The present application is a U.S. national stage entry under 35 U.S.C. § 371 of Patent Cooperation Treaty Patent Application No. PCT/US2013/050076, filed Jul. 11, 2013, which claims priority to Indian National Patent Application No. 2161/DEL/2012, filed on Jul. 12, 2012, all of which are incorporated in their entireties by reference herein.
The present invention relates generally to low-cost packaging for fluidic products, such as oral care materials, and specifically to packages having a unitary body which includes a product containing portion, a nozzle portion, and a break-off cap.
Oral care materials, such as toothpaste, are generally packaged in tubes or sachets. The advantage of a tube is that it is reclosable, offers prolonged shelf-life, protects the integrity of the toothpaste itself (e.g., acts as a barrier to flavors, water and other actives in toothpaste), provides a good surface for graphics, and is easy to dispense through the nozzle. Over the years, progress has been made to increase the efficiency of the tube making process and down gauge the materials. All these efforts have decreased the cost of tubes. However, even with these decreased costs, the price point achievable using tubes to package toothpaste is still too costly for low income consumers in emerging markets.
To achieve a price point acceptable to such consumers, it is believed that the cost of the tube package has to decrease stepwise, not incrementally. It is further believed that the modification of current tube or reclosable sachets will not be sufficient because the largest cost component of the current tube or reclosable sachets (with fitments) is the high cost due to the complicated processes involved in making these packages.
For example, the tube making process begins with the formation of a first laminate into a tube body. Separately, a shoulder and cap assembly is formed. Lastly, the tube body and shoulder and cap assembly are coupled together. The tube is then filled and sealed. The process is essentially the same for forming reclosable sachets. First, the fitment is made. Then the sachet is formed. The fitment and sachet are then assembled, filled and sealed.
Existing tube and sachet formation technology is believed to be prohibitive of suitable cost reduction for toothpaste (and other fluidic products) in emerging markets. A need exists for a new package format for toothpaste. To dramatically decrease the cost, the new format or the new process needs to be simplified.
The present invention departs from accepted packaging technology for oral care materials, such as toothpaste, and utilizes a thermoforming process to create said packaging. In one embodiment, the package of the present invention utilizes thermoforming to form, fill and seal the package on one machine in no more than two steps, and possibly in a one-step process. The package of the present invention, in such an embodiment, is reclosable.
In one embodiment, the invention can be a package comprising: a first laminate sheet and a second laminate sheet coupled together to form a unitary body comprising a product containing portion having a product cavity containing an oral care fluidic product; each of the first and second laminate sheets comprising a layer of polyethylene (PE) and a layer of polyethylene terephthalate (PET), wherein the layer of PE has a first thickness and the layer of PET has a second thickness, the second thickness being less than or equal to the first thickness.
In another embodiment, the invention can be a package comprising: a unitary body comprising: a product containing portion having a product cavity containing a fluidic product; a nozzle portion for dispensing the fluidic product from the product cavity; a break-off cap sealing a dispensing orifice of the nozzle portion, the break-off cap comprising a nozzle cavity having an insertion opening for slidably receiving the nozzle portion; and a cover that seals the insertion opening of the nozzle cavity; a first pre-weakened area in the unitary body that defines a top edge of the nozzle portion and a bottom edge of the break-off cap, the dispensing orifice of the nozzle portion being exposed upon separating the break-off cap from the nozzle portion along the first pre-weakened area; and a second pre-weakened area in the unitary body that defines a bottom edge of the cover and a top edge of the break-off cap, the insertion opening of the break-off cap being exposed upon separating the cover from the nozzle portion along the second pre-weakened area.
In yet another embodiment, the invention can be a package comprising: a unitary body comprising a product containing portion having a product cavity containing a fluidic product, a nozzle portion for dispensing the fluidic product from the product cavity, and a break-off cap sealing a dispensing orifice of the nozzle portion, the break-off cap comprising a nozzle cavity having an insertion opening for slidably receiving the nozzle portion; a removable cover that seals the insertion opening of the nozzle cavity; and a first pre-weakened area in the unitary body that defines a top edge of the nozzle portion and a bottom edge of the break-off cap, the dispensing orifice of the nozzle portion being exposed upon separating the break-off cap from the nozzle portion along the first pre-weakened area.
