. 19, 2011.
Jacobson, P.; U.S. Appl. No. 13/866,803 entitled “Leadless cardiac pacemaker system for usage in combination with an implantable cardioverter-defribrillator,” filed Apr. 19, 2013.
Jacobson, Peter M.; U.S. Appl. No. 13/708,732 entitled “Leadless Cardiac Pacemaker Triggered by Conductive Communication,” filed Dec. 7, 2012.
Khairkhahan et al.; U.S. Appl. No. 13/272,074 entitled “Delivery catheter systems and methods,” filed Oct. 12, 2011.
Khairkhahan et al.; U.S. Appl. No. 13/272,082 entitled “Leadless cardiac pacemaker with anti-unscrewing feature,” filed Oct. 12, 2011.
Khairkhahan et al.; U.S. Appl. No. 13/324,781 entitled “Delivery Catheter Systems and Methods,” filed Dec. 13, 2011.
Khairkhahan et al.; U.S. Appl. No. 13/331,922 entitled “Leadless Pacemaker with Radial Fixation Mechanism,” filed Dec. 20, 2011.
Luchinger; Safety aspects of cardiac pacemakers in magnetic resonance imaging; Dissertation submitted to the Swiss Federal Institute of Technology Zurich; 137 pages; 2002 (month unavailable).
Luechinger et al.; Force and torque effects of a 1.5-tesla MRI scanner of cardiac pacemakers and ICDs; Journal of PACE; vol. 24; No. 2; pp. 199-205; Feb. 2001.
Luechinger et al.; In vivo heating of pacemaker leads during magnetic resonance imaging; European Heart Journal vol. 26; pp. 376-383; Feb. 2005.
Non-Final Office Action dated Jan. 21, 2015; Related U.S. Appl. No. 13/324,802.
Notice of Allowance dated Jul. 27, 2015; related U.S. Appl. No. 13/324,802.
Nyenhuis et al.; MRI and Implanted Medical Devices: Basic Interactions with an emphasis on heating; vol. 5; No. 3 pp. 467-480; Sep. 2005.
Ostroff et al.; U.S. Appl. No. 13/910,896 entitled “Leadless Pacemaker with Multiple Electrodes,” filed Jun. 5, 2013.
Ostroff, Alan; U.S. Appl. No. 13/272,092 entitled “Temperature sensor for a leadless cardiac pacemaker,” filed Oct. 12, 2011.
Ostroff, Alan; U.S. Appl. No. 13/915,560 entitled “MRI Compatible Leadless Cardiac Pacemaker,” filed Jun. 11, 2013.
Ostroff, Alan; U.S. Appl. No. 13/967,180 entitled “Leadless Cardiac Pacemaker with Secondary Fixation Capability”, filed Aug. 14, 2013.
Pertijs et al.; U.S. Appl. No. 13/901,414 entitled “Temperature Sensor for a Leadless Cardiac Pacemaker,” filed May 23, 2013.
Response to Restriction Requirement Filed May 22, 2104; Related U.S. Appl. No. 13/324,802.
Restriction Requirement dated May 1, 2014; Related U.S. Appl. No. 13/324,802.
Shellock et al.; Cardiac pacemaker: In vitro assessment at 1.5 T; Am Heart J; vol. 151; No. 2; pp. 436-443; Feb. 2006.
Supplementary European search report of the European Patent Office dated Apr. 17, 2014 for related European Patent Application No. 11848333.8.
U.S. Appl. No. 10/891,747 entitled “System and method for synchronizing supplemental pacing pulses generated by a satellite pacing device with primary pulses delivered by a separate pacing device,” filed Jul. 14, 2004 (abandoned prior to pub.: CIP of this app. is U.S. Pat. No. 7,630,767).
Varady et al.; U.S. Appl. No. 13/669,242 entitled “Leadless Cardiac Pacemaker with Integral Battery and Redundant Welds,” filed Nov. 5, 2012.
Related Publications (1)
Number Date Country
20210298788 A1 Sep 2021 US
Provisional Applications (1)
Number Date Country
61422622 Dec 2010 US
Continuations (3)
Number Date Country
Parent 16214709 Dec 2018 US
Child 17344473 US
Parent 14816302 Aug 2015 US
Child 16214709 US
Parent 13324802 Dec 2011 US
Child 14816302 US