The present invention relates to a packaging apparatus for manufacturing a package bag filled with content such as a liquid, a viscous substance, or the like, from an elongate film reeled out from a film roll.
Heretofore, there has been known a filling packaging apparatus (hereinafter referred to simply as “packaging apparatus”) for continuously producing packaged products (package bags) filled with content such as a liquid, a viscous substance, or the like, for example. Generally, the packaging apparatus manufactures package bags by folding a film in the form of an elongate sheet reeled out from a film roll, into a tubular form, and feeding the content into the film and forming sealed regions on the film.
Actually, the film that is wound on film roll R comprises a plurality of joined films of a predetermined length. As shown in
JP11-236002A discloses a packaging apparatus which does not thermally seal seam joint B between tapes. The disclosed packaging apparatus will be briefly described below with reference to
As shown in
The packaging apparatus is mainly characterized in that it further includes seam joint detecting means 16 for detecting seam joints B, and the actuation of the above mechanisms is controlled based on the detected result from seam joint detecting means 16 to prevent tapes B′ at seam joints B from being thermally sealed. Therefore, the problems (e.g., a portion of the melted tape is applied to a seal bar of the horizontal sealing mechanism which results in lowering the quality of package bags which will subsequently be manufactured) caused by the melted tape are prevented from arising.
Another known packaging apparatus of this type includes a mechanism for joining the terminal end of a film from a film roll and the beginning end of the next film roll to each other at the time that the first-mentioned film roll is finished up (see JP09-58616A). The joining mechanism allows the packaging apparatus to continuously manufacture package bags without the need for a tedious process for setting a next film roll in place again each time one film roll is used up.
When the terminal end of a film and the beginning end of the next film are joined to each other, the two films are in a state shown in
The joined elongate film is thermally sealed by horizontal sealing mechanism 150. When horizontal sealing mechanism 150 horizontally seals joint 5 of the films, it tends to cause the following problems: Since the films overlap each other as two plies in joint 5, the heat is less liable to be transferred to these films than when the other portions of the films are horizontally sealed, possibly causing a sealing failure in the horizontally sealed region. The sealing failure may possibly allow the packaged content to leak out. This problem is also not desirable as it presents an obstacle to the continuous production of package bags, leading to a reduction in production efficiency. The problem also occurs in vertically sealed regions.
One solution to the above problems is to use a sensor or the like for detecting joint 5 and to prevent joint 5 from being thermally sealed as indicated by the manufacturing method disclosed in JP11-236002A. However, the method disclosed in JP11-236002A is only concerned with the detection of seam joints B (see
The present invention has been made in view of the above difficulties. It is an object of the present invention to provide a packaging apparatus including a mechanism for joining a film from a film roll and a film from another film roll, the packaging apparatus being capable of preventing a joint of the films from suffering a thermal sealing failure, thereby increasing production efficiency.
To achieve the above object, there is provided in accordance with the present invention a packaging apparatus comprising film supply means for joining the terminal end of a first film reeled out from a first film roll and the beginning end of a second film reeled out from a second film roll to each other, and supplying the first and second films which are joined to each other as an elongate film, and packaging means for shaping the elongate film into a tubular form, vertically sealing the tubular form into a tubular film with a vertical sealing mechanism, horizontally sealing the tubular film with a horizontal sealing mechanism to produce a bottom of the tubular film, feeding a content into the tubular film, and thereafter horizontally sealing the bottomed tubular film again to produce a package bag filled with the content, wherein the packaging apparatus further comprises distance adjusting means for changing the distance along the elongate film from a position, in which the first film and the second film are joined to each other to a position in which the tubular film is horizontally sealed, depending on the length of the package bag to be manufactured, to a length which is not integral multiple of the length.
The packaging apparatus includes the distance adjusting means for changing the distance along the film from the position in which the films are joined to each other to the position in which the tubular film is horizontally sealed, depending on the size (length) of the package bag. Therefore, after the distance from the joined position to the horizontally sealed position is changed by the distance adjusting means, even if the films are joined and the joint between the films is delivered to the packaging means, the horizontal sealing mechanism does not sandwich the joint. This is because the distance from the joined position to the horizontally sealed position is not an integral multiple of the length of the package bag. Since the joint is not placed in the horizontally sealed position simply by changing, in advance, the distance between the joined position and the horizontally sealed position, the packaging apparatus does not need a sensor or the like for detecting the joint.