In still another embodiment, the invention can be a package comprising: a unitary body comprising: a product containing portion having a product cavity containing a fluidic product; a nozzle portion for dispensing the fluidic product from the product cavity; a first break-off cap sealing a dispensing orifice of the nozzle portion; a second break-off cap comprising a nozzle cavity having an insertion opening for slidably receiving the nozzle portion; a first pre-weakened area in the unitary body that defines a top edge of the nozzle portion and a bottom edge of the first break-off cap, the dispensing orifice of the nozzle portion being exposed upon separating the first break-off cap from the nozzle portion along the first pre-weakened area; and a second pre-weakened area in the unitary body that defines a bottom edge of the product containing portion and a top edge of the second break-off cap, the insertion opening of the second break-off cap being exposed upon separating the second break-off cap from the product containing portion along the second pre-weakened area.
In another embodiment, the invention can be a package comprising: a first laminate sheet and a second laminate sheet coupled together to form a unitary body comprising: a product containing portion having a product cavity containing a fluidic product; a nozzle portion for dispensing the fluidic product from the product cavity; and a break-off cap sealing a dispensing orifice of the nozzle portion, the break-off cap comprising a nozzle cavity having an insertion opening for slidably receiving the nozzle portion; and a first pre-weakened area in the unitary body that defines a top edge of the nozzle portion and a bottom edge of the break-off cap, the dispensing orifice of the nozzle portion being exposed upon separating the break-off cap from the nozzle portion along the first pre-weakened area; at least one indent located on either the nozzle portion or the break-off cap; at least one protrusion located on the other one of the nozzle portion or the break-off cap; and wherein when the nozzle portion is slidably inserted into the nozzle cavity of the break-off cap, the at least one indent and the at least one protrusion mate with one another.
In a still further embodiment, the invention can be a toothpaste multipack comprising: a plurality of packages interconnected to form a longitudinal strip, each package comprising a first laminate sheet and a second laminate sheet coupled together to form a unitary body comprising a product containing portion having a product cavity containing toothpaste, a nozzle portion for dispensing the toothpaste from the product cavity, and a break-off cap sealing a dispensing orifice of the nozzle portion; and wherein adjacent packages in the longitudinal strip are separated from one another by a transverse pre-weakened area.
The present invention solves the needs described above by enabling a recloseable package to be formed by a thermoforming process in one step and by a single machine. The present invention solves the above while providing protection for the product on the shelf and during use, enabling recloseability to satisfy consumer need and resulting in an easy dispensing package.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
The description of illustrative embodiments according to principles of the present invention is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description of embodiments of the invention disclosed herein, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present invention. Relative terms such as “lower,” “upper,” “horizontal,” “vertical,” “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivative thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation unless explicitly indicated as such. Terms such as “attached,” “affixed,” “connected,” “coupled,” “interconnected,” and similar refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. Moreover, the features and benefits of the invention are illustrated by reference to the exemplified embodiments. Accordingly, the invention expressly should not be limited to such exemplary embodiments illustrating some possible non-limiting combination of features that may exist alone or in other combinations of features; the scope of the invention being defined by the claims appended hereto.
Referring first to
In certain embodiments, the fluidic product is an oral care material, such as a dentifrice, toothpaste, mouthwash, whitening agent or the like. Of course, the invention is not so limited and in certain other embodiments the fluidic product can be any other type of fluidic product desired to be packaged as described. In certain embodiments, the product containing portion 110 contains between approximately 0.1 mL to 50.0 mL of the oral care material or other fluidic product. However, the invention is not to be so limited and the product containing portion 110 can contain more or less of the oral care material or other fluidic product as desired. For example, the package 1000 can be a single use package containing only an amount of the fluidic product required for a single use thereof.
