The present invention relates to packages for storing components of an admixture in separate compartments and then admixing those stored components inside the package when the admixture is to be used. More specifically, the invention relates to packages of the foregoing type for use in mixing medical solutions, food ingredients, and so forth.
A variety of medical solutions are stored in flexible plastic packages. Such medical solutions can include, for example, parenteral, enteral, dialysis solutions, nutrients and pharmacologic agents, including gene therapy and chemotherapy agents. However, a number of issues can limit the ability to store at least certain medical solutions. For example, due to stability, compatibility or other concerns, a number of medical solutions cannot be premixed. Rather, the individual components must be stored separately. Typically these components are either stored in separate packages and admixed before use, or are stored in separate compartments of a flexible package and then mixed prior to use. For example, amino acids and dextrose solutions require stored in separate packages or compartments.
One of the disadvantages of storing components in separate packages or containers and then mixing them together is that the mixing process can compromise sterility of the system and/or process. Additionally, such a mixing process creates a labor-intensive process. Still further, it is possible for mistakes to occur during the admixing process due to the amount of solution to be added from the separate packages into the final container for the patient.
To deal with the disadvantages of separate packages, it is known to provide flexible packages that include multiple chambers. To this end, such packages have an interior that defines two or more chambers. One way to create such packages is with a heat seal that divides the interior into two chambers. The seal between any two compartments must be able to withstand external stresses. Such stresses can include pressure that may be applied to one or more of the chambers from, for example, squeezing thereof or accidentally dropping the bag. Therefore the seal must be sufficiently strong, yet not so strong that it is not possible to mix the solutions contained therein.
U.S. Pat. No. 6,319,243 discloses a multi-chamber package that can be used to house multiple liquid components that are to be stored separately prior to use. Peelable seals are provided between adjacent chambers. The peelable seals allow for the selected opening of the chambers to allow for the selective mixing of the liquids contained therein. The walls of the package are made of a film laminated having four layers. The innermost layer is a sealant layer constructed of: (1) a bulk polyolefin (preferably, a polypropylene-ethylene copolymer) that melts at a temperature below the melting temperature of the outermost layer (made, e.g., of polyester material); and (2) a thermoplastic elastomer. For example, the sealand layer may include SEBS and ethylene polypropylene. The next innermost layer made of a RF-responsive polymer, such as EVA copolumer. The sealant layer is adjacent the solution side of the package. When the opposing sealant layers are bonded, a peel seal is formed between adjacent compartments. When that peel seal is ruptured, communication is provided between chambers. As constructed the four-layer film has at least one RF-responsive layer and one non-RF-responsive layer, to wit, the sealant layer. To create the seals, a RF field heats a seal bar, which heats the RF-responsive layer, which in turn heats the non-RF responsive sealant layer to soften, but not liquefy, the latter. A resulting cohesive bond develops from contact between the sealant layers of the opposing walls of the package, but fusion between the layers, which can cause permanent bonding, does not occur. To form the peelable seal using radio frequency welding or other forms of heating sealing technology, a seal bar is used.
As flexible barrier packages for consumer goods have continued to evolve and gain consumer acceptance in the world market, manufacturers of heat sealable packaging films have developed many specialty products with consumer convenience and practicality in mind. The easy open package is one such innovation. These types of film products are designed to provide hermetic heat seals with a calculated strength.
Existing methods of producing easy-open flexible packages include sealing together two different types of films under carefully controlled conditions. The resulting heat seal is a thermoplastic adhesive bond that can be pulled apart. Such an easy open seal may be described as an “adhesive rupture” mechanism. An example of such a seal is the bond that may be formed between a low-density polyethylene film sealed to a rubber-modified high-density polyethylene film. Peelable heat seals of this type require the use of two distinct materials.
Another method of producing peelable heat seals involves the use of “cohesive rupture” films. These films form peelable seals when sealed to themselves or to a standard packaging film made from a compatible polymer. The peel mechanism is created at the time of extrusion. The film sealant layer is comprised of a homogenized blend of various heat-sealable, non-heat-sealable, and compatible polymers that will not form a solution. The polymer matrix adjacent the heat area has a calculated cohesive strength. As the heat seals are pulled apart, the polymer matrix splits. The strength of the obtained heat seal may be altered by the exact formula percentages utilized in the homogenized blend. A further benefit of such a system is the visible evidence that a hermetic seal has been produced as witnessed by the transfer of material upon opening.
