This application is a 35 U.S.C. 371 National Phase of PCT Application No. PCT/FR2017/051357 filed May 31, 2017 which claims priority to FR Application No. 1654949, filed Jun. 1, 2016, and FR Application No. 1663543, filed Dec. 30, 2016, the disclosure of each of which is hereby incorporated by reference in their entirety.
The invention relates to a packaging for a transparent liquid.
In particular, the invention relates to a packaging of the type comprising a bottle that is at least partly transparent, and a lighting system placed on the bottle so as to emit a light beam in a lighting direction parallel to a central axis of the bottle.
Known packagings of this type are used in order to highlight a bottle filled with a transparent liquid due to a visual effect produced by the propagation of the light beam in the transparent liquid.
However, the known packaging does not make it possible to modify the visual effect produced.
The invention aims to overcome this drawback.
To this end, the invention proposes a packaging of the above-mentioned type also comprising a coating film covering at least a part of an outer surface of a side wall of the bottle, the coating film at least locally comprising a design capable of being backlit by the light beam propagating in the liquid, the design comprising a plurality of design areas, each design area having a light level defined by a ratio of an amount of light measured at a measuring distance from the lighting system through the design area to an amount of light measured directly at the measuring distance from the lighting system, the plurality of design areas comprising at least one first contrast area and at least one second contrast area, the first contrast area having a light level at least 15%, in particular at least 30%, preferably at least 40%, for example at least 50% less than the light level of the second contrast area.
Thus, the invention makes provision for an interaction between the light beam, the liquid, the design of the coating film, and, optionally, the bottle in order to produce a visual effect. It is thus possible to modify the visual effect by exploiting an arrangement of the first and second contrast areas, and, if appropriate, on a fill level of the bottle.
The first contrast area can be an opaque design area and the second contrast area can be a transparent design area, the opaque and transparent design areas having a difference in light level of at least 15%, in particular at least 30%, preferably at least 40%, for example at least 50%.
The coating film can comprise at least one window capable of allowing viewing of the side wall from the outside, the window forming one of the second contrast areas. In particular, the coating film can comprise a transparent portion forming said at least one window. In a complementary or alternative manner, the coating film can comprise a cutout forming said at least one window. The side wall of the bottle can comprise at least one transverse wall portion that is inclined with respect to the central axis, with provision then able to be made for the window on the transverse wall portion. The visual effect can thus result from the interaction of the light beam, the liquid and the design of the coating film with the shape of the bottle.
At least one of the first contrast areas can be an obscuring design area having a light level of less than 10%, preferably less than 5%. The obscuring design area can have a thickness that is less than 10 μm, preferably less than 5 μm, in particular less than 3 μm. For example, the obscuring design area can comprise a layer of metallic ink.
The design of the coating film can comprise first and second patterns superimposed, the coating film being capable of showing the first pattern when the design is not backlit by the light beam and of showing the second pattern when the design is backlit by the light beam. In particular, the coating film can have an inner surface that is in contact with the outer surface of the side wall of the bottle, and an outer surface opposite to the inner surface, the first of the two patterns being produced one on the inner surface of the coating film and the other on the outer surface of the coating film.
The coating film can have a lower edge situated at the level of the base of the bottle and an upper edge situated at the level of the neck of the bottle so as to substantially cover all of the outer surface of the side wall of the bottle. In particular, the bottle can have an initial fill level where it extends to a low point of a meniscus initially formed by a free surface of the liquid, the upper edge of the coating film being flush with the initial fill level.
The lighting system can comprise:
The power supply device can be capable of generating electrical energy from mechanical energy.
The lighting system can also comprise a control device connected to the power supply device and capable of switching the power supply device between the active state and the inactive state according to a timer.
The base of the bottle can have an inner surface delimiting the volume for receiving the liquid, and an outer surface, and the lighting system can be fixed on the outer surface of the base.
The lighting system can be a lighting component capable of emitting a light signal of a terminal such as a telephone or similar.
The terminal can also be equipped with an acquisition device capable of acquiring an image. The packaging can then be implemented in a method of presenting the bottle, the bottle having at least one optical feature selected from a pattern and a shape. The presentation method implementing:
the presentation method makes provision for the steps consisting of:
The presentation method can, after the optical feature has been associated with an item of multimedia content, make provision for placing the terminal close to the bottle and orienting the lighting component towards the volume of the bottle.