Referring to
In certain embodiments, the first thickness T1 is in a range of 15 to 500 microns and the second thickness T2 is in a range of 50 to 300 microns. In other embodiments, the first thickness T1 is about 50 microns and the second thickness T2 is in a range of 10 to 200 microns for each of the first and second laminate sheets 200, 300. However, the invention is not to be so limited and other thicknesses can be used as long as the first thickness T1 is greater than or equal to the second thickness T2. In certain other embodiments, a ratio of the first thickness T1 to the second thickness T2 is in a range of 2:1 to 4:1. In still other embodiments, the ratio of the first thickness T1 to the second thickness T2 is about 3:1.
The PET layers 202, 302 provide stiffness to the unitary body 100. By positioning the PET layers 202, 302 as the outer layers of the first and second laminate sheets 200, 300 and the PE as the inner layers of the first and second laminate sheets 200, 300, the PET layers 202, 302 protect the structural integrity and rigidness of the unitary body 100 of the package 1000. Furthermore, PET is a more expensive material than PE. Thus, overall manufacturing costs can be significantly reduced by using the PET as an outer layer that has a smaller thickness than the inner PE layers.
In the exemplified embodiment, the PE layer 201, 301 is bonded directly to the PET layer 202, 302 for each of the first and second laminate sheets 200, 300 by a thermoforming process. Thus, the PE layer 201 is bonded to the PET layer 202 and the PE layer 301 is bonded to the PET layer 302 by heating the layers 201, 301, 202, 302 and then thermally welding them together. As is known to persons skilled in the art, PE and PET have different melting temperatures. Specifically, PE has a melting point in a range of about 105° C. to 130° C. and PET has a melting point of PET is in a range of about 240° C. to about 270° C. The higher melting point of PET enables the PE layer 201 of the first laminate sheet 200 to be heat bonded to the PE layer 301 of the second laminate sheet 300 without melting and potentially disfiguring the PET layers 202, 302 of the first and second laminate sheets 200, 300. Thus, the inner PE layer 201 of the first laminate sheet 200 is thermally fused to the inner PE layer 301 of the second laminate sheet 300.
In other embodiments not illustrated, each of the first and second laminate sheets 200, 300 can include a tie layer that is disposed between and couples the PE layer 201, 301 to the PET layer 202, 302 for each of the first and second laminate sheets 200, 300. The tie layer is formed of a material selected from the group consisting of ethylene acrylic acid, anhydride modified ethylene acrylate adhesive resin, a copolymer of ethylene and methacrylic acid, ethylene ethyl acrylate copolymer, modified polyethylene, modified polyolefin, ionomers, and methacrylic acid modified polyethylene.
In embodiments that include a tie layer, the tie layer has a third thickness that is in a range of about 5 to 30 microns. Furthermore, in still other embodiments, the PE layer 201, 301 and the PET layer 202, 302 of each of the first and second laminate sheets 200, 300 are coupled together via an adhesive or other bonding agent to enhance the bonding strength of the layers 201, 202 and 301, 302 to one another. In one embodiment, the adhesive layer may be polyurethane. Thus, from the outer surface to the inner surface, the layers can be PET/PE, PET/adhesive/PE or PET/tie layer/PE. While the foregoing describes embodiments where the laminate sheets 200, 300 are formed of PE and PET layers, in some embodiments, the laminate sheets 200, 300 are formed of PE and polyamide (PA) layers.
Table 1 below illustrates the moisture vapor transmission rate (MVTR) i.e., in grams per meter square per day, for typical films used in constructing a comparable package, a comparable package constructed using typical plastic barrier laminate, and for a package 1000 that may be constructed using the laminate sheets 200, 300.
Table 1 illustrates that a package 1000 that may be constructed using the laminate sheets 200, 300 has a lower moisture vapor transmission rate as compared to that of a package 1000 constructed using a typical plastic barrier laminate. In addition, a package 1000 that may be constructed using the laminate sheets 200, 300 has a much lower moisture vapor transmission rate as compared to that of a package 1000 constructed using other films that are typically found in the construction of comparable packages. A lower moisture vapor transmission rate suggests that the product contained within the package 1000 may be preserved longer as no moisture is leaving or entering the package 1000.