For example, U.S. Pat. No. 6,245,176 discloses a flexible package having compartments seperated by a “cohesive rupture” peel seal. A layer of peel seal material is applied as a coating along a zone on an inner layer of a plastic laminate, the inner layer comprising polyethylene and the substrate comprising polyester. The peel seal material contains 5 to 20 percent polybutylene by weight. The peel seal material is applied by heat sealing using a sealing bar. This substrate, zone-coated with peel seal material, is then used to produce a two-compartment mixing package. The zone-coated film is overlaid with a second layer of polyethylene film supported by a polyester substrate. The polyethylene sealant layers are confronting. Side heat seals and a center peel seal are formed. Two distinct compartments are defined by the upper and lower film walls and the side seals, and separated by the peel seal.
There is a need for a package that has an interior peel seal separating adjacent compartments and that can be manufactured inexpensively.
The invention is directed to a peel seal tape and to a package having two or more compatments, adjacent compartments being separated by a peel seal tape. A peel seal is formed by joining peel material coated on one surface of a substrate to one package wall, the other surface of the substrate being coated with sealant material for hard sealing the substrate to the other package wall. The substrate is formed by extrusion. The coating are also applied by extrusion. The adjacent compartments of the package are filled with different materials. As used herein, the term “material” includes liquids, solutions, colloids, powders, blends, particulate matter, and any other matter that can be admixed. When one compartment is squeezed with sufficient pressure, that pressure breaks open the peel seal, allowing the respective contents of the two compartments to be mixed without removing the contents from the still externally sealed package.
One aspect of the invention is a peel seal tape comprising: a substrate; a coating of peel seal material applied on at least a zone of one surface of the substrate; and a coating of sealant material applied on at least a zone of another surface of the substrate. The sealant material and peel material melt at temperatures lower than a melting temperature of the substrate.
Another aspect of the invention is a multi-compartment package comprising: first and second external walls joined to each other along at least part of a periphery to form a receptacle having an interior volume; and peel seal tape disposed between and joined to the first and second external walls in a zone that divides the interior volume into first and second compartments. The first compartment contains first material and the second compartment contains second material different than the first material. The peel seal tape comprises a substrate; a coating of peel seal material applied on one substrate surface and joined to the first external wall; and a coating of sealant material applied on another substrate surface and joined to the second external wall.
A further aspect of the invention is a peel seal tape comprising: a substrate; a coating of peel seal material applied on first and second mutually parallel zones of one surface of the substrate; and a coating of sealant material applied on at least a zone of the other surface of the substrate. The sealant material and peel material melt at temperatures lower than a melting temperature of the substrate.
Yet another aspect of the invention is a package comprising: first and second external walls joined or connected along portions of a periphery to form a receptacle having first and second sides and a bottom, the receptacle having a mouth along a remainder of the periphery; and peel seal tape joined to an interior surface of the first external wall. The peel seal tape extends from the first side to the second side of the receptacle, but does not form a peel seal. The peel seal tape comprises: a substrate; a coating of peel seal material applied on one substrate surface; and a coating of sealant material applied on another substrate surface and joined to the first external wall.
A further aspect of the invention is a method of manufacturing a package, comprising the following steps: feeding a web of film material and a peel seal tape to a peel seal tape application station. The peel seal tape comprises a substrate, a coating of peel seal material on one side of the substrate, and a coating of sealant material on the other side of the substrate. The method further comprises the step of joining the sealant material of the peel seal tape to the web of film material at the peel seal tape application station. The joining step is performed without activating the peel seal. The method further comprises the step of forming a receptacle comprising first and second walls joined along a periphery except along a peripheral portion defining a mouth. In one embodiment, the receptacle is formed by folding and heat sealing. In another embodiment, the receptacle is formed by heat sealing overlapping webs.
Other aspects of the invention are disclosed and claimed below.
Although not shown in
In the final filled package, the peel seal material is joined to one wall of the package, while the sealant material is joined to the other wall. Thus the peel seal tape is joined to both walls of the package. As explained below, these joining steps are performed in seperate operations at different times, the sealant material being joined to a package wall before the first compartment is filled with product, and the peel seal material being joined to the other package wall after the first compartment has been filled.