In the above invention, the distance adjusting means may comprise a film accumulator disposed between the film supply means and the packaging means, for guiding and holding the elongate film in a meandering fashion with a plurality of guide rollers, and the guide rollers may include movable guide rollers for changing the length of the elongate film held in the film accumulator. Specifically, the guide rollers include fixed guide rollers and the movable guide rollers which are movable toward and away from the fixed guide rollers, and the movable guide rollers automatically move to a preset position depending on the length of the package bag to be manufactured.
When the vertical sealing mechanism operates, it should preferably vertically seal a region of the elongate film including the joint for a period of time which is longer than a normal vertically sealing time. The joint is thus vertically sealed sufficiently well so as to prevent the content from leaking out of the vertically sealed region. The region including the joint should preferably be vertically sealed at a timing that is after a preset number of cycles after the film supply means has joined the first film and the second film to each other. As the timing for vertically sealing the region is not generated by detecting the joint, there is no need for a sensor or the like for detecting the joint.
The packaging means may continuously manufacture the package bag while the vertical sealing mechanism and the horizontal sealing mechanism are feeding the tubular film through a box motion process. The movable guide rollers should preferably move at a constant speed toward the fixed guide rollers while the film supply means is joining the first film and the second film to each other. The packaging means can thus continuously manufacture the package bag without stopping its packaging operation.
The term “box motion” refers to a process of operating a thermally sealing mechanism (the vertical sealing mechanism or the horizontal sealing mechanism) of the packaging means to move a sealing bar of the thermally sealing mechanism in synchronism with the feeding of the film while heating the film, so that a thermally sealed region (a vertically sealing region or a horizontally sealed region) can be formed in the film without the need to stop feeding the film. The sealing bar moves to a given position along the direction in which the film is fed, thereafter is retracted from the film, and then moves back to its initial position along a direction opposite to the direction in which the film is fed.
With the packaging apparatus according to the present invention, as described above, since the joint between the films is not placed in the horizontally sealed position, the horizontally sealed region is prevented from suffering a sealing failure, and the content is prevented from leaking out of the horizontally sealed region during the packaging operation. Consequently, the packaging apparatus can continuously manufacture package bags without any need to stop, and can have an increased production efficiency.
The above and other objects, features, and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings which illustrate an example of the present invention.
1A, 1B film
1′ tubular film
2 unfilled space
3 sealed portion
5 joint
10 packaging apparatus
10A film supply mechanism
10B film accumulator
10C packaging mechanism
14 folding guide
15 feeding nozzle
16 stepping roller
17 rotary encoder
18 rod-shaped member
18
a guide roller
21 accumulating roller
22 roller
30 horizontal sealing mechanism
31 heater bar
24 roller holding member
41 feed roller
45 squeezing roller
60 horizontal sealing mechanism
61 heater bar
62 heater bar bearing member
71 joining sealer
76, 77 roll holding member
81 cutter
83 sensor
85 rollers for reeling out films
91, 92 package bag
F1 vertically sealed region
F2 horizontally sealed region
Ra, Rb Raw film roll
Exemplary embodiments of the present invention will be described below with reference to the drawings.