Referring now to
The product containing portion 110 has a sealing flange 119, the nozzle portion 120 has a sealing flange 129, the break-off cap 130 has a sealing flange 134 and the cover 140 has a sealing flange 149. The sealing flanges 119, 129, 134 of the product containing portion 110, the nozzle portion 120 and the break-off cap 130 collectively seal the product cavity 111 around its periphery to prevent any fluidic products within the product cavity 111 from leaking out along the periphery of the product cavity 111. The sealing flanges 119, 129, 134 of the product containing portion 110, the nozzle portion 120 and the break-off cap 130 also prevents contaminants from entering the product cavity 111 around its periphery. The sealing flanges 129, 134 of the nozzle portion 120 and the break-off cap combine to seal a dispensing conduit 124 of the nozzle portion 120 to prevent any fluidic products within the product cavity 111 from leaking out through the dispensing conduit 124. Furthermore, the sealed flanges 134, 149 of the break-off cap 130 and the cover 140 collectively seal a nozzle cavity 136 of the break-off cap 130 to protect the nozzle cavity 136 against contamination from dust and other debris.
It should be understood that in certain embodiments the term “seal” is intended to mean a hermetic seal whereby fluids can not penetrate the seal. This usage of the term seal is particularly desirable in terms of the seal of the nozzle portion 120 and the product cavity 111 described above where it is desired to prevent leakage of fluidic products from the product cavity 111 and dispensing conduit 124. However, in other instances the term seal is used in this application to refer to substantially closing an opening, while not necessarily meaning hermetically sealing that opening. Specifically, as described above the sealed flanges 134, 149 of the break-off cap 130 and the cover 140 seal the nozzle cavity 136 of the break-off cap 130 to prevent the intrusion of dusts and other debris into the nozzle cavity 136. However, the nozzle cavity 136 does not need to be hermetically sealed, just substantially closed.
The package 1000 includes a first pre-weakened area 125 formed in the unitary body 100 that defines a top edge 122 of the nozzle portion 120 and a bottom edge 132 of the break-off cap 130. The package 1000 also includes a second pre-weakened area 135 formed in the unitary body 100 that defines a top edge 133 of the break-off cap 130 and a bottom edge 143 of the cover 140.
In certain embodiments, the first and second pre-weakened areas 125, 135 are perforations or scored lines formed into the unitary body 100. In other embodiments, the pre-weakened areas 125, 135 can be the result of pre-creasing the unitary body 100 at desired locations. In still other embodiments, the pre-weakened areas 125, 135 can be an area of reduced wall thickness on the unitary body 100. Combinations of the above-mentioned types of pre-weakened areas or other methods of compromising the integrity of the unitary body 100 at the location of the pre-weakened areas 125, 135 in a controlled manner through the use of chemical energy, thermal energy, mechanical energy, or combinations thereof can be used. However, it is desirable that the first and second pre-weakened areas 125, 135, and most particularly the first pre-weakened area 125, do not result in the creation of an opening in the unitary body 100 through which fluidic products contained within the product cavity 111 can flow and leak. Thus, regardless of how the pre-weakened areas 125, 135 are formed, they should create a seal as that term has been defined herein above.
The second pre-weakened area 135 enables a user to easily tear the unitary body 100 at the location of the second pre-weakened area 135 to separate the cover 140 from the break-off cap 130. Similarly, the first pre-weakened area 125 enables a user to easily tear the unitary body 100 at the location of the first pre-weakened area 125 to separate the break-off cap 130 from the nozzle portion 120. In certain other embodiments, the first and second pre-weakened areas 125, 135 can be an indicia line including the words “open here” to indicate to a consumer that the unitary body 100 should be tear open at those locations.
