Technical Field
The present disclosure relates to packaging of surgical devices and, more particularly, to packaging for a hernia repair device.
Background of Related Art
Wound closure devices such as sutures, filaments, and staples, as well as other repair devices, such as mesh or patch reinforcements, are frequently used to repair tissue defects, e.g., herniated tissue, and other damaged and/or diseased tissue. For example, in the case of hernias, a surgical mesh or patch is commonly used to reinforce the abdominal wall. The surgical mesh is typically held in place by adhering, suturing, or stapling the surgical mesh to the tissue surrounding the defect.
Some surgical meshes have been developed which incorporate pre-determined fold lines, sutures, and/or other features to facilitate the insertion, positioning, and/or attachment of the surgical mesh to the abdominal wall. However, such meshes may become tangled, disorientated, and/or damaged, e.g., during transport, storage, or removal from packaging. Accordingly, it would be desirable to provide packaging for a surgical mesh that inhibits tangling or damage to the surgical mesh and maintains proper orientation of the surgical mesh, thereby facilitating removal of the surgical mesh from the packaging and subsequent use thereof.
A first aspect of the invention is a packaging member for a hernia repair device including a surgical mesh and at least one grasping member, the packaging member comprising:
In embodiments, the hernia repair device defines a folding axis, the packaging member further including a pair of indicia indicating a location of the folding axis. In embodiments, the central portion includes a recess configured to receive the surgical mesh. In embodiments, the packaging member further comprises at least one finger-receiving portion positioned adjacent the at least one recessed track section, the at least one finger-receiving portion configured to facilitate grasping of the at least one grasping member for removal from the packaging member. In embodiments, the packaging member further comprises a protective film configured for positioning about the packaging member to maintain the hernia repair device in a sterile state. In embodiments, the packaging member further includes a tab configured to facilitate separation of the protective film from the packaging member. In embodiments, the packaging member further comprises grasping indicia disposed on the central portion, the grasping indicia positioned to indicate grasping positions for grasping the surgical mesh. In embodiments wherein the hernia repair device includes a pair of opposed grasping members, the packaging member further comprises a pair of opposed recessed track sections configured to receive the opposed grasping members. In embodiments wherein the hernia device includes first and second grasping members coupled to the surgical mesh; the packaging member further comprises first and second opposed recessed track sections disposed about the central portion, the first and second opposed recessed track sections configured to receive the first and second grasping members, respectively. In embodiments, the packaging member further includes first and second knobs extending into the first and second track sections, the first and second knobs configured to retain the first and second grasping members within the first and second track sections, respectively. In embodiments, the packaging member further includes at least one finger-receiving portion positioned adjacent the first and second track sections, the at least one finger-receiving portion configured to facilitate grasping of the first and second grasping members for removal from the packaging member.
A second aspect of the invention is a surgical package comprising a packaging member as described above and a hernia repair device including a surgical mesh and at least one grasping member. In embodiments, the surgical mesh having first and second support members defining a folding axis therebetween; and first and second grasping members coupled to the surgical mesh, the first grasping member is disposed on a first side of the folding axis and the second grasping member is disposed on a second side of the folding axis, the central portion including at least one indicia configured to indicate a location of the folding axis.
In accordance with embodiments of the present disclosure, a packaging member is provided for a hernia repair device including a surgical mesh and one or more grasping members. The packaging member includes a central portion configured to receive the surgical mesh, one or more recessed track sections configured to receive the one or more grasping members, and a knob extending into the one or more recessed track sections. The knob is configured to retain the grasping member(s) within the recessed track section(s).
In embodiments, the hernia repair device defines a folding axis and the packaging member further including indicia indicating a location of the folding axis.
In embodiments, the central portion of the packaging member includes a recess configured to receive the surgical mesh.
In embodiments, the packaging member further includes one or more finger-receiving portions positioned adjacent the recessed track section(s).
In embodiments, the packaging member further includes a protective film configured for positioning about the packaging member to maintain the hernia repair device in a sterile state. Further, the packaging member may include a tab configured to facilitate separation of the protective film from the packaging member.
In embodiments, the packaging member further includes grasping indicia disposed on the central portion. The grasping indicia are positioned to indicate grasping positions for grasping the surgical mesh.
In embodiments, the hernia repair device includes a pair of opposed grasping members. In such an embodiment, the packaging member includes a pair of opposed recessed track sections configured to receive the opposed grasping members.
In accordance with embodiments of the present disclosure, a surgical package is provided including a hernia repair device and a packaging member. The hernia repair device includes a surgical mesh and first and second grasping members coupled to the surgical mesh. The packaging member is configured for retaining the hernia repair device and includes a central portion configured to receive the surgical mesh and first and second opposed recessed track sections disposed about the central portion. The first and second opposed recessed track sections are configured to receive the first and second grasping members, respectively. The surgical package may otherwise be configured similarly to any or all of the embodiments above.
In accordance with embodiments of the present disclosure, a surgical package is provided. The surgical package includes a hernia repair device and a packaging member for retaining the hernia repair device. The hernia repair device includes a surgical mesh having first and second support members defining a folding axis therebetween and first and second grasping members coupled to the surgical mesh. The first grasping member is disposed on a first side of the folding axis and the second grasping member is disposed on a second side of the folding axis. The packaging member includes a central portion and first and second opposed recessed track sections. The central portion is configured to receive the surgical mesh and includes one or more indicia configured to indicate a location of the folding axis. The first and second opposed recessed track sections are disposed about the central portion and are configured to receive the first and second grasping members, respectively. The surgical package may otherwise be configured similarly to any or all of the embodiments above.
The present disclosure further relates to a packaging member and to surgical devices as defined in the following clauses:
Clause 10. The surgical package according to clause 9, wherein the packaging member further includes first and second knobs extending into the first and second track sections, the first and second knobs configured to retain the first and second grasping members within the first and second track sections, respectively.