The presentation method can, after the optical feature has been associated with an item of multimedia content, make provision for the steps consisting of:
The coating film can have a pattern as an optical feature, the presentation method making provision for backlighting the pattern when the light signal is emitted.
The side wall of the bottle can have the shape as an optical feature. In particular, the side wall of the bottle can comprise at least one bulge between two narrow parts, the bulge having a maximum transverse dimension greater than at least 20%, to a maximum transverse dimension of each of the narrow parts, said at least one bulge forming the shape.
The light signal can have a predefined rhythm for a light display.
The light signal can comprise at least one light beam emitted in a direction of illumination.
The lighting component can comprise a flash lamp suitable for an acquisition of an image by the acquisition device under low light conditions.
The lighting component can comprise a display screen.
The processing unit can comprise a database storing a plurality of optical features and a plurality of items of multimedia content, each associated with an optical feature.
The processing unit can comprise a processor and a memory arranged in the terminal, the database being stored in the memory.
As a variant, the processing unit can comprise:
The terminal can be equipped with at least one sound component capable of emitting a sound signal and in which the multimedia content comprising instructions that are readable by the processing unit in order to emit a sound signal corresponding to the optical feature via the sound component.
The sound signal and the light signal can be emitted in synchronization.
The processing unit can comprise at least one recording device capable of recording a voice message as sound signal, the presentation method making provision for emitting the recorded voice message.
The terminal can be capable of being carried in the hand of a user.
Further aims and advantages of the invention will become apparent on reading the following description of particular non-limitative embodiments of the invention, the description being given with reference to the attached drawings in which:
In the figures, the same references denote identical or similar elements.
The packaging 1 comprises a bottle 2 internally comprising an volume for receiving a transparent liquid. Within the meaning of the present application, by “a transparent liquid” is meant a liquid having a light level greater than 70%, the light level being defined by a ratio of an amount of light measured at a measuring distance from a light source 16 though a liquid height to an amount of light measured directly at the measuring distance from the light source 16. The transparent liquid can in particular be a drink and, in particular, water, in particular spring water, for example still or sparkling.
The bottle 2 is transparent, completely or partially, i.e. it has a light level greater than 70%, the light level then being defined by a ratio of an amount of light measured at a measuring distance from the light source 16 through the bottle to an amount of light measured directly at the measuring distance from the light source 16. In the embodiment shown, without being limited thereby, the bottle 2 is disposable and produced from plastic material such as PET. As a variant, the bottle 2 can be produced from any other suitable material and in particular from glass.
The bottle 2 has a central axis A and comprises a base 3 that is transverse overall with respect to the central axis A. The base 3 has an outer surface on which a support surface is arranged, and an inner surface delimiting the volume for receiving the liquid. The bottle 2 also comprises a side wall 4 which extends from the base 3 around the central axis A up to a neck 5 delimiting an upper opening 6 opposite to the base 3. The side wall 4 has an inner surface delimiting the volume for receiving the liquid, and an outer surface opposite to the inner surface. In the embodiment shown, without being limited thereby, the side wall 4 has a succession of three bulges 7, 8, 9 that are substantially spherical: a lower bulge 7 in the vicinity of the base 3, an intermediate bulge 8 separated from the lower bulge 7 by a first narrow part 10 and an upper bulge 9 in the vicinity of the neck 5 and separated from the intermediate bulge 8 by a second narrow part 11. The bulges 7, 8, 9 form transverse wall portions that are inclined relative to the central axis A:
Provision can be made for a cap 12 on the neck 5 in order to reversibly seal the upper opening 6. In the embodiment shown, the cap 12 can be mounted in a detachable manner, for example by screwing, on the neck 5. As a variant, the cap can be mounted and remain on the neck 5 and comprise a movable part that can be moved between a sealing position in which it seals the upper opening 6 and an opening position in which it is separated from the upper opening 6.