The walls of the package may be formed of various types of thermoplastic material, such as low-density polyethylene, substantially linear copolymers of ethylene and a C3–C8 alpha-olefin, polypropylene, polyvinylidene chloride, mixtures of two or more of these polymers, or mixtures of one of these polymers with another thermoplastic polymer. The person skilled in the art will recognize that this list of suitable materials is not exhaustive. Furthermore, the package walls may have a laminated structure, with one of the surface layers being a layer of low-melting-point sealant material, to facilitate sealing of the package. The sealant layer of such bag material may be made of the same material as the substrate sealant layer, or the low-melting sealant materials of the package wall and of the substrate may comprise different compatible materials.
The low-melting-point sealant material applied on one side of the substrate has a melting temperature that is lower than the melting temperature of the substrate. The peel seal material applied on the other side of the substrate has a pressure and temperature sealing window for being peelable. More specifically, the peel seal material forms a hard seal at the temperature and pressure at which the low-melting sealant material is activated, and forms a peelable seal when a temperature and a pressure within the aforementioned peel sealing window are applied, the peel sealing window temperature range being lower than the temperature at which the low-melting sealant material is activated. The periphery 8 of the package 2 (see
The geometric relationship of the periphery 8 and the peel seal in the embodiment of
Preferably the front and rear walls of the package comprise laminated film material having a layer of low-melting-point sealant material, the film material of the opposing walls being disposed with the respective layers of sealant material confronting each other. The peripheral hard seal 8 is formed by heat sealing the opposing walls along their peripheries at temperatures that cause the sealant layers to activate. Heat sealing of different portions of the periphery 8 is performed at different times in seperate steps, with the final heat sealing step being performed only after the last compartment of the package has been filled. When the peripheral edges that run transverse to the peel seal tape are heat sealed, the sealing temperature is sufficiently high that the peel seal material in zones A and A′ (indicated by the small rectangular areas in
In one method of manufacturing the package depicted in
The peel seal tape is preferably manufactured by extrusion. For the embodiments discloased herein, the substrate of the peel seal tape is made of a blend of low-density and high-density resins (e.g., HDPE and LDPE in a ratio of 60/40); the sealant material is EVA or metallocene-catalyzed LDPE; and the peel seal material is a blend of polybutylene and LDPE, the amount of polybutylene being in the range of 20 to 40 wt.%. However, the substrate may comprise multiple layers of extrudate consisting of different polymers or different blends of polymers. All of these materials are thremoplastic and extrudable, allowing the peel seal to be manufactured continuously and economically.
To manufacture the peel seal tape, conventional extrusion techniques can be employed. The substrate and coatings making up the peal seal tape can be co-extruded through multiple openings in a die plate fed by respective extruders, one containing molten sealant material, and a third containing molten peel seal material. Alternatively, the substrate could consist of multiple extruded layers. As is well known in the art, the die plate includes input ports, output ports, and channels connecting the input ports to the output ports. The extruders feed the different molten materials to different input ports, and the channels are designed to configure the molten materials into the shapes of the respective components. In the alternative, each component (i.e., substrate and coating on opposite sides thereof) may be formed in separate extrusions using different die plates. In the embodiment disclosed hereinafter, the substrate with sealant layer is co-extruded from one die and the layer of peel seal material is extruded onto the substrate from a separate die located downstream of the first die.
Optionally, more than one peel seal tape can be manufactured concurrently. For example, referring to
The top surface of carrier belt 30 may have a texture, such as a grid-like texture. The particular texture of the carrier belt 30 is imparted to the sealant layer to increase the capability of the peel seal tape to bond to the film material of a package. By imparting a grid-like structure to the surface of the sealant layer and boding that sealant layer to a wall of a package, fluid leaks between the bonded surface of the peel seal tape and the package wall are minimized or eliminated, requiring such fluids to follow a tortuous path. At least the top surface of carrier belt 30 may also have a treatment to provide adequate adhesion so that the peel seal tape does not intermittently slip and reattach to carrier belt 30 and to allow release of the peel seal tape at the stripping point 46, as described below. The treatment may consist of raising or lowering the temperature of carrier belt 30 at specific points to facilitate such adhesion and detachment, or the treatment may be a release agent being applied to the top surface of carrier belt 30 prior to depositing the base extrudate 26 thereon.