Various embodiments of the present disclosure are described herein with reference to the drawings wherein:
Embodiments of the present disclosure are described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements. As used herein, the term “distal” refers to the portion that is being described which is further from a user, while the term “proximal” refers to the portion that is being described which is closer to a user.
Turning now to
Referring to
Support member 120 defines a generally annular shape and may be formed from any suitable material, e.g., an absorbable or non-absorbable biocompatible polymer. Support member 120 is secured to surgical mesh 110 towards an outer periphery of surgical mesh 110, e.g., annularly about surgical mesh 110, and is configured to provide structural support to surgical mesh 110, while also facilitating the insertion of surgical mesh 110 into, and the positioning of surgical mesh 110 within, the tissue defect. In particular, support member 120 is overmolded onto surgical mesh 110 to secure flaps 130 to mesh 110. Junctions “J” of support member 120 cooperate to define a folding axis “F-F” that allows surgical mesh 110 to be folded about folding axis “F-F” to facilitate insertion of surgical mesh 110 into a tissue defect.
Continuing with reference to
Grasping members 140a, 140b each include a loop of filament 142a, 142b and an overtube 150a, 150b, respectively. Filaments 142a, 142b may be made from suture, threading, wire, or any other suitable biocompatible material. The material forming filaments 142a, 142b is not critical in that, as will be described below, filaments 142a, 142b are removed from hernia repair device 100 after implantation and discarded. Each filament loop 142a, 142b includes a first end 144a, 144b, a second end 146a, 146b, and an intermediate segment 148a, 148b. The first end 144a, 144b of each filament loop 142a, 142b is disposed through one of the flaps 130. The second end 146a, 146b of each filament loop 142a, 142b is coupled, e.g., disposed through, an adjacent flap 130. More specifically, as shown in
Each grasping member 140a, 140b further includes an overtube 150a, 150b disposed about at least a portion of intermediate segment 148a, 148b of the respective filament loop 142a, 142b. Overtubes 150a, 150b of grasping members 140a, 140b, respectively, each defines a lumen 152a, 152b extending longitudinally therethrough to permit passage of respective filament loops 142a, 142b therethrough. Overtubes 150a, 150b provide an ergonomic grasping surface to facilitate grasping of filament loops 142a, 142b by the clinician, e.g., to approximate surgical mesh 110 relative to tissue and/or to manipulate flaps 130.
Turning now to
Where moisture-sensitive materials are incorporated into hernia repair device 100, the entire packaging member 10 can be placed within a moisture-impervious envelope (not shown). The moisture-impervious envelope (not shown) can be made from, for example, a foil laminate using techniques known to those skilled in the art.
With continued reference to
As mentioned above, central recess 30 of recessed portion 24 of base 20 of packaging member 10 is configured to receive surgical mesh 110 of hernia repair device 100. Central recess 30 may include a further recessed floor 32 (see
With additional reference to
Continuing with reference to
Engagement protrusions 62, 64 extend along and define, e.g., share a common wall, with at least a portion of track sections 40a, 40b, respectively. Each engagement protrusion 62, 64 further include a knob 63, 65 that extends into respective track sections 40a, 40b so as to decrease the width dimension of track sections 40a, 40b over at least a portion thereof. More specifically, as best shown in
Referring still to
With continued reference to
Next, the clinician removes grasping members 140a, 140b from respective track sections 40a, 40b of annular track 40. More specifically, the clinician grasps overtubes 150a, 150b, e.g., adjacent the finger-receiving portions 72 or 74 and finger-receiving portions 76 or 78, respectively, and pulls overtubes 150a, 150b proximally relative to base 20 of packaging member 10 with sufficient urging to move overtubes 150a, 150b beyond knobs 63, 65 of engagement protrusions 62, 64, respectively, to release grasping members 140a, 140b from respective track sections 40a, 40b. The clinician then grasps opposed ends of surgical mesh 110 and translates surgical mesh 110 proximally from central recess 30 of base 20 of packaging member 10 to remove surgical mesh 110 from packaging member 10. Indicia 36, 38 indicate the general positions at which to grasp surgical mesh 110 such that, once grasped, folding of surgical mesh 110 along folding axis “F-F” can be readily achieved, as illustrated by indicia 37 and 39 (
Once hernia repair device 100 has been disengaged and removed from packaging member 10, and since surgical mesh 110 is already being grasped so as to facilitate folding surgical mesh 110 about folding axis “F-F,” the clinician may fold surgical mesh 110 about folding axis “F-F” by simply approximating the two grasped ends of surgical mesh 110 relative to one another, as illustrated by indicia 37 and 39 (
In order to position and secure hernia repair device 100 relative to tissue surrounding the tissue defect, the clinician grasps overtubes 150a, 150b and pulls overtubes 150a, 150b proximally, thereby effecting proximal pulling of filament loops 142a, 142b, flaps 130, and surgical mesh 110 such that surgical mesh 110 and support member 120 are brought into approximation with the distal surface of tissue surrounding the tissue defect. Further proximal pulling of overtubes 150a, 150b urges flaps 130 into contact with tissue surrounding the tissue defect. The clinician may secure flaps 130 to the tissue in any suitable fashion, e.g., adhering, tacking, suturing, etc. Thereafter, the clinician may release overtubes 150a, 150b from flaps 130 by cutting filament loops 142a, 142b.
