1. Field of the Invention
Embodiments of the present invention relate to packaging machines and, more particularly, to an automated packaging machine for filling containers with pills, and associated method.
2. Description of Related Art
Pharmaceutical medicines and associated packaging apparatus are typically subject to relatively strict consumer protection guidelines. For example, pills, capsules, and the like, must be produced and packaged in such a way as to at least meet the minimum sterility requirements mandated by federal regulations. In addition, the pills should be delivered into the packaging such that the contents accurately meet the claimed labeling “count”, i.e., each package includes exactly the predetermined number of pills. Notwithstanding the above, it is also desired to package the product in a mass production operation to offset costs typically attributed to a labor intensive operation in order to provide an economic product.
In the past, pill filling machines have been proposed that provide automated bottle counts by filling a hopper with pills and causing a plurality of the pills to be caught by a pill capturing device, such as an array of rotary slats. The rotary slats drop the captured pills into a plurality of bottles disposed in alignment with the dropping pills. The bottles are distributed along an endless conveyor belt that is timed to advance and stop the bottles according to the filling operation.
Conventional pill capturing devices more particularly include a series of rotary slats each configured to receive, hold, and move a plurality of capsules or pills along a closed path. The rotary slats are typically discs fixed on a rotatable shaft and have a plurality of openings in the outer peripheral edge portion thereof for capturing individual pills. Accordingly, the closed path is arcuate and generally disposed between a pill hopper and discharge area above the conveyor belt. By the rotary action of the slat, the pills move in a direction normal to the conveyor belt. The pill capturing device then generally discharges the pills by rotating the slats, which move corresponding to the closed path, such that the pills fall out of the respective openings at the filling station. The pills are often funneled through a chute that empties into a corresponding bottle.
The “count,” or number of pills in the bottle, is determined by positioning the bottles in the pill dropping zone for a predetermined time. The duration of the filling operation for each bottle corresponds to the number of openings in each slat that the machine is capable of delivering to the bottles per unit of time. The duration of the filling operation, speed of the rotary slats, and configuration of the pill capturing device are used to calculate the count.
Unfortunately, if the pill capturing device fails to capture a pill in each and every cavity or receptacle, or if a pill should mistakenly be diverted, at least one of the bottles can be improperly filled. The conventional solution to this problem is to situate an operator adjacent to the slats to ensure that each receptacle is filled with a pill. If a pill is missing, the operator manually places a pill in the receptacle. Such an approach involves labor costs and can be unsatisfactory for sterility purposes. In addition, the accuracy of the count of each bottle is largely determined by the operator and, as such, a fully and consistently accurate count cannot be guaranteed.
U.S. Pat. No. 6,185,901 to Aylward, which is incorporated herein by reference, provides an exemplary solution to this problem by way of a machine with independently driven rotary slats. The pills are allowed to fall into an exterior receptacle of a rotary slat and, in one embodiment, passed under a rotary brush in an attempt to prevent two pills from being disposed in the same receptacle. A separate counting device is associated with each rotary slat for counting each pill as it falls from the slat into the container. A positive count is provided for each container and improperly filled slats will not affect the total count for that container. If a particular container has a low count, the respective slat can be further rotated to fill the container. Because the slats are independently driven, the other slats can remain stationary to prevent overfilling. Thus, the machine permits an accurate filling of each bottle.
One alternative apparatus is a rotatable drum, as provided in U.S. Pat. No. 4,094,439 to List. The rotatable drum includes a plurality of parallel rows of throughgoing holes that constitute receptacles for dragees. The dragees enter the receptacles in the drum from the interior of the drum at an inner input location, exit to the exterior of the drum at an outer retrieval location, and are filled into bottles. An ordering device facilitates the entry of the dragees into the receptacles, and feeler blades engage the receptacles. If any of the receptacles in an axially extending row do not contain a dragee, one of the feeler blades actuates a bolt pusher, which prevents any of the dragees in the row from being filled into the bottles. Instead, a solenoid and knockout bar empty the receptacles of the row. By preventing the bottles to be filled from partially filled rows of receptacles, the apparatus prevents the different bottles from being filled at different rates.