The packaging 1 also comprises a lighting system 15 comprising an electrical light source, such as one or more LEDs 16, capable of emitting a light beam, and an independent electrical energy power supply device, comprising for example a battery and a switch. The battery is connected to the LEDs 16 via the switch in order to, in an active state, supply the LEDs 16 with electrical energy so as to emit the light beam, and in an inactive state, to not supply the LEDs 16 with electrical energy so as to not emit the light beam. In the embodiment shown, the LEDs 16 and the power supply device are mounted on a flat support 17 that is for example circular having a diameter less than the diameter of the base 3 of the bottle 2. The LEDs 16 are mounted on one and the same face of the support 17. The lighting system 15 is placed on the bottle 2 with the face on which the LEDs 16 are mounted against the outer surface of the base 3 so as to emit the light beam in a lighting direction parallel to the central axis A of the bottle 2. The support 17 can be firmly attached to the outer surface of the base 3 of the bottle, for example by means of a layer of adhesive material 18.
The packaging 1 also comprises a coating film 20 covering the outer surface of the side wall 4 of the bottle 2. In the embodiment shown, the coating film 20 has a lower edge 21 situated at the level of the base 3 of the bottle 2 and an upper edge 22 situated at the level of the neck 5 of the bottle 2 so as to substantially cover all of the outer surface of the side wall 4 of the bottle 2. In particular, the bottle 2 has an initial fill level where it extends to a low point of a meniscus initially formed by a free surface of the liquid. The upper edge 22 of the coating film 20 is thus flush with the initial fill level. As a variant, only a part of the outer surface of the side wall 4 of the bottle 2 may be covered by the coating film 20.
The coating film 20 comprises a design having several design areas 25, 26. Each design area 25, 26 has a light level defined by a ratio of an amount of light measured at a measuring distance D from the light source 16 through the design area to an amount of light measured directly at the measuring distance from the light source 16. The design is constituted by a particular arrangement of one or more first contrast areas 25 and one or more second contrast areas 26. In the embodiment shown, the coating film comprises several second contrast areas 26 in the shape of separate flames, and first contrast areas 25. The first contrast areas 25 have a light level at least 15%, in particular at least 30%, preferably at least 40%, for example at least 50% less than the light level of the second contrast areas 26.
In the particular embodiment shown, the first contrast areas are opaque design areas 25 and the second contrast areas are transparent design areas 26. The opaque 25 and transparent 26 design areas have a difference in light level of at least 15%, in particular at least 30%, preferably at least 40%, for example at least 50%. As a variant, the first and second contrast areas may be produced in any manner suitable for obtaining a contrast. The first and second contrast areas may in particular be more or less translucent, more or less coloured, more or less thick, etc.
By way of a non-limitative example,
An initial measurement of the amount of light at the measuring distance D is carried out directly through the opening 32. The different design areas are then successively placed in the opening 32 and the amount of light at the measuring distance D is measured through each of the design areas.
The results obtained are shown in the table below.
Thus, a difference in the light level of the order of 15% can correspond to a design having black opaque design areas and blue or green transparent design areas. A difference in the light level between 40% and 50% can correspond to a design having blue or green opaque design areas and white transparent design areas.
In
Moreover, in order to obtain the desired opacity and, if appropriate, to vary it, it is possible to vary different parameters of the coating film 20 such as for example: the thickness of the coating film, the thickness or number of printed layers forming the design on the coating film 20, the amount of ink used in the printed layer. In particular, one or more of the opaque design areas 25 may be an obscuring design area having a light level of less than 10%, preferably less than 5%. The obscuring design area is preferably thin, with a thickness that is less than 10 μm, preferably less than 5 μm, in particular less than 3 μm. For example, the obscuring design area comprises a layer of metallic ink. The opaque design area 25 can then be reflective, so as to channel the light towards the transparent design areas 26. Such an effect may be obtained by distributing metallic particles over a printed layer. According to other variants, as is shown in the table above, the transparent design areas 26 may be green or blue and the opaque design areas 25 may have a light level at least 15% less than that of the transparent design areas 26, i.e. they are black. Or also, the transparent design areas 26 may be white and the opaque design areas 25 may have a light level at least 40% less than that of the transparent design areas 26, i.e. they are blue or green.
In
Thus, the light beam, the liquid, the design of the coating film 20 and the bottle 2, in particular by means of its shape, interact in order to produce a visual effect that it is then possible to modify by exploiting an arrangement of the first and second contrast areas.
As is apparent in
The modification of the visual effect is shown in
In
As a variant, in
To this end, the first and second patterns can be produced, one on an inner surface of the coating film 41, 42 in contact with the outer surface of the side wall 4 of the bottle 2, and the other on an outer surface of the coating film 41, 42 opposite to the inner surface.