The nozzle portion 120 is designed for dispensing the fluidic product from the product cavity 111. Specifically, the nozzle portion 120 includes a dispensing conduit 124 that extends from the product cavity 111 to a location beyond the first pre-weakened area 125. In other words, the first pre-weakened area 125 intersects the dispensing conduit 124 of the nozzle portion 120. The nozzle portion 120 also includes a dispensing orifice 126, which is the opening through which the fluidic product is dispensed to a consumer during use. Prior to opening of the package 1000, the dispensing orifice 126 is sealed by the break-off cap 130 at the first pre-weakened area 125. In other words, the break-off cap 130 is affixed to the nozzle portion 120 at the location of the first pre-weakened area 125 in such a manner that the dispensing orifice 126 becomes sealed to prevent leakage of the fluidic product from the product cavity 111 prior to desired use by the consumer. By extending the dispensing conduit 124 beyond the location of the first pre-weakened area 125, when the break-off cap 130 is detached from the nozzle portion 120 as has been described above, the dispensing orifice 126 becomes open and exposed thereby enabling the fluidic product to flow from the product cavity 111 through the dispensing conduit 124 and out of the dispensing orifice 126 for application onto a toothbrush or for other desired use.
The break-off cap 130 comprises the sealing flange 134, the nozzle cavity 136, and a connector 165. The connector 165 is a portion of the break-off cap 130 that is connected to the dispensing orifice 126 of the nozzle portion 120 at the first pre-weakened area 125. The nozzle cavity 136 comprises an insertion opening 137, which includes a passageway to receive the nozzle portion 120. When the break-off cap 130 is used to reseal the package 1000 after opening, the nozzle portion 120 is inserted into the insertion opening 137 of the nozzle cavity 136.
The nozzle cavity 136 is defined by an inner surface 155 of a portion of the break-off cap 130. The nozzle cavity 136 tapers inwardly as it extends from the second pre-weakened area 135 towards the location of the first pre-weakened area 125. This tapering facilitates coupling of the break-off cap 130 to the nozzle portion 120 as described in detail below. The insertion opening 137 is sized so as to fit the nozzle portion 120 therethrough. Specifically, the diameter of the insertion opening 137 is slightly larger than the diameter of the top edge 126 of the nozzle portion 120 so that the top edge 122 of the nozzle portion 120 can be slidably received by the insertion opening 137. Thus, as will be described below, the break-off cap 130 can be used to reseal the dispensing orifice 126 of the nozzle portion 120. Prior to opening the package 1000, the nozzle cavity 136 and insertion opening 137 of the break-off cap 130 are sealed by the cover 140 at the second pre-weakened area 135 such that the nozzle cavity 136 is unexposed until the cover 140 is torn from the unitary body 100 along the second pre-weakened area 135 as described above. In other words, the cover 140 seals the nozzle cavity 136 at the insertion opening 137 (not necessarily hermetically) so as to prevent dust, debris and other contaminants from entering into the nozzle cavity 136 through the insertion opening 137. In some embodiments, the insertion opening 137 has a width that is between the width of the top edge 133 of the break-off cap 130, and the width of the width orifice 126. In some embodiments, the insertion opening 137 has a width between 18.0 mm to 18.5 mm.
Referring to
It should be understood that the cover 140 is affixed to the break-off cap 130 to thereby seal the insertion opening 137 and the nozzle cavity 136. However, as has been described above, the seal between the cover 140 and the break-off cap 130 is not necessarily a hermetic seal (although it can be in certain embodiments). The cover 140 acts as a dust cover to prevent dust and other contaminants from entering into the nozzle cavity 136 so that when the break-off cap 130 is resealed onto the nozzle portion 120 as will be discussed below, the nozzle portion 120 does not becomes contaminated. Furthermore, in certain embodiments the cover 140 can be a removable cover that does not form a portion of the unitary body 100. For example, the cover can be a plug, a removable or pull-off tab or a cap that receives or encloses a portion of the break-off cap 130. In one embodiment, the cover 140 may be a plug that snugly fits within the nozzle cavity 136 of the break-off cap 130 to prevent contaminants from entering into the nozzle cavity 136. In another embodiment, the cover 140 may be a substantially flat sheet that covers the top edge 133 of the break-off cap 130.