Turning to
Continuing with reference to
From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
This application is a National Stage Application of PCT/IB2013/002844 under 35USC § 371 (a), which claims priority of U.S. Provisional Patent Application Ser. No. 61/706,912 filed Sep. 28, 2012, the disclosures of each of the above-identified applications are hereby incorporated by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2013/002844 | 9/27/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/049446 | 4/3/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1187158 | Mcginley | Jun 1916 | A |
3118294 | Van Laethem | Jan 1964 | A |
3124136 | Usher | Mar 1964 | A |
3272204 | Charles et al. | Sep 1966 | A |
3276448 | Usher | Oct 1966 | A |
3320649 | Naimer | May 1967 | A |
3364200 | Ashton et al. | Jan 1968 | A |
3570482 | Emoto et al. | Mar 1971 | A |
3770119 | Hultberg | Nov 1973 | A |
4006747 | Kronenthal et al. | Feb 1977 | A |
4060081 | Yannas et al. | Nov 1977 | A |
4173131 | Pendergrass et al. | Nov 1979 | A |
4193137 | Heck | Mar 1980 | A |
4216860 | Heimann | Aug 1980 | A |
4248064 | Odham | Feb 1981 | A |
4279344 | Holloway, Jr. | Jul 1981 | A |
4294241 | Miyata | Oct 1981 | A |
4307717 | Hymes et al. | Dec 1981 | A |
4338800 | Matsuda | Jul 1982 | A |
4476697 | Schafer et al. | Oct 1984 | A |
4487865 | Balazs et al. | Dec 1984 | A |
4500676 | Balazs et al. | Feb 1985 | A |
4511653 | Play et al. | Apr 1985 | A |
4527404 | Nakagaki et al. | Jul 1985 | A |
4586930 | Kelman | May 1986 | A |
4591501 | Cioca | May 1986 | A |
4597762 | Walter et al. | Jul 1986 | A |
4603695 | Ikada et al. | Aug 1986 | A |
4631932 | Sommers | Dec 1986 | A |
4670014 | Huc et al. | Jun 1987 | A |
4709562 | Matsuda | Dec 1987 | A |
4748078 | Doi et al. | May 1988 | A |
4759354 | Quarfoot | Jul 1988 | A |
4769038 | Bendavid et al. | Sep 1988 | A |
4796603 | Dahlke et al. | Jan 1989 | A |
4813942 | Alvarez | Mar 1989 | A |
4841962 | Berg et al. | Jun 1989 | A |
4854316 | Davis | Aug 1989 | A |
4925294 | Geshwind et al. | May 1990 | A |
4931546 | Tardy et al. | Jun 1990 | A |
4942875 | Hlavacek et al. | Jul 1990 | A |
4948540 | Nigam | Aug 1990 | A |
4950483 | Ksander et al. | Aug 1990 | A |
4970298 | Silver et al. | Nov 1990 | A |
5002551 | Linsky et al. | Mar 1991 | A |
5147374 | Fernandez | Sep 1992 | A |
5162430 | Rhee et al. | Nov 1992 | A |
5171273 | Silver et al. | Dec 1992 | A |
5176692 | Wilk et al. | Jan 1993 | A |
5179818 | Kalinski | Jan 1993 | A |
5192301 | Kamiya et al. | Mar 1993 | A |
5196185 | Silver et al. | Mar 1993 | A |
5201745 | Tayot et al. | Apr 1993 | A |
5201764 | Kelman et al. | Apr 1993 | A |
5206028 | Li | Apr 1993 | A |
5217493 | Raad et al. | Jun 1993 | A |
5219077 | Transue | Jun 1993 | A |
5249682 | Transue | Oct 1993 | A |
5254133 | Seid | Oct 1993 | A |
5256418 | Kemp et al. | Oct 1993 | A |
5263983 | Yoshizato et al. | Nov 1993 | A |
5304595 | Rhee et al. | Apr 1994 | A |
5306500 | Rhee et al. | Apr 1994 | A |
5324775 | Rhee et al. | Jun 1994 | A |
5328955 | Rhee et al. | Jul 1994 | A |
5334527 | Brysk | Aug 1994 | A |
5339657 | McMurray | Aug 1994 | A |
5350583 | Yoshizato et al. | Sep 1994 | A |
5356432 | Rutkow et al. | Oct 1994 | A |
5368549 | McVicker | Nov 1994 | A |
5368602 | de la Torre | Nov 1994 | A |
5376375 | Rhee et al. | Dec 1994 | A |
5376376 | Li | Dec 1994 | A |
5392918 | Harrison | Feb 1995 | A |
5397331 | Himpens et al. | Mar 1995 | A |
5399361 | Song et al. | Mar 1995 | A |
5413791 | Rhee et al. | May 1995 | A |
5425740 | Hutchinson, Jr. | Jun 1995 | A |
5428022 | Palefsky et al. | Jun 1995 | A |
5433996 | Kranzler et al. | Jul 1995 | A |
5441491 | Verschoor et al. | Aug 1995 | A |
5441508 | Gazielly et al. | Aug 1995 | A |
5456693 | Conston et al. | Oct 1995 | A |
5456711 | Hudson | Oct 1995 | A |
5466462 | Rosenthal et al. | Nov 1995 | A |
5480644 | Freed | Jan 1996 | A |
5487895 | Dapper et al. | Jan 1996 | A |
5490984 | Freed | Feb 1996 | A |
5512291 | Li | Apr 1996 | A |
5512301 | Song et al. | Apr 1996 | A |
5514181 | Light et al. | May 1996 | A |