As shown in
25 As shown in
If the content which fills the package bag is a liquid and if either sealed region F1 or F2 or joint 5 has a sealing failure, then the content may possibly leak from the region in which the sealing failure occurs. Therefore, the package bag of this type needs to have its sealed regions thermally sealed reliably. In particular, package bag 92 shown in
Sealing failure problems in joint 5 are classified into those caused when joint 5 is positioned in horizontally sealed region F2 as shown in
In
If lower package bag 91 has already been severed from package bag 92 and empty package bag 92 is dangling from the lowest end of the tubular film, then since package bag 92 is empty, the tubular film is free from tensile forces applied by the weight of the content. Consequently, empty package bag 92 tends to contact heater bar 61 (see
The above problems are summarized as follows: For making package bags according to the present exemplary embodiment, firstly, it is preferable not to position joint 5 between films in horizontally sealed region F2 from the standpoint of sealing failures and also from the standpoint of reducing wasted package bags. Secondly, even if joint 5 is positioned in the belly portion of the package bag as shown in
As will be described in detail later, packaging apparatus 10 according to the present exemplary embodiment deals with the first point referred to above to solve these problems by moving roller holding member 24 (see
Film joining mechanism 10A shown in
An example of the operation of film joining mechanism 10A will be described below. The state of film joining mechanism 10A shown in
In a normal mode of operation (when sufficient remaining film lengths are available), joining sealer 71 is in a retracted position, and rollers 85 for reeling out films are actuated to continuously reel out film 1A from film roll Ra. Thereafter, when film 1A is consumed and its end marks A are detected by sensor 83, joining sealer 71 is advanced to thermally seal film 1A and film 1B to each other, thereby joining the two films. Subsequently, cutter 81 is actuated to cut off the superfluous film length. In a subsequent process, film 1B from film roll Rb will be used. The joint where the two films are joined to each other includes two plies overlapping each other, as shown in
Packaging mechanism 10C comprises folding guide 14 for folding the film into a tubular form, vertical sealing mechanism 30 for vertically sealing side edges of the film folded by folding guide 14 to form vertically sealed region Fl thereby producing tubular film 1′, and a pair of feed rollers 45, a pair of squeezing rollers 45, and horizontal sealing mechanism 60 which are disposed downstream of vertical sealing mechanism 30 with respect to the direction in which the film is fed.
Packaging mechanism 10B is of a structure identical to a vertical filling packaging machine disclosed in JP-A 2004-276930 filed earlier by the present applicant. Each of vertical sealing mechanism 30 and horizontal sealing mechanism 60 performs a thermally sealing process called “box motion” for manufacturing package bags while continuously feeding the film without stopping it.
Vertical sealing mechanism 30 includes heater bar 31 with a built-in heating means such as a heater or the like. Heater bar 31 is movable toward and away from the film, and is also reciprocally movable vertically (in the direction in which the film is fed).
Tubular film 1′ is fed in a substantially circular cross-sectional shape, or stated otherwise, with a space kept therein, until it passes through vertical sealing mechanism 30. Thereafter, tubular film 1′ is pressed to a flat shape by a guide plate (not shown) disposed between vertical sealing mechanism 30 and feed rollers 41.
Feed rollers 41 are disposed in sandwiching relation to the transverse ends of pressed tubular film 1′. Feed rollers 41 serves as film feed means in packaging mechanism 10B, and rotate to feed tubular film 1′ downwardly.
The pair of squeezing roller 45 grips the tubular film in a manner to divide the content which is fed into the tubular film from feeding nozzle 15. While thus gripping the tubular film, the pair of squeezing roller 45 rotates to feed the tubular film downwardly with an unfilled space free of the content being formed in the tubular film.
Horizontal sealing mechanism 60 comprises heater bar 61 with a built-in heating means such as a heater or the like, and heater bar bearing member 62 disposed in confronting relation to heater bar 61. These paired members sandwich tubular film 1′ and heat the film to form horizontal sealing regions F2 (see
Although not shown, heater bar 61 has a built-in cutter for cutting horizontal sealing regions F2 to sever the package bag from tubular film 1′. Heater bar bearing member 62 has a corresponding clearance groove for preventing the cutter as it projects from interfering with heater bar bearing member 62.
A packaging process of packaging mechanism 10C thus constructed will be briefly described below with reference to
In
Then, as shown in
Then, as shown in
Thereafter, as shown in
Then, as shown in
Packaging mechanism 10C repeats the above packaging operation to continuously manufacture package bags. In packaging mechanism 10C, the stroke of vertical movement of horizontal sealing mechanism 60 is variable to make it possible to manufacture package bags of different sizes.
Such package bags of different sizes can be manufactured under the control of a controller, not shown. Specifically, the controller has some recorded operation patterns depending on the sizes (lengths) of package bags to be produced, and operates the packaging mechanism according to one of the operation patterns depending on the size of package bags that is entered from a control panel or the like.
