Packaging arrangements for rock stabilizer sets

Information

  • Patent Grant
  • 6257802
  • Patent Number
    6,257,802
  • Date Filed
    Wednesday, December 15, 1999
    25 years ago
  • Date Issued
    Tuesday, July 10, 2001
    23 years ago
Abstract
A package of rock stabilizer sets and a method for arranging the sets where six sets are provided and each set includes an elongated tube and a bearing plate. Each tube has a tapered end, an end with a flange, and a slit running the length of the tube. Each bearing plate has a flat base and a central domed section having a central aperture therethrough. In a first embodiment, the tubes of four of the sets are arranged in a first or bottom layer so that the flanged and tapered ends of the tubes are aligned alternatively and the slits face downwardly. Next, the plates of three of the sets are placed along the length of the four tubes so that the domed sections face upwardly, thereby forming a second layer. A third layer is formed by placing the three remaining plates on top of the first three plates, respectively, so that the domed sections of the second layer nest within the respective domed sections of the third layer. Then, the remaining two tubes are layered in a fourth or top layer on the flat base of each of the plates of the third layer so that the domed sections are exposed and the flanged end of one tube is aligned with the tapered end of the other tube. The sets may then be bound with a strap or the like. In a second embodiment, the tubes may be longer than the tubes of the first embodiment so that all of the plates are placed along the length of the bottom layer of tubes, thereby forming one layer of plates as opposed to two layers as in the first embodiment.
Description




BACKGROUND OF THE INVENTION




The present invention is directed toward an arrangement for packaging rock stabilizers and more particularly, toward a method for arranging the rock stabilizers so that they can be easily and conveniently carried.




Ground support, especially in the mining industry, is an important safety factor that must be taken into consideration during any type of excavating activity. An effective anchoring system that is currently being used and commonly referred to as rock stabilizers includes a tube and a bearing plate, as seen, for example, in FIG.


1


. The tube is typically made from resilient steel and has a slit along its length so that the tube will be compressible for insertion into a pre-drilled bore in a mine roof or wall as will be discussed below. One end of the tube is tapered and the other end has a ring flange. The tubes may vary in length. The bearing plate has a flat base from which a central domed section arises. The center of the domed section has an aperture therethrough.




In order to install the system, the bearing plate is placed against a surface to be supported, such as a wall or roof of a mine, with the domed section facing away from the surface. The tapered end of the tube is then driven through the aperture and as the tube slides into place, the slot narrows. The tube exerts radial pressure against the surface over its full contact length and provides plate load support. The result is a tight grip which actually grows stronger with time and ground movement. Similar systems are described in greater detail in the following patents: U.S. Pat. No. 5,295,768 to Buchhorn et al., U.S. Pat. No. 4,652,178 to Kates et al., U.S. Pat. No. 4,445,808 to Arya, and U.S. Pat. No. 4,382,719 to Scott.




While the above-described system is well known and used and provides an effective anchoring system, the same can be cumbersome to transport. That is, carrying the tubes and plates from one location to another location as they are needed can become time-consuming and burdensome. Currently, the tubes are packaged or otherwise bound together. Likewise, the plates are bound together by a wire or the like where the wire is drawn through the central apertures of the plates and secured. This packaging system, however, can be time-consuming because the tubes and the plates are packaged separately. Furthermore, as a result of the size of the tubes, it becomes difficult to transport a great number of tubes and plates at one time. This awkwardness makes it necessary for a person to make frequent trips from the actual work site to where the supply of tubes and plates are kept. This creates extra work and effort for the worker which wastes time and energy. Therefore, there is a need for an efficient packaging system which saves the worker's time and energy when installing the anchoring system at a work site.




SUMMARY OF THE INVENTION




The present invention is designed to overcome the deficiencies of the prior art discussed above. It is an object of this invention to provide an arrangement for packaging rock stabilizers which makes them easy to transport.




It is a further object of the present invention to provide a packaging system which conserves the energy and time of a person installing the rock stabilizers.