5522840 | Krajicek | Jun 1996 | A |
5523348 | Rhee et al. | Jun 1996 | A |
5536656 | Kemp et al. | Jul 1996 | A |
5543441 | Rhee et al. | Aug 1996 | A |
5565210 | Rosenthal et al. | Oct 1996 | A |
5567806 | Abdul-Malak et al. | Oct 1996 | A |
5569273 | Titone et al. | Oct 1996 | A |
RE35399 | Eisenberg | Dec 1996 | E |
5593441 | Lichtenstein et al. | Jan 1997 | A |
5595621 | Light et al. | Jan 1997 | A |
5601571 | Moss | Feb 1997 | A |
5607474 | Athanasiou et al. | Mar 1997 | A |
5607590 | Shimizu | Mar 1997 | A |
5614587 | Rhee et al. | Mar 1997 | A |
5618551 | Tardy et al. | Apr 1997 | A |
5634931 | Kugel | Jun 1997 | A |
5639796 | Lee | Jun 1997 | A |
5665391 | Lea | Sep 1997 | A |
5667839 | Berg | Sep 1997 | A |
5681568 | Goldin et al. | Oct 1997 | A |
5686115 | Vournakis et al. | Nov 1997 | A |
5690675 | Sawyer et al. | Nov 1997 | A |
5695525 | Mulhauser | Dec 1997 | A |
5697978 | Sgro | Dec 1997 | A |
5700476 | Rosenthal et al. | Dec 1997 | A |
5700477 | Rosenthal et al. | Dec 1997 | A |
5709934 | Bell et al. | Jan 1998 | A |
5716409 | Debbas | Feb 1998 | A |
5720981 | Eisinger | Feb 1998 | A |
5732572 | Litton | Mar 1998 | A |
5749895 | Sawyer et al. | May 1998 | A |
5752974 | Rhee et al. | May 1998 | A |
5766246 | Mulhauser et al. | Jun 1998 | A |
5766631 | Arnold | Jun 1998 | A |
5769864 | Kugel | Jun 1998 | A |
5771716 | Schlussel | Jun 1998 | A |
5785983 | Furlan et al. | Jul 1998 | A |
5800541 | Rhee et al. | Sep 1998 | A |
5814328 | Gunasekaran | Sep 1998 | A |
5824082 | Brown | Oct 1998 | A |
5833705 | Ken et al. | Nov 1998 | A |
5840011 | Landgrebe et al. | Nov 1998 | A |
5861034 | Taira et al. | Jan 1999 | A |
5863984 | Doillon et al. | Jan 1999 | A |
5869080 | McGregor et al. | Feb 1999 | A |
5871767 | Dionne et al. | Feb 1999 | A |
5876444 | Lai | Mar 1999 | A |
5891558 | Bell et al. | Apr 1999 | A |
5899909 | Claren et al. | May 1999 | A |
5906937 | Sugiyama et al. | May 1999 | A |
5910149 | Kuzmak | Jun 1999 | A |
5911731 | Pham et al. | Jun 1999 | A |
5916225 | Kugel | Jun 1999 | A |
5919232 | Chaffringeon et al. | Jul 1999 | A |
5919233 | Knopf et al. | Jul 1999 | A |
5922026 | Chin | Jul 1999 | A |
5931165 | Reich et al. | Aug 1999 | A |
5942278 | Hagedorn et al. | Aug 1999 | A |
5962136 | Dewez et al. | Oct 1999 | A |
5972008 | Kalinski | Oct 1999 | A |
5972022 | Huxel | Oct 1999 | A |
RE36370 | Li | Nov 1999 | E |
5993844 | Abraham et al. | Nov 1999 | A |
5994325 | Roufa et al. | Nov 1999 | A |
5997895 | Narotam et al. | Dec 1999 | A |
6001895 | Harvey et al. | Dec 1999 | A |
6008292 | Lee et al. | Dec 1999 | A |
6015844 | Harvey et al. | Jan 2000 | A |
6039686 | Kovac | Mar 2000 | A |
6042534 | Gellman et al. | Mar 2000 | A |
6042592 | Schmitt | Mar 2000 | A |
6043089 | Sugiyama et al. | Mar 2000 | A |
6051425 | Morota et al. | Apr 2000 | A |
6056688 | Benderev et al. | May 2000 | A |
6056970 | Greenawalt et al. | May 2000 | A |
6057148 | Sugiyama et al. | May 2000 | A |
6063396 | Kelleher | May 2000 | A |
6066776 | Goodwin et al. | May 2000 | A |
6066777 | Benchetrit | May 2000 | A |
6071292 | Makower et al. | Jun 2000 | A |
6077281 | Das | Jun 2000 | A |
6080194 | Pachence et al. | Jun 2000 | A |
6083522 | Chu et al. | Jul 2000 | A |
6120539 | Eldridge et al. | Sep 2000 | A |
6132765 | DiCosmo et al. | Oct 2000 | A |
6143037 | Goldstein et al. | Nov 2000 | A |
6153292 | Bell et al. | Nov 2000 | A |
6165488 | Tardy et al. | Dec 2000 | A |
6171318 | Kugel et al. | Jan 2001 | B1 |
6174320 | Kugel et al. | Jan 2001 | B1 |
6176863 | Kugel et al. | Jan 2001 | B1 |
6179872 | Bell et al. | Jan 2001 | B1 |
6197325 | MacPhee et al. | Mar 2001 | B1 |
6197934 | DeVore et al. | Mar 2001 | B1 |
6197935 | Doillon et al. | Mar 2001 | B1 |
6210439 | Firmin et al. | Apr 2001 | B1 |
6221109 | Geistlich et al. | Apr 2001 | B1 |
6224616 | Kugel | May 2001 | B1 |
6241768 | Agarwal et al. | Jun 2001 | B1 |
6258124 | Darois et al. | Jul 2001 | B1 |
6262332 | Ketharanathan | Jul 2001 | B1 |
6264702 | Ory et al. | Jul 2001 | B1 |
6267772 | Mulhauser et al. | Jul 2001 | B1 |
6277397 | Shimizu | Aug 2001 | B1 |