Undesirably, the additional mechanical components that are required for emptying the partially filled rows of apertures increase the complexity, cost, and likelihood of failure of the apparatus. Additionally, emptying the partially filled rows slows the process of filling the bottles because no pills are dispensed from those rows.
Accordingly, there is a great need for a packaging apparatus which provides an accurate count for each container and operates at a high speed. The apparatus should require a minimum of operator intervention. Additionally, the apparatus should be cost effective, both in initial cost and maintenance costs.
The above and other needs are met by embodiments of the present invention which, according to one aspect, provides an automated packaging apparatus for depositing a predetermined amount of pills into each of a series of containers. Such an apparatus comprises at least one rotary slat. Each rotary slat is configured as a cylinder independently rotatable about a first axis extending longitudinally therethrough and comprising a radially inward portion defining a plurality of pill apertures therein. Each pill aperture is adapted to receive a pill from a plurality of pills deposited into an interior space of the respective cylinder, wherein the pills are received by the pill apertures at a first angular position of the at least one rotary slat. A negative pressure system is in fluid communication with the pill apertures of the at least one rotary slat. The negative pressure system is configured to apply a negative pressure to the pill apertures so as to retain the pills therein, as the at least one rotary slat rotates about the first axis at least from the first angular position to a second angular position. An ejection mechanism is configured to be in communication with the pill apertures of the at least one rotary slat at the second angular position so as to eject the respective pills therefrom toward the interior space. A collection mechanism is disposed adjacent to the radially inward portion of the at least one rotary slat about the second angular position. The collection mechanism is configured to collect the pills ejected from the pill apertures of the at least one rotary slat and to direct the pills toward one of the series of containers for deposition therein.
Another aspect of the present invention comprises a method of depositing a predetermined amount of pills into each of a series of containers. Such a method includes receiving a pill in each of a plurality of pill apertures defined by a radially inward portion of at least one rotary slat from a plurality of pills deposited into an interior space of the respective cylinder, wherein each rotary slat is configured as a cylinder independently rotatable about a first axis extending longitudinally therethrough. A negative pressure is applied to the plurality of pill apertures with a negative pressure system, so as to retain the pills within the pill apertures, as the at least one rotary slat rotates about the first axis at least from a first angular position of the at least one rotary slat to a second angular position thereof. The pills are ejected from the pill apertures at the second angular position of the at least one rotary slat, toward the interior space, with an ejection mechanism in communication with the pill apertures. The pills ejected from the pill apertures are collected with a collection mechanism disposed adjacent to the radially inward portion of the at least one rotary slat about the second angular position, and directed toward one of the series of containers for deposition therein.
Thus, embodiments of the present invention include a packaging apparatus and associated method providing an accurate count of pills dispensed to each container. Such an apparatus requires a minimum of operator intervention, and can operate at a high speed. Additionally, such an apparatus is cost effective, both in initial cost and maintenance cost.
Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, wherein:
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.
Embodiments of the present invention are generally directed to a pill handling apparatus 10, such as an automated packaging machine. Such a pill handling apparatus can be used for dispensing pills into containers, as discussed, for example, in U.S. Patent No. 6,185,901 to Aylward, and in U.S. Patent No. 6,401,429 to Aylward, the contents of which are incorporated herein by reference. In other embodiments, such a pill handling apparatus can be used for other handling operations, besides pill packaging, such as transporting pills during manufacture, inspection, or the like.
As illustrated in
The pill handling apparatus 10 includes one or more rotary slats 18 for receiving pills and transporting the pills to the receiving containers 16. Each rotary slat 18 is generally configured as a cylinder, wherein the plurality of pills is received within the inner or interior portion 20 thereof defined by an inner surface. The inner surface further defines receptacles or pill apertures 22 along one or more paths about the rotary slat 18. For example, the slats 18 are illustrated to have a single path of receptacles 22 along the inner surface 20. In some instances, the inner surface of each rotary slat 18 can define a continuous groove or slot (see, e.g.,
As shown in
Each slat 18 may be independently engaged with and rotated by a respective drive arrangement or mechanism (not shown) to transport pills independently of the other slats 18. Each rotary slat 18 rotates in a first direction 19 defining an arcuate delivery path from a first pill capture or first angular position 21 to a second release or second angular position 23, where the pill 12 is released. The release position 23 is generally about 180 degrees away from the first pill capture position 21. In one embodiment, the first angular position 21 may be, for instance, about the “six o'clock” position, while the second angular position 23 may be, for instance, about the “twelve o'clock” position. The drive arrangement may be configured, for example, to engage the outer surface 14 of the rotary slat 18 by friction or geared engagement to turn the rotary slat in the first direction 19.
