The present disclosure relates generally to the packaging and dispensing of solid chemical agents. More particularly, but not exclusively, the present disclosure relates to a device and method for safely deploying solid chemical products for use in cleaning processes.
Most cleaning processes use some form of cleaning product such as soaps, detergents, and other chemical agents and materials. The cleaning products are made in a variety of forms, including solids, liquid, powders, sprays, granules, and the like. Solid products may be beneficial over liquids, powders, and/or sprays for a variety of reasons. For example, the solid products can be colorized for identification and/or use, and the solid products can be shaped to only fit in certain applications. The color coating and/or shaping of the solid products aids in ensuring that the proper product is used for the corresponding use. For example, the solid products can be pellets or extruded solid blocks.
In cleaning systems utilizing solid chemical products, the solid chemical product can be dissolved using liquid sprayed from a spray nozzle. The spray nozzle typically is located beneath the chemical product and sprays liquid into the underside of the chemical product. The spray nozzle may be configured to produce a jet of water of sufficiently wide angle to contact the entire underside of the chemical product for even dissolution. To allow for the angled jet of water to sufficiently develop, it is desirable to keep the product at a specified distance from the spray nozzle. Doing so maintains consistent concentration levels and dispensing rate through the life of the chemical product.
The solid chemical product often rests on a screen or mesh-like device, through which the jet of water is passed. The screen in most cleaning systems, however, is mounted or integral to the cleaning system unit. Over time the screen may become partially or completely clogged, significantly reducing the efficacy of the overall cleaning system. In such instances, a user may be required to clean chemical product from the screen, thereby again presenting an opportunity for adverse human interaction. Similarly, if a solid chemical product is not completely dissolved and a user wishes to replace the solid chemical product (e.g., with a new type or formula of solid chemical product), the user must either manually remove the remaining chemical block and/or install a new chemical block on top of the old one. The former presents yet another opportunity for adverse human interaction. The latter reduces the efficiency of the system via uneven dissolution and possibly results in an undesirable mixture of chemical cleaning agents.
Therefore, a need exists in the art for an improved device and method that maintains a specified distance between the solid chemical product and the spray nozzle while providing for ease and safety of installation and/or replacement of the solid chemical product.
It is therefore a primary object, feature, and/or advantage of the present disclosure to improve on or overcome the deficiencies in the art.
It is another object, feature, and/or advantage of the present disclosure to provide a device and method to mitigate user exposure to chemical products in cleaning processes.
It is yet another object, feature, and/or advantage of the present disclosure to provide a device that maintains a specified distance between the solid chemical product and the spray nozzle in a solid chemical dispensing system.
It is still yet another object, feature, and/or advantage of the present disclosure to provide a device that is easy and inexpensive to manufacture, install, and replace.
It is a further object, feature, and/or advantage of the present disclosure to provide an apparatus that can be configured to efficiently obtain and maintain a desired solution concentration.
It is still a further object, feature, and/or advantage of the present disclosure to provide a device or apparatus that includes a product that can quickly and safely load the product into a dispensing system.
These and/or other objects, features, and advantages of the present disclosure will be apparent to those skilled in the art. The present disclosure is not to be limited to or by these objects, features and advantages. No single embodiment need provide each and every object, feature, or advantage.
Illustrated embodiments of the present disclosure are described in detail below with reference to the attached drawing figures, which are incorporated by reference herein, and where:
Various embodiments of the present disclosure will be described in detail with reference to the drawings, wherein like reference numerals represent like parts throughout the several views. Reference to various embodiments does not limit the scope of the disclosure. Figures represented herein are not limitations to the various embodiments according to the disclosure and are presented for exemplary illustration of the disclosure.
For particularly demanding industrial cleaning applications, caustic materials (e.g., caustic soda, sodium hydroxide, caustic potash, or potassium hydroxide) provide several advantages. When combined with water and heated, caustic products are often used as a powerful degreaser on stainless steel, glass bakeware, ovens, parts washers, process equipment, drain decloggers, and the like. The caustic solution can dissolve oils, fats and protein-based deposits. Further, surfactants can be added to the caustic solution to stabilize dissolved substances and thus prevent redeposition. Still further, the caustic solution is considered to be an environmental improvement over solvent-based cleaning methods.
Despite numerous advantages, the caustic materials have high alkalinity and are highly corrosive. The materials are corrosive to human flesh and flammable when in contact with organic solvents. Therefore, minimizing, or preferably eliminating a user's interaction with the caustic materials is of utmost importance.
