The present subject matter relates generally to packaged terminal air conditioner units and control boards for the same.
Packaged terminal air conditioner units generally include a casing and a sealed system. The sealed system includes components for chilling and/or heating air with refrigerant. A control board of the packaged terminal air conditioner units may operate the sealed system in either a heating mode or a cooling mode depending upon the setting selected by a user of the packaged terminal air conditioner units.
Due to space constraints within the casing, selection of components for packaged terminal air conditioner units can be limited. For example, the control board is generally connected to various components of the packaged terminal air conditioner unit with suitable wiring or cables. Properly securing the electrical cables to the control board can be difficult within the confined space of the casing. In particular, accessing the electrical cables and/or the control board during servicing of the packaged terminal air conditioner unit can be difficult within the confined space of the casing.
Accordingly, a packaged terminal air conditioner unit with features for facilitating access to a control board of the packaged terminal air conditioner unit would be useful. In addition, a packaged terminal air conditioner unit with features for assisting with attaching wiring or cables to a control board of the packaged terminal air conditioner unit would be useful.
The present subject matter provides a packaged terminal air conditioner unit. The packaged terminal air conditioner unit includes a compressor, an interior coil and an exterior coil positioned within a casing. A control board enclosure is also positioned within the casing. A cover of the control board housing is rotatable on a substantially-horizontal axis relative to a housing of the control board housing. A control board is mounted to the cover of the control board enclosure such that the control board is rotatable on the substantially-horizontal axis with the cover of the control board enclosure. Additional aspects and advantages of the invention will be set forth in part in the following description, or may be apparent from the description, or may be learned through practice of the invention.
In a first exemplary embodiment, a packaged terminal air conditioner unit is provided. The packaged terminal air conditioner unit includes a casing. A compressor is positioned within the casing. The compressor is operable to increase a pressure of a refrigerant. An interior coil is positioned within the casing, and an exterior coil is positioned within the casing opposite the interior coil. A control board enclosure is also positioned within the casing. The control board enclosure has a housing and a cover. The cover is mounted to the housing. The cover is rotatable on a substantially-horizontal axis relative to the housing. A control board is mounted to the cover of the control board enclosure such that the control board is rotatable on the substantially-horizontal axis with the cover of the control board enclosure.
In a second exemplary embodiment, a packaged terminal air conditioner unit is provided. The packaged terminal air conditioner unit includes a casing that extends between an exterior side portion and an interior side portion. A compressor is positioned within the casing. The compressor is operable to compress a refrigerant. An interior coil is positioned within the casing at the interior side portion of the casing, and an exterior coil is positioned within the casing at the exterior side portion of the casing. The packaged terminal air conditioner unit also includes an inner wall with a control board enclosure. The inner wall is positioned within the casing between the interior coil and the exterior coil. The control board enclosure has a housing and a cover. The housing defines an interior volume, and the cover is mounted to the housing in order to provide selective access to the interior volume of the housing. The cover extends between a top edge and a bottom edge. The cover is rotatable on a substantially-horizontal axis relative to the housing at the bottom edge of the cover. A control board is mounted to the cover of the control board enclosure and positioned within the interior volume of the housing. The control board is rotatable on the substantially-horizontal axis with the cover of the control board enclosure.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures.
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
As may be seen in
Casing 110 defines a mechanical compartment 116. Sealed system 120 is disposed or positioned within mechanical compartment 116 of casing 110. A front panel 118 and a rear grill or screen 119 are mounted to casing 110 and hinder or limit access to mechanical compartment 116 of casing 110. Front panel 118 is mounted to casing 110 at interior side portion 112 of casing 110, and rear screen 119 is mounted to casing 110 at exterior side portion 114 of casing 110. Front panel 118 and rear screen 119 each define a plurality of holes that permit air to flow through front panel 118 and rear screen 119, with the holes sized for preventing foreign objects from passing through front panel 118 and rear screen 119 into mechanical compartment 116 of casing 110.
Packaged terminal air conditioner unit 100 also includes a drain pan or bottom tray 138 and an inner wall 140 positioned within mechanical compartment 116 of casing 110. Sealed system 120 is positioned on bottom tray 138. Thus, liquid runoff from sealed system 120 may flow into and collect within bottom tray 138. Inner wall 140 may be mounted to bottom tray 138 and extend upwardly from bottom tray 138 to a top wall of casing 110. Inner wall 140 limits or prevents air flow between interior side portion 112 of casing 110 and exterior side portion 114 of casing 110 within mechanical compartment 116 of casing 110. Thus, inner wall 140 may divide mechanical compartment 116 of casing 110.
Packaged terminal air conditioner unit 100 further includes a controller 146 with user inputs, such as buttons, switches and/or dials. Controller 146 regulates operation of packaged terminal air conditioner unit 100. Thus, controller 146 is in operative communication with various components of packaged terminal air conditioner unit 100, such as components of sealed system 120 and/or a temperature sensor, such as a thermistor or thermocouple, for measuring the temperature of the interior atmosphere. In particular, controller 146 may selectively activate sealed system 120 in order to chill or heat air within sealed system 120, e.g., in response to temperature measurements from the temperature sensor.