In accordance with the illustrative embodiments demonstrating features and advantages of the present invention, there is provided in a first embodiment, a package of rock stabilizer sets and a method for arranging the sets where six sets are provided and each set includes an elongated tube and a bearing plate. Each tube has a tapered end, an end with a flange, and a slit running the length of the tube. Each bearing plate has a flat base and a central domed section having a central aperture therethrough. The tubes of four of the sets are arranged in a first or bottom layer so that the flanged and tapered ends of the tubes are aligned alternatively and the slits face downwardly. For example, the flanged end of a first tube is placed next to the tapered end of a second tube and a flanged end of a third tube is placed next to the tapered end of the second tube. Next, the plates of three of the sets are placed along the length of the four tubes so that the domed sections face upwardly, thereby forming a second layer. A third layer is formed by placing the three remaining plates on top of the first three plates, respectively, so that the domed sections of the second layer nest within the respective domed sections of the third layer. Then, the remaining two tubes are placed on the flat base of each of the plates of the third layer so that the domed sections are exposed and the flanged end of one tube is aligned with the tapered end of the other tube, thereby forming a fourth or top layer. The sets may then be bound with a strap or the like. In this manner, the sets are easily carried and placed where needed.




In a second embodiment, the tubes may be longer than the tubes of the first embodiment so that all six of the plates are placed along the length of the bottom layer of tubes, thereby forming one layer of plates as opposed to two layers as in the first embodiment.




Other objects, features, and advantages of the invention will be readily apparent from the following detailed description of the preferred embodiments thereof taken in conjunction with the drawings.











BRIEF DESCRIPTION OF THE DRAWINGS




For the purpose of illustrating the invention, there is shown in the accompanying drawings forms which are presently preferred; it being understood that the invention is not intended to be limited to the precise arrangements and instrumentalities shown.





FIG. 1

is a perspective view of a currently known and used rock stabilizer set which includes an elongated tube and a bearing plate;





FIG. 2

is a top perspective view of a first embodiment of the packaging arrangement of the present invention for a plurality of stabilizer sets;





FIG. 3

is a bottom perspective view of a first embodiment of the packaging arrangement of the present invention;





FIG. 4

is a cross-sectional view taken through line


4





4


of

FIG. 2

;





FIG. 5

is a cross-sectional view taken through line


5





5


of

FIG. 2

;





FIG. 6

is a top perspective view of a second embodiment of the packing arrangement of the present invention for a plurality of stabilizer sets; and





FIG. 7

is a cross-sectional view taken through line


7





7


of FIG.


6


.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Referring now to the drawings in detail wherein like reference numerals have been used throughout the various figures to designate like elements, there is shown in

FIG. 2

a first embodiment an arrangement for packaging rock stabilizer sets constructed in accordance with the principles of the present invention and designated generally as


10


.




The present invention includes a plurality of rock stabilizer sets. One such set


12


is illustrated in FIG.


1


. Each set consists of an elongated tube


14




a


and a bearing plate


16




a


. Each tube


14




a


has a tapered end


18




a


, an end having a flange


20




a


, and a slit


22




a


running the length of the tube


14




a


. Each bearing plate


16




a


has a generally square, flat base


24




a


and a domed section


26




a


arising or extending upwardly from the center of the base


24




a


. The domed section


26




a


has a central aperture


28




a


therethrough. Centrally located along one edge


30




a


of the base


24




a


is a curved raised portion which forms a hanger loop


32




a


. (See

FIG. 1.

) Each tube may be from approximately 18 to approximately 120 inches in length. The dimensions of each plate may be from approximately 5 inches by 5 inches to approximately 6 inches by 6 inches.




In order to package the sets according to the first embodiment of the present invention, preferably six sets are packaged together, i.e., six plates


16




a


-


16




f


and six tubes


14




a


-


14




f


. Four of the tubes


14




a


-


14




d


are arranged side by side, forming a first or bottom layer, so that the flanged ends and tapered ends of the tubes are aligned alternatively. For example, the flanged end


20




a


of the first tube


14




a


is placed next to the tapered end


18




b


of the second tube


14




b


and the flanged end


20




c


of the third tube


14




c


is placed next to the tapered end


18




b


of the second tube


14




b


and the tapered end


18




d


of the fourth tube


14




d


is placed next to the flanged end


20




c


of the third tube


14




c


. (See

FIG. 3.

) Such an arrangement necessarily results in the tapered ends


18




a


and


18




c


of the tubes


14




a


and


14




c


, respectively, being similarly aligned with the flanged ends


20




b


and


20




d


of the tubes


14




b


and


14




d


, respectively. Also, the slits


22




a


-


22




d


should face downwardly to provide support and to prevent the tubes from rolling off of a planar surface


33


when assembling the package. (See

FIGS. 4 and 5

.)