6280453 | Kugel et al. | Aug 2001 | B1 |
6287316 | Agarwal et al. | Sep 2001 | B1 |
6290708 | Kugel et al. | Sep 2001 | B1 |
6306424 | Vyakarnam et al. | Oct 2001 | B1 |
6312474 | Francis et al. | Nov 2001 | B1 |
6328686 | Kovac | Dec 2001 | B1 |
6334872 | Termin et al. | Jan 2002 | B1 |
6383201 | Dong | May 2002 | B1 |
6391333 | Li et al. | May 2002 | B1 |
6391939 | Tayot et al. | May 2002 | B2 |
6408656 | Ory et al. | Jun 2002 | B1 |
6410044 | Chudzik et al. | Jun 2002 | B1 |
6413742 | Olsen et al. | Jul 2002 | B1 |
6428978 | Olsen et al. | Aug 2002 | B1 |
6436030 | Rehil | Aug 2002 | B2 |
6440167 | Shimizu | Aug 2002 | B2 |
6443964 | Ory et al. | Sep 2002 | B1 |
6447551 | Goldmann | Sep 2002 | B1 |
6447802 | Sessions et al. | Sep 2002 | B2 |
6448378 | DeVore et al. | Sep 2002 | B2 |
6451032 | Ory et al. | Sep 2002 | B1 |
6451301 | Sessions et al. | Sep 2002 | B1 |
6454787 | Maddalo et al. | Sep 2002 | B1 |
6477865 | Matsumoto | Nov 2002 | B1 |
6479072 | Morgan et al. | Nov 2002 | B1 |
6500464 | Ceres et al. | Dec 2002 | B2 |
6509031 | Miller et al. | Jan 2003 | B1 |
6511958 | Atkinson et al. | Jan 2003 | B1 |
6514286 | Leatherbury et al. | Feb 2003 | B1 |
6514514 | Atkinson et al. | Feb 2003 | B1 |
6540773 | Dong | Apr 2003 | B2 |
6541023 | Andre et al. | Apr 2003 | B1 |
6548077 | Gunasekaran | Apr 2003 | B1 |
6554855 | Dong | Apr 2003 | B1 |
6559119 | Burgess et al. | May 2003 | B1 |
6566345 | Miller et al. | May 2003 | B2 |
6575988 | Rousseau | Jun 2003 | B2 |
6576019 | Atala | Jun 2003 | B1 |
6596002 | Therin et al. | Jul 2003 | B2 |
6596304 | Bayon et al. | Jul 2003 | B1 |
6599323 | Melican et al. | Jul 2003 | B2 |
6599524 | Li et al. | Jul 2003 | B2 |
6599690 | Abraham et al. | Jul 2003 | B1 |
6613348 | Jain | Sep 2003 | B1 |
6623963 | Muller et al. | Sep 2003 | B1 |
6630414 | Matsumoto | Oct 2003 | B1 |
6638284 | Rousseau et al. | Oct 2003 | B1 |
6640976 | Franks-Farah | Nov 2003 | B1 |
6652594 | Francis et al. | Nov 2003 | B2 |
6653450 | Berg et al. | Nov 2003 | B1 |
6656206 | Corcoran et al. | Dec 2003 | B2 |
6660280 | Allard et al. | Dec 2003 | B1 |
6669735 | Pelissier | Dec 2003 | B1 |
6682760 | Noff et al. | Jan 2004 | B2 |
6685714 | Rousseau | Feb 2004 | B2 |
6706684 | Bayon et al. | Mar 2004 | B1 |
6706690 | Reich et al. | Mar 2004 | B2 |
6719795 | Cornwall et al. | Apr 2004 | B1 |
6723335 | Moehlenbruck et al. | Apr 2004 | B1 |
D489973 | Root | May 2004 | S |
6730299 | Tayot et al. | May 2004 | B1 |
6736823 | Darois et al. | May 2004 | B2 |
6743435 | DeVore et al. | Jun 2004 | B2 |
6755868 | Rousseau | Jun 2004 | B2 |
6769546 | Busch | Aug 2004 | B2 |
6773723 | Spiro et al. | Aug 2004 | B1 |
6783554 | Amara et al. | Aug 2004 | B2 |
6790213 | Cherok | Sep 2004 | B2 |
6790454 | Abdul Malak et al. | Sep 2004 | B1 |
6793078 | Roshdy | Sep 2004 | B2 |
6800082 | Rousseau | Oct 2004 | B2 |
6833408 | Sehl et al. | Dec 2004 | B2 |
6835336 | Watt | Dec 2004 | B2 |
6841716 | Tsutsumi | Jan 2005 | B1 |
6852330 | Bowman et al. | Feb 2005 | B2 |
6869938 | Schwartz et al. | Mar 2005 | B1 |
6893653 | Abraham et al. | May 2005 | B2 |
6896141 | McMichael | May 2005 | B2 |
6896904 | Spiro et al. | May 2005 | B2 |
6910581 | McMichael | Jun 2005 | B2 |
6911003 | Anderson | Jun 2005 | B2 |
6936276 | Spiro et al. | Aug 2005 | B2 |
6939562 | Spiro et al. | Sep 2005 | B2 |
6949625 | Tayot | Sep 2005 | B2 |
6966918 | Schuldt-Hempe et al. | Nov 2005 | B1 |
6971252 | Therin et al. | Dec 2005 | B2 |
6974679 | Andre et al. | Dec 2005 | B2 |
6974862 | Ringeisen et al. | Dec 2005 | B2 |
6976584 | Maiola et al. | Dec 2005 | B2 |
6977231 | Matsuda | Dec 2005 | B1 |
6988386 | Okawa et al. | Jan 2006 | B1 |
7025063 | Snitkin et al. | Apr 2006 | B2 |
7041868 | Greene et al. | May 2006 | B2 |
RE39172 | Bayon et al. | Jul 2006 | E |
7098315 | Schaufler | Aug 2006 | B2 |
7101381 | Ford et al. | Sep 2006 | B2 |
7115220 | Dubson et al. | Oct 2006 | B2 |
7156858 | Schuldt-Hempe et al. | Jan 2007 | B2 |
7175852 | Simmoteit et al. | Feb 2007 | B2 |
7192604 | Brown et al. | Mar 2007 | B2 |
7207962 | Anand et al. | Apr 2007 | B2 |
7214765 | Ringeisen et al. | May 2007 | B2 |