Controller 146 includes memory and one or more processing devices such as microprocessors, CPUs or the like, such as general or special purpose microprocessors operable to execute programming instructions or micro-control code associated with operation of packaged terminal air conditioner unit 100. The memory can represent random access memory such as DRAM, or read only memory such as ROM or FLASH. The processor executes programming instructions stored in the memory. The memory can be a separate component from the processor or can be included onboard within the processor. Alternatively, controller 146 may be constructed without using a microprocessor, e.g., using a combination of discrete analog and/or digital logic circuitry (such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, and the like) to perform control functionality instead of relying upon software.
As may be seen in
During operation of sealed system 120 in the cooling mode, refrigerant flows from interior coil 124 flows through compressor 122. For example, refrigerant may exit interior coil 124 as a fluid in the form of a superheated vapor. Upon exiting interior coil 124, the refrigerant may enter compressor 122. Compressor 122 is operable to compress the refrigerant. Accordingly, the pressure and temperature of the refrigerant may be increased in compressor 122 such that the refrigerant becomes a more superheated vapor.
Exterior coil 126 is disposed downstream of compressor 122 in the cooling mode and acts as a condenser. Thus, exterior coil 126 is operable to reject heat into the exterior atmosphere at exterior side portion 114 of casing 110 when sealed system 120 is operating in the cooling mode. For example, the superheated vapor from compressor 122 may enter exterior coil 126 via a first distribution conduit 134 that extends between and fluidly connects reversing valve 132 and exterior coil 126. Within exterior coil 126, the refrigerant from compressor 122 transfers energy to the exterior atmosphere and condenses into a saturated liquid and/or liquid vapor mixture. An exterior air handler or fan 150 is positioned adjacent exterior coil 126 may facilitate or urge a flow of air from the exterior atmosphere across exterior coil 126 in order to facilitate heat transfer.
Sealed system 120 also includes a capillary tube 128 disposed between interior coil 124 and exterior coil 126, e.g., such that capillary tube 128 extends between and fluidly couples interior coil 124 and exterior coil 126. Refrigerant, which may be in the form of high liquid quality/saturated liquid vapor mixture, may exit exterior coil 126 and travel through capillary tube 128 before flowing through interior coil 124. Capillary tube 128 may generally expand the refrigerant, lowering the pressure and temperature thereof. The refrigerant may then be flowed through interior coil 124.
Interior coil 124 is disposed downstream of capillary tube 128 in the cooling mode and acts as an evaporator. Thus, interior coil 124 is operable to heat refrigerant within interior coil 124 with energy from the interior atmosphere at interior side portion 112 of casing 110 when sealed system 120 is operating in the cooling mode. For example, the liquid or liquid vapor mixture refrigerant from capillary tube 128 may enter interior coil 124 via a second distribution conduit 136 that extends between and fluidly connects interior coil 124 and reversing valve 132. Within interior coil 124, the refrigerant from capillary tube 128 receives energy from the interior atmosphere and vaporizes into superheated vapor and/or high quality vapor mixture. An interior air handler or fan 148 is positioned adjacent interior coil 124 may facilitate or urge a flow of air from the interior atmosphere across interior coil 124 in order to facilitate heat transfer.
During operation of sealed system 120 in the heating mode, reversing valve 132 reverses the direction of refrigerant flow through sealed system 120. Thus, in the heating mode, interior coil 124 is disposed downstream of compressor 122 and acts as a condenser, e.g., such that interior coil 124 is operable to reject heat into the interior atmosphere at interior side portion 112 of casing 110. In addition, exterior coil 126 is disposed downstream of capillary tube 128 in the heating mode and acts as an evaporator, e.g., such that exterior coil 126 is operable to heat refrigerant within exterior coil 126 with energy from the exterior atmosphere at exterior side portion 114 of casing 110.
It should be understood that sealed system 120 described above is provided by way of example only. In alternative exemplary embodiments, sealed system 120 may include any suitable components for heating and/or cooling air with a refrigerant. Similarly, sealed system 120 may have any suitable arrangement or configuration of components for heating and/or cooling air with a refrigerant in alternative exemplary embodiments.
Cover 220 may be selectively mounted to housing 210. Thus, e.g., a technician may remove cover 220 from housing 210 during servicing of packaged terminal air conditioner unit 100. As may be seen in
As discussed above, cover 220 may be removed from housing 210 or rotated relative to housing 210 (e.g., from the position shown in
Cover 220 may be rotatable by any suitable amount on the substantially-horizontal axis A relative to housing 210. For example, cover 220 may be rotatable by more than forty-five degrees and less than one hundred and thirty-five degrees on the substantially-horizontal axis A relative to housing 210. As another example, cover 220 may be rotatable by about (e.g., within ten degrees of) ninety degrees on the substantially-horizontal axis A relative to housing 210.
As may be seen in
By rotating on the substantially-horizontal axis A relative to housing 210 with cover 220, access to control board 230 may be facilitated. For example, when cover 220 is rotated on the substantially-horizontal axis A relative to housing 210, e.g., from the vertical position of cover 220 shown in
As may be seen in
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.