The caustic products often are manufactured in solid, extruded blocks. The blocks are installed into cleaning systems. One such cleaning system is disclosed in U.S. Pat. No. 4,690,305 to Copeland, which is incorporated by reference herein in its entirety. Copeland discloses housing the solid chemical product in a container with a removable lid. The lid is removed and the container is inverted over the dispenser, after which the solid block falls into the dispenser. The method presents an opportunity for adverse human contact with the solid chemical product, however. Further, the descending solid block may not rest in the container as designed, requiring adjustment and further inviting the possibility of adverse human interaction. Therefore, a need exists in the art for an improved device and method to eliminate the potential for unwanted user exposure to the chemical product prior to and after use.
The system 10 further includes a water line 28, an inlet pipe 30 extending between the water line 28 and the lower portion 18, a spray nozzle 32, an outlet screen 34, and a discharge tube 36. A clamp 38 may secure the discharge tube 36 to the lower portion 18 of the container 14. Other clamping means are envisioned, including barbs, friction fit, interference fit, pinning, threading, and the like. The operation of the system 10 will be discussed in detail below.
It is noted that the screen 34 can be positioned at a constant distance or position from the spray nozzle and/or the solid product. This aids in providing safety for the user. The screen 34 is also not needed in all embodiments, such as when a dissolving/eroding method besides spraying is utilized (e.g., flooding) or for specific solid chemical formulas. Furthermore, the screen 34 can also be identified as a support member, such as when the screen is used to support the solid chemical product. For example, during transport of the device 12 with a product stored therein, the screen could provide a support for the product such that, even if the product were to break, it would still be supported by the screen so that the product remains in a preferred position within the device for use at its final location. While the screen is shown with a general lattice pattern, other types of screens with generally any type of apertures therethrough could be utilized. One embodiment of the support member 34 besides the screen could be a built-in ring support. The ring support member could be a ledge, flange, portion of the housing, or other portion of the device 12 that extends substantially horizontally to provide a surface or area for the product to at least partially rest on. The size of the support ring could vary depending on the makeup of the solid chemical product so as to provide the same benefits as disclosed with regard to the screen support member 34. Furthermore, it should be appreciated that the location of the support member or screen 34 can be changed to accommodate different types of products, erosion methods, and other factors.
Referring to
The upper portion 30 includes a sidewall 42 with a thickness defined between an inner perimeter 44 and an outer perimeter 46. The upper portion 30 may further include an inward flange 48 having an inner perimeter 50 less than the inner perimeter 44 of the sidewall 42. The inward flange 48 is contoured to the sidewall 42 of the upper portion 30. In the illustrated embodiment, the sidewall 42 and the inward flange 48 may be cylindrical, but the present disclosure contemplates any suitable shape without deviating from the objects of the present disclosure. In other embodiments, the sidewall 42 and the inward flange 48 may be square, rectangular, oval, ellipsoid, and the like. A top surface 52 is associated with the sidewall 42. The top surface 52 may be integrally formed to the sidewall 42 during fabrication or connected after the same. A handle 54 may be associated with the top surface 52. The handle 54 may comprise a portion of the top surface 52 extending through a cavity, as shown illustratively in
The lower portion 40 may also include a sidewall 56 with a thickness defined between an inner perimeter 58 and an outer perimeter 60. The lower portion 40 may further include an outwardly spaced flange 62 having an outer perimeter 65 greater than the outer perimeter 60 of the sidewall 56. The outward flange 62 is contoured to the sidewall 56 of the lower portion 40. The outward flange 62 is adapted to slidably engage the inward flange 48 of the upper portion 30. In the illustrated embodiment, the outward flange 62 may be cylindrical, but the present disclosure contemplates any suitable shape without deviating from the objects of the present disclosure. In other embodiments, the sidewall 56 and the outward flange 62 may be square, rectangular, oval, ellipsoid, and the like. The lower portion 40 may have a cylindrical portion 66 and a conical portion 68, as shown illustratively in
A screen 34 is shown to be positioned generally within the device 12, as has been disclosed. The screen 34 is an optional attachment to support a solid product, and can be retained by small tabs, when used.
The fitment may be adapted to interface with the spray nozzle 32 of the cleaning system 10. The fitment may alternatively be adapted to interface with other industrial cleaning systems. The fitment may comprise a center opening and venting means. A flange of the fitment may create an interference fit with the tubular portion 72.