Referring to
Referring to
After separation of the cover 140 from the break-off cap 130, the break-off cap 130 can be separated from the nozzle portion 120 by tearing the unitary body 100 at the first pre-weakened area 125 or cutting the unitary body 100 at the location of the first pre-weakened area 125 if necessary or desirable. At this point, the break-off cap 130 is separated from the unitary body 100 such that the unitary body 100 comprises only the product containing portion 110 and the nozzle portion 120 (see
The break-off cap 130 comprises at least one indent or protrusion 151 located thereon. In the exemplified embodiment, the break-off cap 130 comprises two indents or protrusions 151 positioned 180° apart along the inner surface 155 of the portion of the break-off cap 130 that defines the nozzle cavity 136. Of course, the invention is not so limited and in certain other embodiments the break-off cap 130 may comprise only a single indent or protrusion 151 or more than two indents or protrusions. Furthermore, in still other embodiments the two indents or protrusions 151 illustrated in the exemplary embodiments can be separated by less than 180°.
The nozzle portion 120 also comprises at least one indent or protrusion 153 on an outer surface 154 of the nozzle portion 120. In the exemplified embodiment, the nozzle portion 120 comprises two indents or protrusions 153 positioned 180° apart along the outer surface 154 of the nozzle portion 120. Similar to the indents or protrusions 151 of the break-off cap 130, there may be a single indent or protrusion 153 on the outer surface 154 of the nozzle portion 120 or more than two indents or protrusions 153. Furthermore, the spacing between the indents or protrusions 153 on the outer surface 154 of the nozzle portion 120 may be other than the 180° illustrated. If the break-off cap 130 comprises at least one indent 151 on its inner surface 155, then the nozzle portion 120 will comprise at least one protrusion 153 on its outer surface 154. Alternatively, if the break-off cap 130 comprises at least one protrusion 151 on its inner surface 155, then the nozzle portion 120 will comprise at least one indent 153 on its outer surface 154. It should be understood that the number of indents or protrusions 151 on the break-off cap 130 will correspond with the number of indents or protrusions 153 on the outer surface 154 of the nozzle portion 120 for mating engagement therebetween as described below.
As will be described below, the indents/protrusions 151, 153 of the nozzle portion 120 and the break-off cap 130 interlock together to prevent axial separation between the nozzle portion 120 and the break-off cap 130 after the break-off cap 130 is used to reseal the nozzle portion 120. In certain other embodiments, the indent/protrusion 151 of the break-off cap 130 can be replaced by an aperture such that a protrusion 153 on the outer surface 154 of the nozzle portion 120 can fit within and extend through the aperture to securely hold the break-off cap 130 on the nozzle portion 120 and prevent axial separation therebetween. In some embodiments, the indents/protrusions 151, 153 may be omitted. In these embodiments, the engagement between the nozzle portion 120 and the break-off cap 130 may be achieved via friction. For example, the inner surface 155 of the break-off cap 130 and the outer surface 154 of the nozzle portion 120 may be sized such that the nozzle portion 120 fits snuggly within the insertion opening 137 and the slots 139 when the break-off cap 130 is used to reseal the nozzle portion 120. While only one protrusion 153 is illustrated, in some embodiments, a plurality of protrusions 153 may be present on the nozzle portion 120.
Referring to
The break-off cap 130 can be slid onto the nozzle portion 120 such that the nozzle portion 120 is slidably inserted into the nozzle cavity 136. More specifically, the inner surface 155 of the portion of the break-off cap 130 becomes slidingly engaged with the outer surface 154 of the nozzle portion 120. As noted above, the tapered shape of the nozzle cavity 136 of the break-off cap 130 facilitates this slidable insertion. As a result, the dispensing conduit 124 nests within the central bore 138 and the sealing flanges 129 of the nozzle portion 120 nest within the slots 139 of the break-off cap 130. The sealing flanges 129 nesting within the slots 139 of the break-off cap 130 prohibits relative rotational movement between the nozzle portion 120 and the break-off cap 130. Furthermore, as noted above, the protrusion 153 of the nozzle portion 120 nests within the indent 151 of the break-off cap 130 in a mating fashion to prevent accidental axial separation of the break-off cap 130 from the nozzle portion 120.