Next, three of the plates


16




a


-


16




c


are placed along the length of the tubes


14




a


-


14




d


so as to form a second layer. The domed sections of the plates face upwardly. A third layer is formed by placing the three remaining plates


16




d


-


16




f


on top of the three plates


16




a


-


16




c


, respectively, so that the domed sections


26




a


-


26




c


of the plates


16




a


-


16




c


, respectively, of the second layer nest within the respective domed sections


26




d


-


26




f


of the plates


16




d


-


16




f


, respectively, of the third layer and the hanger loop sections of the plates


16




a


-


16




c


nest within the respective hanger loop sections of the plates


16




d


-


16




f


. (See

FIG. 4.

) This is also seen, for example, in

FIG. 5

where domed section


26




b


of plate


16




b


nests within domed section


26




e


of plate


16




e


and in

FIG. 2

where hanger loop section


32




a


of plate


16




a


nests within hooked section


32




d


of plate


16




d


. In this manner, the central apertures all face upwardly, seen, for example at


28




d


-


28




f


in FIG.


2


.




Then, the remaining two tubes


14




e


and


14




f


are placed on the flat bases


24




d


-


24




f


of each of the plates


16




d


-


16




f


, respectively, so that the domed sections


26




d


-


26




f


are exposed and the flanged end


20




e


of the tube


14




e


is aligned with the tapered end


18




f


of the tube


14




f


. Necessarily, tapered end


18




e


of the tube


14




e


is aligned with flanged end


20




f


of tube


14




f


. (See

FIG. 2.

) The slits


22




e


and


22




f


face downwardly to prevent the tubes


14




e


and


14




f


from rolling off of the flat bases


24




d


-


24




f


during assembly. Thus, a fourth or top layer is formed. The sets may then be bound with straps


34


and


36


or the like. In this manner, the sets may be easily carried and placed where needed.




A second embodiment of the present invention is seen in

FIGS. 6 and 7

. The arrangement


110


in this embodiment is similar to the arrangement in the first embodiment with the differences noted below. The length of each of the tubes


114




a


-


114




f


in this embodiment is greater than the length of the tubes in the first embodiment. The tubes


114




a


-


114




f


in the first layer are placed next to each other in the same manner that the tubes in the first layer are placed. That is, the tapered end


118




a


of the first tube


114




a


is placed next to the flanged end


120




b


of the second tube


114




b


and the tapered end


118




c


of the third tube


114




c


is placed next to the flanged end


120




b


of the second tube


114




b


and the flanged end


120




d


of the fourth tube


114




d


is placed next to the tapered end


118




c


of the third tube


114




c


. (See

FIG. 6.

) Again, such an arrangement necessarily results in the flanged ends


120




a


and


120




c


of tubes


114




a


and


114




c


, respectively, to be similarly aligned with the tapered ends


118




b


and


118




d


of tubes


114




b


and


114




d


, respectively. Slits


122




a


-


122




d


face downwardly. (See

FIG. 7.

)




Next, the six plates


116




a


-


116




f


are then placed along the length of the tubes


114




a


-


114




f


with the domed sections


126




a


-


126




f


and central apertures


128




a


-


128




f


of each of the plates


116




a


-


116




f


, respectively, facing upwardly, and the hanger loop sections


132




a


-


132




f


all facing in the same direction, thereby forming the second layer. The third layer is formed by the tubes


114




e


and


114




f


being placed on the flat bases


124




a


-


124




f


of the plates


116




a


-


116




f


, respectively, so that the domed sections


126




a


-


126




f


are exposed and the flanged end


120




e


of the tube


114




e


is aligned with the tapered end


118




f


of the tube


114




f


. Likewise, tapered end


118




e


of tube


114




e


is aligned with flanged end


120




f


of plate


114




f


. (See

FIG. 6.

) The slits


122




e


and


122




f


face downwardly. (See

FIG. 7.

) Thus, a top or third layer is formed. The sets may then be bound with straps


134


and


136


or the like. In this manner, the rock stabilizer sets are easily carried and placed where needed.




The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof and accordingly, reference should be made to the appended claims rather than to the foregoing specification as indicating the scope of the invention.