Film accumulator 10B will be described below with reference to
As shown in
In packaging apparatus 10 according to the present exemplary embodiment, packaging mechanism 10C produces package bags in the box 10 motion mode. In the box motion mode, the film is drawn in continuously rather than intermittently. When film supply mechanism 10A joins the films, since joining sealer 71 needs to sandwich and thermally seal two films 1A, 1B, the films stop being reeled out while the films are being thermally sealed. In other words, whereas packaging mechanism 10C consumes the film continuously, the film from film supply mechanism 10A temporarily stops being supplied.
Film accumulator 10B has a basic function to make it possible for packaging mechanism 10C to continue its packaging operation under the circumstances. To perform the basic function, accumulating rollers 21 move from their initial position indicated by the solid lines in
The operation of film accumulator 10B will be described below with reference to
Accumulating rollers 21 are positioned in initial position X0. In this state, rollers 85 for reeling out films (see
Then, as shown in
When accumulating rollers 21 move to the position shown in
A process of preventing joint 5 between the films from being positioned in horizontal sealing mechanism 60 will be described below with reference to
As shown in
As shown in
According to the present exemplary embodiment, distance Lx between the horizontally sealed position and the joined position is changed depending on the length of the package bags to be manufactured for thereby preventing joint 5 between the films from lying in the horizontally sealed position. Specifically, in
The above changed distance is expressed by the following equation:
(changed distance) Lx′=p×n+c
where p is the length of package bags, n is an integer (corresponding to the number of package bags) and c is a given length (smaller than p).
When distance Lx is changed to length Lx′ that is not an integral multiple of the length of package bags, joint 5 is preventing from lying in the horizontally sealed position.
According to the present exemplary embodiment, distance Lx is changed as follows: The initial position of accumulating rollers 21 is changed by distance Lx depending on the size of package bags to be manufactured. When the initial position of accumulating rollers 21 is changed, the length of the film accumulated in film accumulator 10B is also changed, resulting in a change in distance Lx.
The initial position of accumulating rollers 21 should preferably be changed automatically at the time the size of package bags to be manufactured is input. Specifically, the controller stores in advance initial positions of accumulating rollers 21 which are set depending on the sizes of package bags, and when the size of package bags to be manufactured is input, the controller moves accumulating rollers 21 to the given initial position that has been set.
The “given initial position” should preferably be set so as to position joint 5 centrally on the package bag. With the “given initial position” thus set, the possibility that joint 5 will lie in the horizontally sealed region is reduced even if the film is fed at a slightly different rate. The same principle is also applicable to the package bags shown in
A process for preventing the content from leaking out of the vertically sealed region at the time joint 5 is positioned centrally on the package bag will be described below.
In packaging apparatus 10 according to the present exemplary embodiment, vertical sealing mechanism 30 vertically seals a region including joint 5 for a longer period of time (e.g., 4 seconds) than the normal vertically sealing operation (e.g., 1 second).
In this manner, since sufficient heat is applied to vertically sealed region L1 corresponding to joint 5 where four plies of the film overlap each other, the film plies are thermally sealed well. As a result, the content is prevented from leaking out of vertically sealed region F1.
As packaging apparatus 10 according to the present exemplary embodiment does not have a sensor or the like for detecting joint 5, it is important to determine a timing to perform the vertically sealing process. For example, cycles may be counted from the time when the joining of the films is finished and a vertically sealing process may be performed at the timing when a preset count is reached.
Specifically, since the distance from the joining position to the vertically sealing position is predetermined, the number of cycles prior to a vertically sealing process for vertically sealing joint 5 can be calculated based on the distance. Accordingly, the vertically sealing process may be carried out at the timing after the number of cycles has been calculated, and there is no need for a sensor to detect joint 5.
If the vertically sealing process is to be performed for a longer period of time than usual, then the box motion process may be slowed down temporarily to ensure that heater bar 31 stays in contact with the films for a longer period of time. Alternatively, the feeding of the films may be stopped temporarily and the vertically sealing process may be performed.