The extruded peel seal tape (comprising extrudates 26 and 28) is cooled by an adjusting/cooling nozzle 34, thereby stabilizing and setting the sealant layer, the substrate and the peel seal layer. Water may be ejected from adjusting/cooling nozzle 34 to cool the peel seal tape extrudates. As illustrated in
Finally, the peel seal tape is stripped from carrier belt 30 at the stripping point 46. The stripping point 46 is in the general area where the path of carrier belt 30 turns about stripping roller 38. After being stripped from carrier belt 30, the peel seal tape is guided through a top take-off roller 42 and a bottom take-off roller 44 for further processing, such as slitting in the case where a double peal seal tape is manufactured. The final product can be wound on a spool and stored or transported to a pouch machine for application to film material and formation of pouch. In such a pouch machine, package film material unwound from a roll and peel seal tape unwound from a spool are fed to a tape application station. Alternatively, after slitting the tape in two, the separate tapes could be provided to separate package production lines for application to packages. The unfilled packages can be transported to a converter, to be filled with product and sealed. Alternatively, the forming and filling operations could be performed in-line with package formation.
The peel steal tape is supported by carrier belt 30 while the tape is in an unsolidified and unset state. In this state, the apparatus 20 does not impart tensile forces to deform the peel seal tape. As the carrier belt 30 provides a stable base for the peel seal tape during setting, forming a relatively thin tape is possible.
As previously noted, alternatively, the forming and filling operations could be performed in-line with package formation. In that event, after the cross seals are made, the bottom compartment is filled, the peel seal tape is hard sealed to the other bag wall, the top compartment is filled, the top compartment is hard sealed, and then the bag is cut off.
While the invention has been described with reference to various embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. For example, instead of the polybutylene/LDPE blend employed in the discolsed embodiment, any other extrudable peel seal material having suitable properties can be used. Similarly, the package film material, the sealant material and the tape substrate material may comprise suitable materials well known in the art other than those specifically mentioned herein. For example, low-melting-point materials suitable for use as sealant material include EVA, LDPE, VLDPE, LLDPE, and metallocene-catalyzed LLDPE. In addition, many modifications may be made to adapt a particular situation to the teachings of the invention without departing from the essential scope thereof. Therefore it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
As used in the claims, the term “package” means a container, bag, pouch or other receptacle for objects, material or stuff. A container, bag, pouch or other receptacle is deemed to be a package even if not yet packed with objects, material or stuff. As used in the claims, the verb “joined” means fused, bonded, sealed, adhered, etc., whether by application of heat and/or pressure, application of ultrasonic energy, application of a layer of adhesive material or bonding agent, interposition of an adhesive or bonding strip, etc.
Number | Name | Date | Kind |
---|---|---|---|
3608709 | Pike | Sep 1971 | A |
3879492 | Bontinick | Apr 1975 | A |
4145449 | Nelham | Mar 1979 | A |
4181711 | Ohashi et al. | Jan 1980 | A |
4201031 | Wiles | May 1980 | A |
4402402 | Pike | Sep 1983 | A |
4771935 | Hekal | Sep 1988 | A |
4812192 | Woods et al. | Mar 1989 | A |
5019027 | Boeckmann et al. | May 1991 | A |
5273511 | Boeckman | Dec 1993 | A |
5287961 | Herran | Feb 1994 | A |
5604000 | May | Feb 1997 | A |
5699653 | Hartman et al. | Dec 1997 | A |
5832570 | Thorpe et al. | Nov 1998 | A |
5836445 | Provonchee | Nov 1998 | A |
5904425 | May | May 1999 | A |
5907908 | Cunanan et al. | Jun 1999 | A |
5930877 | Thorpe et al. | Aug 1999 | A |
5944709 | Barney et al. | Aug 1999 | A |
6036004 | Bowen | Mar 2000 | A |
6080252 | Plourde | Jun 2000 | A |
6138439 | McMahon et al. | Oct 2000 | A |
6183134 | Malin | Feb 2001 | B1 |
6245176 | Greenland | Jun 2001 | B1 |
6284360 | Johnson et al. | Sep 2001 | B1 |
6317939 | Malin | Nov 2001 | B1 |
6319243 | Becker et al. | Nov 2001 | B1 |
6406782 | Johnson et al. | Jun 2002 | B2 |
Number | Date | Country |
---|---|---|
0122721 | Jul 1988 | EP |
Number | Date | Country | |
---|---|---|---|
20030213708 A1 | Nov 2003 | US |