Claims
  • 1. A package of rock stabilizer sets comprising:six rock stabilizer sets, each of said sets including an elongated tube having a tapered end, an end with a flange, and a slit running the length of said tube, each set further including a bearing plate with a base and a central domed section extending upwardly from the center of said base, said domed section having an aperture located in the center thereof; a first layer comprised of four of said tubes placed side by side so that said flanged ends of said tubes are aligned alternatively with said tapered ends of said tubes and said slits face downwardly; a second layer comprised of three of said plates arranged side by side on top of said first layer so that said domed sections face upwardly; a third layer comprised of the remaining three plates arranged side by side on top of said second layer so that said domed sections face upwardly; a fourth layer comprised of the remaining two tubes arranged on top of said third layer with said slits facing downwardly and said two tubes positioned on each of the bases of said plates comprising said third layer; and binding means securing said layers together.
  • 2. The package of rock stabilizer sets of claim 1 wherein each of said domed sections of the plates of said second layer nest within a respective domed section of the plates of said third layer.
  • 3. The package of rock stabilizer sets of claim 1 wherein said binding means includes two straps.
  • 4. A package of rock stabilizer sets comprising:six rock stabilizer sets, each of said sets including an elongated tube having a tapered end, an end with a flange, and a slit running the length of said tube, each set further including a bearing plate with a base and a central domed section extending upwardly from the center of said base, said domed section having an aperture located in the center thereof; a first layer comprised of four of said tubes placed side by side so that said flanged ends of said tubes are aligned alternatively with said tapered ends of said tubes and said slits face downwardly; a second layer comprised of said plates arranged side by side on top of said first layer so that said domed sections face upwardly; a third layer comprised of the remaining two tubes arranged on top of said second layer with said slits facing downwardly and said two tubes positioned on each of the bases of said plates comprising said second layer; and binding means securing said layers together.
  • 5. The package of rock stabilizer sets of claim 4 wherein said binding means includes two straps.
  • 6. A method for arranging a plurality of rock stabilizer sets comprising the steps of:providing six rock stabilizer sets, each of said sets including an elongated tube having a tapered end, an end with a flange, and a slit running the length of said tube, each set further including a bearing plate with a base and a central domed section extending upwardly from the center of said base, said domed section having an aperture located in the center thereof; forming a first layer by positioning four of said tubes side by side so that said flanged ends of said tubes are aligned alternatively with said tapered ends of said tubes and said slits face downwardly; forming a second layer by positioning three of said plates side by side on top of said four tubes so that said domed sections face upwardly; forming a third layer by positioning the remaining three plates side by side on top of said second layer so that said domed sections face upwardly; forming a fourth layer by positioning the remaining two tubes on top of said bases of each of said plates comprising the third layer with each of said slits of said two tubes facing downwardly; and binding said layers together.
  • 7. The method for arranging a plurality of rock stabilizer sets of claim 6 wherein said step of forming said third layer includes nesting each of said domed sections of the plates of said second layer within a respective domed section of the plates of said third layer.
  • 8. The method for arranging a plurality of rock stabilizer sets of claim 6 wherein said step of binding said layers together includes using two straps.
  • 9. A method for arranging a plurality of rock stabilizer sets comprising the steps of:providing six rock stabilizer sets, each of said sets including an elongated tube having a tapered end, an end with a flange, and a slit running the length of said tube, each set further including a bearing plate with a base and a central domed section extending upwardly from the center of said base, said domed section having an aperture located in the center thereof; forming a first layer by positioning four of said tubes side by side so that said flanged ends of said tubes are aligned alternatively with said tapered ends of said tubes and said slits face downwardly; forming a second layer by positioning said plates side by side on top of said four tubes so that said domed sections face upwardly; forming a third layer by positioning the remaining two tubes on top of said bases of each of said plates comprising the second layer with each of said slits of said two tubes facing downwardly; and binding said layers together.
  • 10. The method for arranging a plurality of rock stabilizer sets of claim 9 wherein said step of binding said layers together includes using two straps.
US Referenced Citations (10)
Number Name Date Kind
3283893 Durocher et al. Nov 1966
4265571 Scott May 1981
4313695 McCartney Feb 1982
4382719 Scott May 1983
4445808 Arya May 1984
4652178 Kates et al. Mar 1987
4984689 Emalfarb et al. Jan 1991
5192146 Landsberg Mar 1993
5214902 Jones Jun 1993
5295768 Buchhorn et al. Mar 1994
Non-Patent Literature Citations (1)
Entry
Simmons-Rand, The Split Set System Brochure, 1990.