The present invention relates generally to flexible photoreceptor belts, and more particularly to a packaging apparatus for wrapping and folding a flexible photoconductive belt loop so as to prevent light from shocking it during shipping and during loading into an image producing machine, such as an electrostatographic image reproduction machine.
In the art of electrostatography, a photoconductive member including an insulating photoconductive layer on a conductive layer is imaged by first electrostatically charging the imaging surface of the photoconductive insulating layer. The photoconductive member is then exposed to a pattern of activating electromagnetic radiation such as light, which selectively dissipates the charge in the illuminated areas of the photoconductive insulating layer while leaving behind an electrostatic latent image in the non-illuminated area. This electrostatic latent image may then be developed to form a visible image by depositing finely divided electroscopic toner particles on the surface of the photoconductive insulating layer. The resulting visible toner image can be transferred to a suitable receiving member such as paper. This imaging process may be repeated many times with reusable photoconductive insulating layers.
As is well known, the photoconductive member may be in the form of a flexible photoreceptor belt. These flexible belts have a substrate and sensitive layers that include an electrically conductive surface and at least one photoconductive layer. A common flexible photoreceptor belt comprises a substrate, a conductive layer, an optional hole blocking layer, an optional adhesive layer, a charge generating layer, a charge transport layer and, in some embodiments, an anti-curl backing layer.
These photoreceptor belts are usually thin and flimsy, but most importantly, they are very sensitive to light. Accordingly, during handling of these belts when shipping or loading them into an image reproduction machine, damage such as scratches, dents can result, and light shock can result if the belts are exposed for significant periods to light. Such damage ordinarily can lead to degradation in the quality of images produced thereon by the reproduction machine.
There is therefore a need for packaging apparatus that can wrap and fold a flexible photoconductive belt loop so as to prevent light from shocking it during shipping and during loading into an image producing machine.
In accordance with the present invention, there is provided a packaging apparatus for packaging a flexible photoconductive belt loop to prevent light from shocking the flexible photoconductive belt loop during shipping and during loading into an image reproduction machine. The packaging apparatus includes (a) a cut sheet of light occluding and protective flexible member for wrapping over the flexible photoconductive belt loop. The cut sheet has a length L2 including a first end, a second end, and (iv) at least one loop tacking aperture formed through a second end portion thereof. The packaging apparatus also includes a first adhesive tape member applied over the second end portion, through the at least one loop tacking aperture, and onto a first end portion. The packaging apparatus further includes a plurality of packaging cores, and a second adhesive tape member applied over the second end and over a portion of the main body portion.
In the detailed description of the invention presented below, reference is made to the drawings, in which:
While the present invention will be described in connection with a preferred embodiment thereof, it will be understood that it is not intended to limit the invention to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
Referring to
The packaging apparatus 20 also includes a first adhesive tape member 44 applied over the second end portion 37, through the at least one loop tacking aperture 38, 39, and onto the first end portion 35 of the cut sheet of light occluding and protective flexible member 32 to form a protective loop 40 thereof around the flexible photoconductive belt loop 30. The protective loop 40 and the flexible photoconductive belt loop 30 together form a wrapped assembly 50.
The packaging apparatus 20 further includes a second adhesive tape member 48, in the form of a removable pull tab, for applying over the second end 36 of the cut sheet of light occluding protective flexible member 32, and over a section of the main body portion 33 of the cut sheet of light occluding protective flexible member 32 when assembled into the wrapped assembly 50 and folded in accordance with the present invention as described below.
In one embodiment, the light occluding protective flexible member 32 comprises photo paper, and specifically black photo paper. The total length L3 of the light occluding protective flexible member 32 is significantly greater than the circumference L1 of the flexible photoconductive belt loop 30, thus allowing for overlapping first and second end portions 35, 37.
In accordance with an aspect of the present invention, the first adhesive tape 44, (as shown in
Referring now to
In accordance with the present invention, each of the cylindrical packaging core members C1, C2, C3 has a diameter Dm that is selected such that these first, second and third cylindrical packaging cores will be linearly aligned as shown in
In general,
Referring specifically now to
As can be seen, there has been provided a packaging apparatus for packaging a flexible photoconductive belt loop to prevent light from shocking the flexible photoconductive belt loop during shipping and during loading into an image reproduction machine. The packaging apparatus includes (a) a cut sheet of light occluding and protective flexible member for wrapping over the flexible photoconductive belt loop. The cut sheet has a length L2 including a first end, a second end, and (iv) at least one loop tacking aperture formed through a second end portion thereof. The packaging apparatus also includes a first adhesive tape member applied over the second end portion, through the at least one loop tacking aperture, and onto a first end portion. The packaging apparatus further includes a plurality of packaging cores, and a second adhesive tape member applied over the second end and over a portion of the main body portion.
While the embodiment of the present invention disclosed herein is preferred, it will be appreciated from this teaching that various alternative, modifications, variations or improvements therein may be made by those skilled in the art, which are intended to be encompassed by the following claims:
This application is related to U.S. application Ser. No. ______ (Applicants' Docket NO. D/A1754) entitled “PACKAGING MACHINE AND METHOD FOR WRAPPING AND FOLDING FLEXIBLE PHOTORECEPTOR BELTS” filed on even date herewith, and having at least one common inventor.