7226611 | Yura et al. | Jun 2007 | B2 |
7229453 | Anderson et al. | Jun 2007 | B2 |
7243791 | Detruit et al. | Jul 2007 | B2 |
7385176 | Pfeiffer | Jun 2008 | B2 |
7475776 | Detruit et al. | Jan 2009 | B2 |
7481314 | Komarnycky | Jan 2009 | B2 |
7594921 | Browning | Sep 2009 | B2 |
7615065 | Priewe et al. | Nov 2009 | B2 |
7670380 | Cauthen, III | Mar 2010 | B2 |
7709017 | Tayot | May 2010 | B2 |
7718556 | Matsuda et al. | May 2010 | B2 |
7732354 | Fricke et al. | Jun 2010 | B2 |
7785334 | Ford et al. | Aug 2010 | B2 |
7799767 | Lamberti et al. | Sep 2010 | B2 |
7806905 | Ford et al. | Oct 2010 | B2 |
7823727 | Chappuis | Nov 2010 | B2 |
7824420 | Eldridge et al. | Nov 2010 | B2 |
7828854 | Rousseau | Nov 2010 | B2 |
D631558 | Harmston | Jan 2011 | S |
8033395 | Iwao et al. | Oct 2011 | B2 |
D650912 | Tomes | Dec 2011 | S |
8142515 | Therin et al. | Mar 2012 | B2 |
8197837 | Jamiolkowski et al. | Jun 2012 | B2 |
8226669 | Detruit | Jul 2012 | B2 |
8240468 | Wilkinson | Aug 2012 | B2 |
8323675 | Greenawalt | Dec 2012 | B2 |
8366787 | Brown et al. | Feb 2013 | B2 |
8460169 | Lund | Jun 2013 | B2 |
8709094 | Stad et al. | Apr 2014 | B2 |
8846060 | Archibald et al. | Sep 2014 | B2 |
8877233 | Obermiller et al. | Nov 2014 | B2 |
8956373 | Ford et al. | Feb 2015 | B2 |
9034357 | Stopek | May 2015 | B2 |
9072586 | Ranucci | Jul 2015 | B2 |
9241781 | Nentwick | Jan 2016 | B2 |
9265578 | Dacey | Feb 2016 | B2 |
D786093 | Christie | May 2017 | S |
9744333 | Terzibashian | Aug 2017 | B2 |
20020095218 | Carr et al. | Jul 2002 | A1 |
20020117408 | Solosko et al. | Aug 2002 | A1 |
20030086975 | Ringeisen | May 2003 | A1 |
20030114885 | Nova | Jun 2003 | A1 |
20030114937 | Leatherbury et al. | Jun 2003 | A1 |
20030133967 | Ruszczak et al. | Jul 2003 | A1 |
20030225355 | Butler | Dec 2003 | A1 |
20040000499 | Maiola et al. | Jan 2004 | A1 |
20040034373 | Schuldt-Hempe et al. | Feb 2004 | A1 |
20040059356 | Gingras | Mar 2004 | A1 |
20040068159 | Neisz et al. | Apr 2004 | A1 |
20040101546 | Gorman et al. | May 2004 | A1 |
20040243214 | Farrell | Dec 2004 | A1 |
20050002893 | Goldmann | Jan 2005 | A1 |
20050021058 | Negro | Jan 2005 | A1 |
20050077197 | Detruit et al. | Apr 2005 | A1 |
20050085924 | Darois et al. | Apr 2005 | A1 |
20050098460 | Smith | May 2005 | A1 |
20050113849 | Popadiuk et al. | May 2005 | A1 |
20050126948 | Maiola et al. | Jun 2005 | A1 |
20050137512 | Campbell et al. | Jun 2005 | A1 |
20050142161 | Freeman et al. | Jun 2005 | A1 |
20050148963 | Brennan | Jul 2005 | A1 |
20050175659 | Macomber et al. | Aug 2005 | A1 |
20050192600 | Nicolo et al. | Sep 2005 | A1 |
20050232979 | Shoshan | Oct 2005 | A1 |
20050267521 | Forsberg | Dec 2005 | A1 |
20050277991 | Covey | Dec 2005 | A1 |
20050288691 | Leiboff | Dec 2005 | A1 |
20060135921 | Wiercinski et al. | Jun 2006 | A1 |
20060147501 | Hillas et al. | Jul 2006 | A1 |
20060196788 | Komarnycky | Sep 2006 | A1 |
20060216320 | Kitazono et al. | Sep 2006 | A1 |
20060252981 | Matsuda et al. | Nov 2006 | A1 |
20070209957 | Glenn et al. | Sep 2007 | A1 |
20070299538 | Roeber | Dec 2007 | A1 |
20080027291 | Williams-Hartman | Jan 2008 | A1 |
20080286144 | Shalaby | Nov 2008 | A1 |
20090099579 | Nentwick | Apr 2009 | A1 |
20090166236 | Iwao et al. | Jul 2009 | A1 |
20090209031 | Stopek | Aug 2009 | A1 |
20090228021 | Leung | Sep 2009 | A1 |
20100158991 | Okada et al. | Jun 2010 | A1 |
20100286715 | Detruit et al. | Nov 2010 | A1 |
20100288770 | Marco et al. | Nov 2010 | A1 |
20100307941 | Tomes | Dec 2010 | A1 |
20100311026 | Tomes | Dec 2010 | A1 |
20110082479 | Friedlander | Apr 2011 | A1 |
20110232234 | Lockwood | Sep 2011 | A1 |
20110284410 | Lockwood | Nov 2011 | A1 |
20110309073 | Dacey | Dec 2011 | A1 |
20120059388 | Knowles | Mar 2012 | A1 |
20120210678 | Alcouloumre | Aug 2012 | A1 |
20130035704 | Dudai | Feb 2013 | A1 |
20140090999 | Kirsch | Apr 2014 | A1 |
20150176303 | Kuchar | Jun 2015 | A1 |
20150268215 | Tomellini | Sep 2015 | A1 |
20160228676 | Glithero | Aug 2016 | A1 |
20160310253 | Ferrand | Oct 2016 | A1 |
20160310254 | Ferrand | Oct 2016 | A1 |