The design comprises opaque design areas 55 featuring a car body and transparent design areas 56 featuring headlights. The transparent design areas 56 can be produced by windows 57 obtained by portions of transparent film or cutouts arranged in the coating film 51. Provision is then made for the windows 57 on the transverse wall portion of the upper bulge 9 of the side wall 4. As the windows 57 are thus orientated substantially transversally with respect to the light beam, they can provide more intense lighting than the remainder of the bottle 2 when the lighting system 15 is lit. The opaque design areas 55 can also be selected in order to channel the light beam and concentrate it towards the windows 57.
In other embodiments, activation of the power supply and lighting device of the bottle 2 and of the coating film 20, 41a may be controlled in any suitable manner. For example, a control device can be connected to the power supply device in order to make it switch between the active state and the inactive state according to a determined sequence defined in particular by a timer.
In a fourth embodiment shown in
Apart from the lighting component 62 capable of emitting a light signal, the terminal 60 can be equipped with a acquisition device 61 capable of acquiring an image and a sound component 63 capable of emitting a sound signal. The terminal 60 can form part of an electronic system shown in
In the embodiment shown, the optical feature can be at least one of the pattern on the coating film 20 and the shape of the bottle 2. As a variant, the optical feature may be constituted by any other pattern comprising areas that differ from one another by one or more optical parameters, visible by a user or at least detectable by a suitable detection device, such as a colour, a contrast, an intensity or a light level. The optical feature may also be constituted by any other form.
The multimedia content comprises instructions that are readable by the processing unit in order to emit a light signal corresponding to the optical feature via the lighting component 61. The light signal can comprise one or more lights of different colours and/or intensities emitted at a predefined rhythm for a light show. When the terminal 60 is equipped with a sound component 23, the multimedia content can also comprise instructions that are readable via the processing unit in order to emit a sound signal corresponding to the optical feature via the sound component 63. The sound signal can comprise one or more sounds of different levels and/or intensities, if appropriate, emitted in synchronization with the light signal.
The terminal 60 comprises a case 64 that can be carried in the hand of a user and contains a set of electronic components. In particular, in
In
As a variant, the processing unit can be completely contained within the terminal 60. Apart from the processor 72, the processing unit then comprises a memory in which the database is stored.
With reference to
An image of the bottle 2 is acquired via the acquisition device 61 of the terminal 60 and transmitted to the processor 72.
The optical feature of the bottle 2, for example the upper bulge 9, is recognized by the processor 72 in the image acquired by the acquisition device 61. The processor 72 communicates with the server 71 via the communication interface 73 in order to associate the corresponding multimedia content with the optical feature. A page offering the user different choices can then be displayed on the display screen 65 of the terminal 60. Among the choices offered, A, B or C in
The processor 72 can then control the illumination 62 and sound 63 component or components according to the instructions of the multimedia content in order to deliver the corresponding light and sound signals.
The front face of the terminal 60 can be placed on a support surface 80 in such a way that the flash lamp 69 emits the light signal in a direction opposite to the support surface 80. The base 3 of the bottle 2 can then be placed on the flash lamp 69 in such a way that the light signal corresponding to the optical feature is emitted substantially along the central axis A of the bottle 2 in synchronization with the sound signal, the pattern of the coating film 20 being backlit.
Number | Date | Country | Kind |
---|---|---|---|
16 54949 | Jun 2016 | FR | national |
16 63543 | Dec 2016 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2017/051357 | 5/31/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/207923 | 12/7/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6020823 | DeCicco | Feb 2000 | A |
6254247 | Carson | Jul 2001 | B1 |
7762682 | Yang | Jul 2010 | B2 |
8522989 | Uptergrove | Sep 2013 | B2 |
9127831 | Watanabe | Sep 2015 | B2 |
10215396 | Willows | Feb 2019 | B2 |
20040004829 | Policappelli | Jan 2004 | A1 |
20080034628 | Schnuckle | Feb 2008 | A1 |
20140138274 | Smith et al. | May 2014 | A1 |
20140300273 | LeBrun | Oct 2014 | A1 |
20170343206 | Hagen | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
2912537 | Aug 2008 | FR |
2991752 | Dec 2013 | FR |
WO 198906793 | Jul 1989 | WO |
Entry |
---|
International Search Report for PCT/FR2017/051357 dated Aug. 25, 2017. |
Number | Date | Country | |
---|---|---|---|
20190202611 A1 | Jul 2019 | US |