Although the break-off cap 130 fits snugly onto the nozzle portion 120, a user is still able to repeatedly remove the break-off cap 130 from the nozzle portion 120 and replace the break-off cap 130 back onto the nozzle portion 120 for repeated use of the package 1000 for dispensing the fluidic product from the product cavity 111 and resealing/reclosing the dispensing conduit 124. Using the break-off cap 130 as a cap to close the previously opened package 1000 will prevent the fluidic product from being dispensed from the package 1000 and will also minimize the amount of air that enters into the product cavity 111. Thus, the break-off cap 130 also prevents the fluidic product, such as a toothpaste, from drying out.
Referring now to
In the toothpaste multipack 600, each of the packages 1000 are formed as described above as comprising the first laminate sheet 200 and the second laminate sheet 300 thermoformed together to form the unitary body 100. The unitary body 100 and the packages 1000 are the exact packages 1000 described above with reference to
In the toothpaste multipack 600, adjacent packages 1000 in the longitudinal strip are separated from one another by a first transverse pre-weakened area 645. Specifically, the first transverse pre-weakened area 645 is disposed between the product containing portions 110 of adjacent packages 1000. Additionally, the break-off caps 130 and covers 140 of adjacent ones of the packages 1000 are also connected to one another. In certain embodiments, the connection between the break-off caps 130 and covers 140 of adjacent packages are accomplished by a second transverse pre-weakened area 646. Furthermore, the toothpaste multipack 600 includes an upper-most package 660 and a lower-most package 670. The upper-most package 660 includes a sealing flange 661 having a hanger hole 662 formed therein for hanging the multipack 600 from a hook for retail display. It is contemplated that in some embodiments, the adjacent packages 1000 may be connected to one another only at the first transverse pre-weakened area 645, or the adjacent packages 1000 may be connected to one another only at the second transverse pre-weakened area 646.
As noted above, each of the packages 1000 in the multipack 600 are formed from the first laminate sheet 200 and the second laminate sheet 300 (
Turning to
The unitary body 400 of the package 2000 generally comprises a product containing portion 410 having a product cavity containing a fluidic product, a nozzle portion 420 extending from the product containing portion 410 for dispensing the fluidic product from the product cavity, a first break-off cap 440 that seals a dispensing orifice of the nozzle portion 420 and a second break-off cap 430 that comprises a nozzle cavity having an insertion opening for slidably receiving the nozzle portion 420.
The unitary body 400 of the package 2000 also comprises a first pre-weakened area 425 and a second pre-weakened area 435. However, the locations of the pre-weakened areas 425, 435 and the break-off caps 430, 440 are different than the similar components from the package 1000. The first pre-weakened area 425 defines a top edge 422 of the nozzle portion 420 and a bottom edge 432 of the first break-off cap 440. Separation of the first break-off cap 440 from the nozzle portion 420 by tearing or cutting along the first pre-weakened area 425 exposes the dispensing orifice of the nozzle portion 420 and provides an outlet through which the product fluid can flow from the product cavity.
The second pre-weakened area 435 defines a bottom edge 480 of the product containing portion 410 and a top edge 490 of the second break-off cap 430. The attachment of the second break-off cap 430 to the bottom edge 480 of the product containing portion 410 does not seal any openings in the product containing portion 410 or the product cavity. Rather, the attachment of the second break-off cap 430 to the bottom edge 480 of the product containing portion 410 prevents any dust, debris and other contaminants from flowing into the nozzle cavity of the second break-off cap 430. Separation of the second break-off cap 430 from the product containing portion 410 results in the nozzle cavity and the insertion opening of the second break-off cap 440 being exposed.