In packaging apparatus 10 according to the present exemplary embodiment, as described above, since distance Lx between the horizontally sealed position and the joined position is changed to given distance Lx′ depending on the size of package bags to be manufactured, the horizontal sealing mechanism does not horizontally seal joint 5. Therefore, there is no leakage of the content due to a sealing failure of the horizontally sealed region, and production efficiency is not lowered.
When a packaging apparatus of this type starts to operate again after it has temporarily stopped operating, the sealing bars of the sealing mechanisms may be reheated or a pump serving as the drive source of feeding nozzle 15 may be restarted. The sealing mechanisms and the pump tend to be relatively unstable in operation when they start to move, and take a while to become stabilized in operation. In order to eliminate such a waste of time, it is preferable to be able to continue the packaging process continuously without shutdown as is the packaging apparatus according to the present exemplary embodiment.
If joint 5 is not positioned on the horizontally sealed region, then only one package bag is produced as a defective package bag. Therefore, such positioning of joint 5 is advantageous from the standpoint of reducing wasted package bags. In packaging apparatus 10 according to the present exemplary embodiment, joint 5 is not positioned on the horizontally sealed region simply by changing distance Lx in advance, and it is not necessary to detect the joint by using an optical sensor or the like. Consequently, the above operation can be carried out without any problems even if transparent films are employed. As described above, if the films are transparent, then joint 5 is also transparent and it is difficult to detect the joint by using an optical sensor or the like. The structure according to the present exemplary embodiment does not need to take such a problem into account. This, however, does not mean that a sensor for detecting joint 5 cannot be used in the present invention.
In packaging apparatus 10 according to the present exemplary embodiment, since a region including joint 5 is vertically sealed for a longer period of time than usual, vertical sealed region F1 is well formed even if joint 5 between films is positioned centrally on the package bag. Therefore, the content will not leak out, and production efficiency will not be lowered.
Vertically sealed regions F1 of package bags are not limited to any form, but may be of a butt seam or a lap seam. Package bags are not limited to pillow-type package bags, but may be three-way sealed-type package bags or four-way sealed-type package bags.
The changing of the initial position of accumulating rollers 21 has been described above with reference to
Packaging apparatus 10 may include, in addition to the above components, a mechanism for applying a given tensile force to the film to prevent the film from sagging. One example of such a mechanism comprises stepping roller 16 shown in
The angular displacement of rod-shaped member 18 is detected by rotary encoder 17. When rotary encoder 17 detects the displacement of rod-shaped member 18 (i.e., when the speed at which the film is drawn in by packaging mechanism 10C is relatively high), the speed of rollers 85 of film supply mechanism 1 is increased.
Use of stepping roller 16 is advantageous in that it prevents the film from suffering undue force and also from sagging even if there is a difference between the speed at which the film is supplied from film supply mechanism 10A and the speed at which the film is drawn in by packaging mechanism 10C.
However, the free movement of guide roller 18a means that the length of the path of the film is uncertain. Consequently, stepping roller 16 may prevent the above advantages from being obtained even if the initial position of accumulating rollers 21 is changed according to the present exemplary embodiment. Such a drawback may be avoided by the following operation:
The problem is that distance Lx that is to be kept constant tends to fluctuate. Therefore, at least until the joining of the films is finished, rod-shaped member 18 should be maintained in a certain position (e.g., the position indicated by the solid lines in
For maintaining rod-shaped member 18 in a certain position until the joining of the films is finished, rod-shaped member 18 may be combined with a drive source, for example, and may be held immovable by the drive source while the films are being joined. A more simple alternative approach is that the speed for feeding the film with film packaging mechanism 10C may be lowered while the films are being joined to prevent rod-shaped member 18 from being lifted.
In the above exemplary embodiment, the initial position of accumulating rollers 21 is changed depending on the size of package bags thereby causing distance Lx to change. The present invention is not limited to such an arrangement. The initial position of stepping roller 16 may be changed depending on the size of package bags thereby causing distance Lx to change.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2005/019193 | 10/19/2005 | WO | 00 | 4/10/2008 |