20170131258 | Tomellini | May 2017 | A1 |
20170216558 | Hughett | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
1317836 | May 1993 | CA |
19544162 | Apr 1997 | DE |
10019604 | Oct 2001 | DE |
10043396 | Jun 2002 | DE |
0194192 | Sep 1986 | EP |
0248544 | Dec 1987 | EP |
0276890 | Aug 1988 | EP |
0372969 | Jun 1990 | EP |
544485 | Jun 1993 | EP |
0552576 | Jul 1993 | EP |
614650 | Sep 1994 | EP |
0621014 | Oct 1994 | EP |
0 625 334 | Nov 1994 | EP |
0625334 | Nov 1994 | EP |
0625891 | Nov 1994 | EP |
0637452 | Feb 1995 | EP |
0705878 | Apr 1996 | EP |
0719527 | Jul 1996 | EP |
0774240 | May 1997 | EP |
0797962 | Oct 1997 | EP |
827724 | Mar 1998 | EP |
0836838 | Apr 1998 | EP |
0895762 | Feb 1999 | EP |
898944 | Mar 1999 | EP |
1017415 | Jul 2000 | EP |
1052319 | Nov 2000 | EP |
1055757 | Nov 2000 | EP |
1 216 717 | Jun 2002 | EP |
1 216 718 | Jun 2002 | EP |
0693523 | Nov 2002 | EP |
1315468 | Jun 2003 | EP |
1382728 | Jan 2004 | EP |
1484070 | Dec 2004 | EP |
1561480 | Aug 2005 | EP |
1782848 | May 2007 | EP |
2244853 | Apr 1975 | FR |
2257262 | Aug 1975 | FR |
2 308 349 | Nov 1976 | FR |
2453231 | Oct 1980 | FR |
2715405 | Jul 1995 | FR |
2 724 563 | Mar 1996 | FR |
2744906 | Aug 1997 | FR |
2766698 | Feb 1999 | FR |
2771622 | Jun 1999 | FR |
2779937 | Dec 1999 | FR |
2859624 | Mar 2005 | FR |
2863277 | Jun 2005 | FR |
2884706 | Oct 2006 | FR |
2 051 153 | Jan 1981 | GB |
H0332677 | Feb 1991 | JP |
H05237128 | Sep 1993 | JP |
H09137380 | May 1997 | JP |
9311805 | Jun 1993 | TM |
9835632 | Aug 1998 | WF |
8902445 | Mar 1989 | WO |
8908467 | Sep 1989 | WO |
9012551 | Nov 1990 | WO |
9206639 | Apr 1992 | WO |
9220349 | Nov 1992 | WO |
9318174 | Sep 1993 | WO |
9417747 | Aug 1994 | WO |
9507666 | Mar 1995 | WO |
9518638 | Jul 1995 | WO |
9532687 | Dec 1995 | WO |
9603091 | Feb 1996 | WO |
9608277 | Mar 1996 | WO |
9609795 | Apr 1996 | WO |
9614805 | May 1996 | WO |
9641588 | Dec 1996 | WO |
9735533 | Oct 1997 | WO |
9849967 | Nov 1998 | WO |
9905990 | Feb 1999 | WO |
9906079 | Feb 1999 | WO |
9906080 | Feb 1999 | WO |
9951163 | Oct 1999 | WO |
0016821 | Mar 2000 | WO |
0067663 | Nov 2000 | WO |
0115625 | Mar 2001 | WO |
0180773 | Nov 2001 | WO |
02007648 | Jan 2002 | WO |
02078568 | Oct 2002 | WO |
03002168 | Jan 2003 | WO |
2004004600 | Jan 2004 | WO |
2004071349 | Aug 2004 | WO |
2004078120 | Sep 2004 | WO |
2004103212 | Dec 2004 | WO |
200511280 | Feb 2005 | WO |
2005013863 | Feb 2005 | WO |
2005018698 | Mar 2005 | WO |
2005105172 | Nov 2005 | WO |
2006018552 | Feb 2006 | WO |
2006023444 | Mar 2006 | WO |
WO 2006100372 | Sep 2006 | WO |
2007048099 | Apr 2007 | WO |
2009031035 | Mar 2009 | WO |
2009071998 | Jun 2009 | WO |
2011128903 | Oct 2011 | WO |
WO 2011128903 | Oct 2011 | WO |
Entry |
---|
Australian Examination Report dated May 24, 2017 in corresponding Australian Patent Application No. 2013322268, 3 pages. |
Ellouali, M. et al., “Antitumor Activity of Low Molecular Weight Fucans Extracted from Brown Seaweed Ascophyllum Nodosum,” Anticancer Res., Nov.-Dec. 1993, pp. 2011-2020, 12 (6A). |
Malette, W. G. et al., “Chitosan, A New Hemostatic,” Ann Th. Surg., Jul. 1983, pp. 55-58, 36. |
Langenbech, M. R. et al., “Comparison of biomaterials in the early postoperative period,” Surg Endosc., May 2003, pp. 1105-1109, 17 (7). |
Bracco, P. et al., “Comparison of polypropylene and polyethylene terephthalate (Dacron) meshes for abdominal wall hernia repair: A chemical and morphological study,” Hernia, 2005, pp. 51-55, 9 (1), published online Sep. 2004. |
Klinge, U. et al., “Foreign Body Reaction to Meshes Used for the Repair of Abdominal Wall Hernias,” Eur J. Surg, Sep. 1999, pp. 665-673, 165. |
Logeart, D. et al., “Fucans, sulfated polysaccharides extracted from brown seaweeds, inhibit vascular smooth muscle cell proliferation. II. Degradation and molecular weight effect,” Eur. J. Cell. Biol., Dec. 1997, pp. 385-390, 74(4). |
Haneji, K. et al., “Fucoidan extracted from Cladosiphon Okamuranus Tokida Induces Apoptosis of Human T-cell Leukemia Virus Type 1-Infected T-Cell Lines and Primary Adult T-Cell Leukemia Cells,” Nutrition and Cancer, 2005, pp. 189-201, 52(2), published online Nov. 2009. |