Thus, the first break-off cap 440 is torn from the unitary body 400 at the first pre-weakened area 425 to enable a user to gain access to the fluidic product contained within the product cavity in the product containing portion 410. After removing the first break-off cap 440 from the unitary body 400, a user can squeeze the product containing portion 410 of the unitary body 400 to dispense the fluidic product therefrom. After a desired amount of the fluidic product has been dispensed, the user may tear the second break-off cap 430 from the unitary body 400 at the second pre-weakened area 435. Then, the second break-off cap 430 can be used in the same manner as the break-off cap 130 described above in
Referring now to
The unitary body 500 of the package 3000 comprises a product containing portion 510 having a product cavity containing toothpaste, a nozzle portion 520 for dispensing the toothpaste from the product cavity, and a break-off cap 530 that seals a dispensing orifice of the nozzle portion 520. It should be understood that the unitary body 500 of the package 3000 of toothpaste is also formed from the first and second laminate sheets 200, 300 as has been described in detail above with reference to
As used throughout, ranges are used as shorthand for describing each and every value that is within the range. Any value within the range can be selected as the terminus of the range. In addition, all references cited herein are hereby incorporated by referenced in their entireties. In the event of a conflict in a definition in the present disclosure and that of a cited reference, the present disclosure controls.
Number | Date | Country | Kind |
---|---|---|---|
2161/DEL/2012 | Jul 2012 | IN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/050076 | 7/11/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/011880 | 1/16/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2663461 | Brown | Dec 1953 | A |
3204835 | Michel | Sep 1965 | A |
4261482 | Yamada | Apr 1981 | A |
4526823 | Farrell | Jul 1985 | A |
4626456 | Farrell | Dec 1986 | A |
4747501 | Greaves | May 1988 | A |
5234688 | Gaffar | Aug 1993 | A |
5529224 | Chan | Jun 1996 | A |
5826737 | Zakensberg | Oct 1998 | A |
5996845 | Chan | Dec 1999 | A |
6874665 | Doherty et al. | Apr 2005 | B2 |
6902335 | Bergey et al. | Jun 2005 | B2 |
6991140 | Bourque | Jan 2006 | B2 |
7036690 | Tsubaki et al. | May 2006 | B2 |
7431529 | Rushe et al. | Oct 2008 | B1 |
20030075561 | Pieri | Apr 2003 | A1 |
20040214981 | Denis et al. | Oct 2004 | A1 |
20050011794 | Caldwell et al. | Jan 2005 | A1 |
20050287323 | Akiyama et al. | Dec 2005 | A1 |
20100054636 | Owensby | Mar 2010 | A1 |
20100155396 | Warner | Jun 2010 | A1 |
20110100861 | Manabe | May 2011 | A1 |
20120114269 | Futase | May 2012 | A1 |
20120237643 | Wegner | Sep 2012 | A1 |
20130098864 | Fontana | Apr 2013 | A1 |
20130272630 | Thomas | Oct 2013 | A1 |
20140001065 | Martinez Navarro | Jan 2014 | A1 |
20150000064 | Moskovich et al. | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
WO 9417980 | Aug 1994 | WO |
WO199729975 | Aug 1997 | WO |
WO2010013106 | Feb 2010 | WO |
Entry |
---|
The International Search Report and the Written Opinion of the International Searching Authority issued in International Application PCT/US2011/063711 dated Sep. 26, 2012. |
The International Search Report and the Written Opinion of the International Searching Authority issued in International Application PCT/US2013/050076 dated Sep. 25, 2013. |
The Written Opinion of the International Preliminary Examining Authority issued in International Application PCT/US2013/050076 dated Jul. 28, 2014. |
The International Search Report and the Written Opinion of the International Searching Authority issued in International Application PCT/US2011/063717 dated Sep. 28, 2012. |
The International Search Report and the Written Opinion of the International Searching Authority issued in International Application PCT/US2013/050069 dated Sep. 25, 2013. |
The Written Opinion of the International Preliminary Examining Authority issued in International Application PCT/US2013/050069 dated Jul. 28, 2014. |
Number | Date | Country | |
---|---|---|---|
20150151891 A1 | Jun 2015 | US |