The controller 46 may also be configured to control the operation of the drive arrangement(s) independently of each other such that the rotary slats 18 can be independently rotated at various dissimilar speeds, if desired or appropriate. For example, each slat 18 can be rotated at a fast speed during the initial portion of the pill filling operation until a predetermined number of the pills 12 is delivered to the respective container 16 and subsequently rotated at a slower speed to finish the filling operation and to prevent under-filling or over-filling of the container 16. By rotating the various rotary slats at dissimilar speeds, e.g., rotating one slat at relatively fast speed while another slat is rotated at a relatively slow speed (or stopped), the pills can be dispensed from the different slats at different rates. Additionally, the controller 46 can alternately accelerate and decelerate the rotary slats, individually or in unison, to cause a jerking or vibratory motion in the rotary slats 18 and agitate the pills 12. Such agitation of the pills 12 can be useful in encouraging the pills 12 to become seated in the pill receptacles 22.
In some embodiments, a negative pressure or vacuum assembly 90 may be disposed in fluid communication with each of the rotary slats 18 to apply suction, or draw air into, a portion of the receptacles 22 of each rotary slat 18 through, for example, a channel 22a extending from the radially outward portion 18a of the rotary slat 18 to the receptacles or apertures 22, so as to act upon pills to be received by or retained within the receptacles 22. In particular, the vacuum assembly 90 may include one or more vacuum shrouds 30 (wherein a single shroud 30 is illustrated) disposed adjacent to the rotary slat(s) 18 so as to extend at least partially about the radially outward portion 18a thereof. In one embodiment, the shroud 30 extends at least from about the first angular position 21 of the rotary slat 18 to about the second angular position 23. Air is drawn from the shroud 30 by a fan, pump, or other appropriate low pressure source through a respective vacuum port 32. As shown, channels or air passages 22a are formed within the rotary slat 18 and lead outwardly from respective receptacles 22. Thus, each channel 22a fluidly connects one of the receptacles 22 about the inner circumference or inner surface of the slat 18 to the radially outward portion 18a of the slat 18, such that the receptacles 22 can be affected by suction applied via the shroud 30. As such, the receptacles 22 temporarily disposed between the first angular position 21 and the second angular position 23 are temporarily disposed in fluid communication with the suction applied via the shroud 30 such that, as air drawn from the shroud by the vacuum port 32, air is drawn into the receptacles and through the air passages or channels 22a. The disposition of the receptacles, in this regard, is referred to herein as “temporary” because the rotary slats are generally being rotated when the pill handling apparatus 10 is used. Thus, the vacuum assembly 90 can selectively draw air into or apply suction to the receptacles 22 according to the rotational position of each rotary slat 18 so that the pills 12 are urged into the receptacles 22 at a first angular position (e.g., the “capture” position 21 about the six o'clock position of the rotary slat 18) and released from the receptacles 22 at a second angular position (e.g., the release position 23 for dispensing the pills 12 into the containers 16).