Junge, K. et al., “Functional and Morphologic Properties of a Modified Mesh for Inguinal Hernia Repair,” World J. Surg., Sep. 2002, pp. 1472-1480, 26. |
Klinge, U. et al., “Functional and Morphological Evaluation of a Low-Weight, Monofilament Polypropylene Mesh for Hernia Repair,” J. Biomed. Mater. Res., Jan. 2002, pp. 129-136, 63. |
Welty, G. et al., “Functional impairment and complaints following incisional hernia repair with different polypropylene meshes,” Hernia, Aug. 2001; pp. 142-147, 5. |
Varum, K. et al., “In vitro degradation rates of partially N-acetylated chitosans in human serum,” Carbohydrate Research, Mar. 1997, pp. 99-101, 299. |
Haroun-Bouhedja, F. et al., “In Vitro Effects of Fucans on MDA-MB231 Tumor Cell Adhesion and Invasion,” Anticancer Res., Jul.-Aug., pp. 2285-2292, 22(4). |
Scheidbach, H. et al., “In vivo studies comparing the biocompatibility of various polypropylene meshes and their candling properties during endoscopic total extraperitoneal (TEP) patchplasty: An experimental study in pigs,” Surg. Endosc., Feb. 2004, pp. 211-220,18(2). |
Blondin, C. et al., “Inhibition of Complement Activation by Natural Sulfated Polysaccharides (Fucans) from Brown Seaweed,” Molecular Immuol., Mar. 1994, pp. 247-253, 31(4). |
Zvyagintseva, T. et al., “Inhibition of complement activation by water-soluble polysaccharides of some far-eastern brown seaweeds,” Comparative Biochem and Physiol, Jul. 2000, pp. 209-215,126(3). |
Rosen, M. et al., “Laparoscopic component separation in the single-stage treatment of infected abdominal wall prosthetic removal,” Hernia, 2007, pp. 435-440, 11, published online Jul. 2007. |
Amid, P., “Lichtenstein tension-free hernioplasty: Its inception, evolution, and principles,” Hernia, 2004; pp. 1-7, 8, published online Sep. 2003. |
Boisson-Vidal, C. et al., “Neoangiogenesis Induced by Progenitor Endothelial Cells: Effect of Fucoidan From Marine Algae,” Cardiovascular & Hematological Agents in Medicinal Chem., Jan. 2007, pp. 67-77, 5(1). |
O'Dwyer, P. et al., “Randomized clinical trial assessing impact of a lightweight or heavyweight mesh on chronic pain after inguinal hernia repair,” Br. J. Surg., Feb. 2005, pp. 166-170, 92(2). |
Muzzarelli, R. et al., “Reconstruction of parodontal tissue with chitosan,” Biomaterials, Nov. 1989, pp. 598-604, 10. |
Haroun-Bouhedja, F. et al., “Relationship between sulfate groups and biological activities of fucans,” Thrombosis Res., Dec. 2000, pp. 453-459, 100(5). |
Blondin, C. et al., “Relationships between chemical characteristics and anticomplementary activity of fucans,” Biomaterials, Mar. 1996, pp. 597-603, 17(6). |
Strand, S. et al., “Screening of Chitosans and Conditions for Bacterial Flocculation,” Biomacromolecules, Mar. 2001, 126-133, 2. |
Kanabar, V. et al., “Some structural determinants of the antiproliferative effect of heparin-like molecules on human airway smooth muscle,” Br. J. Pharmacol., Oct. 2005, pp. 370-777, 146(3). |
Hirano, S. et al., “The blood biocompatibility of chitosan and N-acylchitosans,” J. Biomed. Mater. Res., Apr. 1985, 413-417, 19. |
Rao, B. et al., “Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential,” J. Biomed. Mater. Res., Jan. 1997, pp. 21-28, 34. |
Prokop, A. et al., “Water Soluble Polymers for Immunoisolation I: Complex Coacevation and Cytotoxicity,” Advances in Polymer Science, Jul. 1998, pp. 1-51, 136. |
Collins, R. et al., “Use of collagen film as a dural substitute: Preliminary animal studies,” Journal of Biomedical Materials Research, Feb. 1991, pp. 267-276, vol. 25. |
Preliminary Search Report from French Patent Office dated Dec. 20, 2006, 3 pages. |
European Office Action dated Apr. 1, 2016 in corresponding European Patent Application No. 13824648.3, 6 pages. |
International Search Report for PCT/IB2013/002844 date of completion is May 16, 2014 (3 pages). |
Number | Date | Country | |
---|---|---|---|
20150209129 A1 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
61706912 | Sep 2012 | US |