Referring to
The upper portion 30 and/or the lower portion 40 may be composed of rigid or semi-rigid material resistant to the chemicals typically used in the system 10, and more particularly, the solid chemical product. For example, the device 12 may be constructed of plastics such as polyolefins (e.g., high density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene (PP)), polyvinyl chlorides (PVC), and fluoropolymers (e.g., polyethylene terephthalate (PETE), fluorinated ethylene propylene (FEP), PerFluoroAlkoxy (PFA), polyvinylidene fluoride (PVDF), ethylene tetrafluoroethylene (ETFE), etc.). It is contemplated that still other materials meeting the requirements of being used with various chemicals can be comprise the portions 30, 40 of the disclosure, and the disclosure need not be limited to those disclosed. Furthermore and as previously disclosed, the device 12 can be formed of blow molding, injection molding, or generally any other method utilizing the materials disclosed.
To secure the upper portion 30 and the lower portion 40, the inward flange 48 of the upper portion 30 is sized and/or shaped to slidably engage the outward flange 62 of the lower portion 40. In an exemplary embodiment, the inward flange 48 and the outward flange 62 are friction fit. The upper portion 30 may include one or more locking protrusions 92. The locking protrusions 92 may extend outwardly from the sidewall 42 of the upper portion 30 proximate the inward flange 48. One more locking tabs 90 may extend upwardly from the outward flange 62 of the lower portion 40. The locking tabs 90 are configured to securely engage the locking protrusions 92. According to additional aspects of the disclosure, the locking protrusions 92 extend outwardly from the lower portion 40. In still yet another embodiment, the connection means may be counterpoising cylindrical snap-locks 93, as shown illustratively in
Referring to
To maintain the appropriate, predetermined, and/or preferred distance of the chemical product 94 from the spray nozzle 32, a screen 96 can be disposed within the lower portion 40 of the device, as shown illustratively in
In alternate embodiments, a semi-rigid or rigid helical wire 108 may provide structural support to the lower portion 40 of the device 12, as shown illustratively in
Referring to
The flexible enclosure 110 may include one or more side seams 112 and/or an upper seam 114. In the embodiment, the flexible enclosure 110 results in a hollow portion 116 above the chemical product 94. A handle 118 may be associated with the flexible enclosure 110 proximate to the upper seam 114. In an alternate embodiment, the flexible enclosure 110 is further contoured to an upper surface of the chemical product 94, as shown illustratively in
The figures thereby disclose additional ways that the device can be manufactured. For example, a device 12 as shown in
When the components are split longitudinally, the may have a common connection point, such as a living hinge 150. This is shown by the device 12 in
For example, a half of a device 12 that could be sealed about its perimeter 132 is shown in
As shown in
To form packaging with the product stored within, the product is positioned within one of the halves (for example, one of the portions 30, 40) and the other half is brought in contact such that the flanged perimeter 132 is in contact or otherwise close proximity with the other flange. For example, one half could be positioned on its side and the product and a screen or other support member could be positioned in the half. The other half could then be positioned adjacent the first portion. The flanges are then connected, such as by welding (heat or ultrasonic), heat staking, or otherwise sealing the halves to one another. The device can then be used with a container as is known, such as by providing erosion means to the product to produce a chemistry for use in an end product.
A method for assembling a device 12 in accordance with an exemplary embodiment of the present disclosure is illustrated in
A film 80 (and/or a fitment and/or a cap 82) is attached to the terminal opening 74 or the device 12. When ready for installation to the system 10, the film 80 (or the cap 82) is removed, as is shown by step 6 in
Another method for assembling a device 12 in accordance with an exemplary embodiment of the present disclosure is illustrated in
In an alternative method of assembling a device 12 in accordance with an exemplary embodiment of the present disclosure, a helical wire 108 can be connected to the tubular member 72, such as is shown in
Returning to
The design advantageously eliminates or at least mitigates potential exposure of a user to the chemical product 94 during installation and/or removal of the device 12. After removal of the film 80 or the cap 82, the chemical product 94 remains at a safe distance from the terminal opening 74 of the device 12. During removal, the device 12 is removed as a whole, including the screen 96 and any unused contents of the chemical product 94, after which a new device 12 is then quickly and efficiently replaced into the system 12. A new screen 96 associated with each device further prevents agglomerations of the chemical product 94 on the screen, maintaining consistent water application of the spray nozzle 32 and resulting mixture of the solution 34.