Thus, pills 12 deposited into the interior portion of the cylindrical rotary slats 18 are urged toward receipt and capture by the receptacles 22 because of the air currents and pressure differentials present at the receptacles due to the suction imparted by the vacuum assembly 90 via the shroud 30. In some cases, the pills, once seated in the receptacles, partially or entirely block the air passages 22a. Thus, these descriptions relate to configurations wherein each seated pill completely seals the receiving receptacle to prevent further air flow, configurations wherein each seated pill partially seals the receiving receptacle to limit further air flow, and configurations wherein air flow is permitted without significant reduction by a pill seated in a receptacle. As a receptacle arrives at the release or second angular position 23, the channel 22a associated therewith loses fluid communication with the vacuum shroud 30 and experiences atmospheric pressure, or a positive pressure, such that the pill 12 is released from the receptacle 22 to be received by a container 16. That is, each channel 22a is disposed under the shroud 30 while the associated receptacle 22 is rotated from the first angular position 21 toward the second angular or release position 23 such that the suction retains the pill in the associated receptacle 22. However, as each receptacle 22 reaches the release or second angular position 23, the associated channel 22a is rotated beyond the shroud 30 so that the pill is no longer held in the receptacle 22 by suction. One skilled in the art will appreciate, however, that other configurations of vacuum assemblies 90 can be used to provide the desired suction for controlling the seating the pills in the rotary slats. Also, while the illustrated vacuum assembly 90 is used to maintain the pills in the receptacles between the capture and release positions, a shroud or cover can be additionally or alternatively provided about the inner circumference of the cylindrical rotary slat for preventing the release of the pills from the receptacles.
In some embodiments of the present invention, the pills can be released from the receptacles 22 at the release or second angular position 23 such that the pills fall therefrom, without being positively discharged from the slats 18. Alternatively, a positive pressure or blower assembly 95, or other suitable ejection mechanism, can be disposed in fluid communication with each rotary slat (for example, via the channel 22a) to blow air into the slat such that air is expelled inwardly toward the inner portion 20 of the cylindrical rotary slat, from each receptacle that arrives at the release or second angular position 23. In particular, the blower assembly 95 can include one or more blower shrouds 34 (wherein a single blower shroud 34 is illustrated) disposed adjacent to a respective rotary slat 18. Air is provided to the blower shroud 34 by a pump, fan, or high pressure source through a blower port 36. The blower shroud is disposed proximate to the release position 23, and expels air from the receptacle 22 at the release position by way of the air passage 22a associated with that receptacle. The expelled air assists to dislodge the pill captured by the receptacle in order for the pill to be released and dispensed into the respective container 16. Thus, as each receptacle arrives at the release position 23 by movement of the rotary slat, any pill seated in the receptacle is urged to be released by the air provided by the blower shroud 34. In some instances, other positive pressure mechanisms, such as particular nozzles (not shown) in communication with the blower assembly 95, may be implemented to provide a more targeted approach to the dislodgement of pills from the receptacles. One skilled in the art will appreciate, however, that the receptacles 22 at the second angular position may, in some instances, experience a discontinuance of the suction applied by the vacuum assembly 90 and, as a result, may fall from the receptacles 22 under the influence of gravity. In such instances, the blower assembly 95/blower shroud 34 may not be necessary.
One skilled in the art will further appreciate that, if a blower assembly 95 is implemented, a separate blower shroud 34 may not necessarily be required, as a single shroud may be appropriately partitioned to provide separate vacuum 30 and blower 34 shroud portions. In still other instances, such a single partitioned shroud may extend completely about the rotary slats 18 so as to cover the radially outward portions 18a thereof. In such instances, the laterally outward portions of the shroud (i.e., along the axis defined by the rotary slats 18) may extend radially inward or otherwise engage the laterally outermost slat(s) so as to provide at least a partial seal therebetween. The at least partial seal serves to direct the suction or positive pressure applied through the shroud to be directed through the channels 22a of the rotary slats 18.
Such an example of a shroud entirely encompassing the rotary slats 18 is shown in
Where an encompassing single shroud is provided, the rotary slat(s) 18 may be formed in situ such that the shroud may be provided as an integral, single-piece component. In such instances, a suitable forming device such as, for example, a laser sintering device may be implemented to form the rotary slat(s) 18 within the shroud. A variety of materials can be used for the construction of the rotary slats 18 including, but not limited to, metals, metal alloys, and polymers. In some instances, the rotary slats 18 are formed of a durable, low friction material that is cost effective for manufacture, such as a compound comprising acrylonitrile-butadiene-sytrene and polytetrafluoroethylene. Depending on the type of pills 12 fed by the rotary slats 18, it may also be important that the material of the rotary slats 18 does not chemically affect the pills 12. Other components of the pill handling apparatus 10 can be made of the same or different materials. For example, the chutes 62 may be comprised of an acetal or Delrin™ polymer, available from DuPont.