It should be noted, while the disclosure has been disclosed to be used with a spray mechanism to dissolve a solid product, other methods are contemplated. For example, it is known to dissolve solid products in dispensers such as ones that can incorporate the disclosure by use of spraying, flooding, bubbling, submersion, or some combination thereof. The disclosure contemplates that any possible means and methods for dissolving and/or eroding a solid product can be utilized with any of the embodiments and/or aspects of the disclosure, without changing the scope or intended spirit of the disclosure.
For example, U.S. patent application Ser. No. 13/771,351 (now U.S. Pat. No. 8,945,476); Ser. No. 14/182,344; 14/182,346; and 14/182,353 all disclose various dispensers including methods and means for dissolving and/or eroding a solid product. The contents of each of the listed applications are hereby incorporated by reference in their entirety.
As mentioned, the exterior face 203 of the screen 200 can include a projecting annular rib 205 extending generally in the opposite direction of that of the rim 204. The rib 205 can be positioned at an outer diameter of the member 40, or spaced inward therefrom. The rib 205 can be used to attach a cover, lid, or other component to substantially close off, at least temporarily, access to the interior of the device 12 through the screen 200. For example, the component can be a dust cover, lid, or other components that can be temporarily affixed to the lower member 40 to substantially cover the screen portion 200 thereof, such as during transport and/or storage of the device 12. This can be the time before the device 12, including the product stored therein, is to be used, so as to provide a protective element for a user of the device, such as to protect the user from unwanted contact with the product inside. Therefore, a dust cover or other cover can be affixed, such as by heat sealing, adhering, welding (e.g., ultrasonic or otherwise), snap fit, friction fit, or the like to the member 40. For example, according to some aspects, the rib 205 can include an outward taper 209 that can engage a snap bead of a dust cover for temporarily affixing the cover to the member.
The lower member as shown in
Integrating the screen into the lower member 40 provides numerous advantages. For example, as will be understood, the configuration of the apertures comprising the screen (including, but not limited to, size, shape, number, angle, etc.) can affect the amount of fluid passing through to contact a product stored within. Therefore, choosing a configuration of screen can aid in providing a more consistent solution based upon the amount of product in contact with the fluid. Integrating the screen into the lower member 40 provides for greater flexibility in changing the configuration based upon such conditions including, but not limited to, type of product being dissolved/mixed by solution, desired concentration levels, changes in fluid (temperature, flow rate, etc.), changes in room climate (temperature, humidity, amount of light, etc.), and other external factors that could affect the concentration obtained. Therefore, different covers with varying screen configurations could be swapped in and out as needed. Furthermore, if a product is going to be used in a known location with a known climate, or with a known solvent, the screen can be selected upon packaging of the product. The entire device 12 will not need to be replaced, and instead, a different member 40 with a different screen can be replaced.
For example, studies have shown that varying the screen configuration can also the amount of solvent contacting the product stored within the device. This includes varying the size of the apertures in the screen, as well as varying the height of the rib 205, which can vary the distance between the fluid source and the product within the device 12.
A product of approximated 4000 grams was contacted with a fluid passing through lower members having integrated screens with varying configurations. The screen sizes included (1) apertures sized approximately ¼-inch openings, with a 0.15-inch rib; (2) apertures sized approximately ¼-inch with a 0.08-inch rib; and (3) screen apertures of ½-inches with a 0.15-inch rib. A fourth run was done with no screen at all. A number of dispenses contacting the product with a set amount of fluid was done to determine how many dispenses were needed to erode the approximately 4000 grams of product. The dispenses comprised a 1-second dispensement every 90 seconds. With no screen, the product was eroded in approximately 550 dispenses. The ½-inch screen and 0.15-inch rib eroded the product in approximately 650 dispenses. The ¼-inch screen with 0.15-inch rib eroded the product in approximately 750 dispenses. Finally, the ¼-inch screen with 0.08-inch rib eroded just less than 4000 grams of product with approximately 1050 dispenses.
Another test was completed with a product being contacted with a fluid to determine the number of dispenses required to erode and dispense approximately 3500 grams of the product, with the variables including: (1) no screen used; (2) a screen with ¼-inch apertures and a 0.15-inch rib; and (3) a screen with ¼-inch apertures and a 0.15-inch rib providing distance from the fluid source. Again, the product was sprayed with a 1-second dispensement every 90 seconds. The test showed that the approximately 3500 grams of product were eroded with approximately 140 dispenses using no screen, approximately 400 dispenses using the screen with ¼-inch apertures, and approximately 775 dispenses using the screen with ¼-inch apertures and a 0.15-inch rib.
This data clearly shows that both the screen aperture size and the distance between the screen and the product can have a profound effect on the erosion rate of the product by the fluid. This can be known as adjusting the flow of water via the screen aperture size, shape, number, and/or distance from the fluid/liquid dissolvent source.
Therefore, it is contemplated that the screen configurations be generally infinite in variability to provide for a desired amount of product to be eroded to provide for a desired concentration and to maximize the life of the product. This will optimize efficiency to provide cost savings and aid in the use of the device 12.
Still further, it should be appreciated that the variation of the screen, including the size and shape of the apertures, as well as varying the distance between the screen and the fluid/liquid source, can be utilized with any of the concepts as has been shown and/or described in the present disclosure. For example, it does not matter if the screen is integrated with one of the first or second portions of the device, or if it is simply positioned within the device as a separate member, the ability to vary the configurations of the screen will provide for flexibility and variability for determining the desired contact between a dissolving fluid and the product stored therein.
The disclosure is not to be limited to the particular embodiments described herein. In particular, the disclosure contemplates numerous variations in the type of ways in which embodiments of the disclosure can be applied the packaging and dispensing of solid chemical agents. The foregoing description has been presented for purposes of illustration and description. It is not intended to be an exhaustive list or limit any of the disclosure to the precise forms disclosed. It is contemplated that other alternatives or exemplary aspects that are considered included in the disclosure. The description is merely examples of embodiments, processes or methods of the disclosure. It is understood that any other modifications, substitutions, and/or additions can be made, which are within the intended spirit and scope of the disclosure. For the foregoing, it can be seen that the disclosure accomplishes at least all that is intended.
In addition, it should be appreciated that the device of the present disclosure can be utilized with generally any and all types of chemical products. This includes, but should not be limited to, solid products, pellets, powders, granules, semi-solids, liquids, and/or some combination thereof.
The previous detailed description is of a small number of embodiments for implementing the disclosure and is not intended to be limiting in scope. The following claims set forth a number of the embodiments of the disclosure with greater particularity.
This application is a Continuation of U.S. Ser. No. 15/130,336, filed Apr. 15, 2016 which claims priority under 35 U.S.C. § 119 to provisional application Ser. Nos. 62/316,688 filed Apr. 1, 2016, and 62/148,463 filed Apr. 16, 2015, all of which are herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4267928 | Curry, Jr. | May 1981 | A |
4462511 | Fulmer et al. | Jul 1984 | A |
5007559 | Young | Apr 1991 | A |
5086952 | Kryk | Feb 1992 | A |
5229084 | Livingston et al. | Jul 1993 | A |
5627150 | Peterson | May 1997 | A |
5759501 | Livingston et al. | Jun 1998 | A |
5853034 | Edwards | Dec 1998 | A |
5915622 | Foote | Jun 1999 | A |
5971645 | Fukushima et al. | Oct 1999 | A |
20040200797 | Hicks | Oct 2004 | A1 |
20060070996 | Boyle | Apr 2006 | A1 |
20080107576 | Zettlitzer | May 2008 | A1 |
Number | Date | Country |
---|---|---|
2346713 | Nov 1999 | CN |
1908811 | Feb 2007 | CN |
101035718 | Sep 2007 | CN |
134329 | Oct 1918 | GB |
9173271 | Jul 1997 | JP |
2006523585 | Oct 2006 | JP |
2008522681 | Jul 2008 | JP |
2009161235 | Jul 2009 | JP |
2013525222 | Jun 2013 | JP |
Entry |
---|
Ecolab USA Inc., PCT/US2016/027791, filed Apr. 15, 2016, “The International Search Report and the Written Opinion of the International Searching Authority, or the Declaration,” dated Aug. 3, 2016. |
Uchiyama, U.S. Publication 2002/0005410A1, English translation for CN1908811A, 19 pages, dated Jan. 17, 2002. |
Seelhofer, U.S. Publication 2008/0290061A1, English translation for CN10135718A, 13 pages, dated Nov. 27, 2008. |
Number | Date | Country | |
---|---|---|---|
20180154404 A1 | Jun 2018 | US |
Number | Date | Country | |
---|---|---|---|
62316688 | Apr 2016 | US | |
62148463 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15130336 | Apr 2016 | US |
Child | 15891886 | US |