In order to determine whether a pill is received by each receptacle 22, one or more inspection devices (not shown) may be disposed and arranged to inspect each particular rotary slat so as to detect pills received by and transported in the receptacles thereof. In some cases, the inspection device may be, for example, an optical imaging device, such as a camera, configured to inspect the slats for pills by detecting an image of each pill to determine the size, shape, and/or other characteristics of the pill. Thus, the inspection devices can be configured to determine the presence of the pills in the receptacles and/or determine a characteristic of the pills, such as whether the pills are broken or otherwise defective. If provided, the inspection devices are disposed in communication with the controller 46, e.g., so that the controller can use the devices to determine, for example, if pills are transported and delivered by each receptacle to the containers and the number of pills deposited in each container.
The rotary slat(s) 18 may, in some instances, be disposed above a filling station 60 where a respective container 16 receives pills. More particularly, a collection mechanism such as one or more chutes 62 may be disposed with respect to the release or second angular position 23 of the rotary slat(s) 18 to guide pills from the respective rotary slat 18 to a container 16 at the filling station 60. Accordingly, as a receptacle 22 having a pill therein arrives at the release position 23, the pill is released from the receptacle and is collected by a chute 62. The release may be facilitated by gravity, as the receptacle arriving at the release position loses fluid communication with the vacuum shroud 30. The release of the pill may also, or alternatively, be facilitated by air from a blower shroud 34 being expelled through the receptacle at the release position.
In one embodiment, the container 16 may be brought into position under the chute(s) 62 by a conveyor device 70 or other suitable container-movement system, as will be appreciated by one skilled in the art, wherein the container 16 may be appropriately placed, for example, by mechanical stops or any number of placement arrangements (see, e.g., gating mechanism/stop gate 64 in
The number of pills 12 delivered to each container 16a, 16b can be determined and used to direct the independent operation of the rotary slats 18. In this regard, a counting device or counter device (see, e.g., element 66 in
One exemplary counting device includes an infrared light source and a light receiver positioned substantially opposite the light source across a central passage of the counting device. The light source generates a light beam that is detected by the opposing light receiver. When the light beam is interrupted by a falling pill 12, the light receiver transmits a signal which increases the count in the controller 46. Thus, the number of interruptions corresponds to the number of pills 12 delivered into a particular container 16. In some embodiments, however, the controller 46 may be configured to control the quantity of pills 12 provided in the reservoir 14. For example, a level sensor can detect the quantity of pills 12 in the reservoir 14. The quantity may be determined optically, by weight, or otherwise. The level sensor communicates a corresponding value or signal to the controller 46. When the controller 46 detects that the level of pills 12 in the reservoir 14 is below the desired level, the controller 46 can open a reservoir gate that controls the passage of pills 12 from a bulk bin to the reservoir 14, thereby maintaining a desired number of pills 12 in the reservoir 14. The desired level of pills 12 in the reservoir 14 can be adjusted to optimize the seating of pills 12 in the receptacles 22 of the slats 18 and to prevent wearing or breaking of the pills 12 caused by overfilling of the reservoir 14.
After the containers 16 at the filling station(s) 60 have been filled, the containers 16 are transported away from the filling stations 60 for further processing or packaging and different, unfilled containers 16 are transported to the filling station(s) 60. As previously discussed, for example, the containers 16 can be supported by a conveyor 70 (i.e., in the form of a belt) that is driven by a motor (not shown), in a direction 71 parallel to the first axis about which the rotary slats 18 rotate. Stop gates 64 (see, e.g.,
Many modifications and other embodiments of the invention will come to mind to one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
This application is a continuation of U.S. application Ser. No. 12/188,535, filed Aug. 8, 2008,which claims the benefit of U.S. Provisional Application No. 60/954,972, filed Aug. 9, 2007, both of which are incorporated by reference herein in their entirety.
Number | Date | Country | |
---|---|---|---|
60954972 | Aug 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12188535 | Aug 2008 | US |
Child | 13012451 | US |