The present application relates to packaging machines and more particularly to a packaging machine for delivering cups or like containers to a packaging station.
Cups are typically packaged for retail or commercial sale as nested stacks of cups within a plastic bag for retail sale, for example, in a grocery store, supermarket, gas station, etc. Improvements in the handling of cups and cup-like containers for packaging are desirable.
In one aspect, an apparatus for use in delivering cup-like containers to a container receiving path of a packaging station includes an infeed tower having: an upper tower segment; a lower tower segment; an upper inlet end for receiving cup-like containers into the upper tower segment; a lower outlet end for selectively feeding the cup-like containers from the lower tower segment to the container receiving path; wherein the upper tower segment includes a lower transfer end and the lower tower segment includes an upper transfer end; wherein the lower tower segment is movable between a load position and an unload position; wherein, in the load position of the lower tower segment, the upper transfer end of the lower tower segment aligns with the lower transfer end of the upper tower segment for receiving cup-like containers from the upper tower segment, and the lower outlet end is offset from the container receiving path; wherein, in the unload position of the lower tower segment, the lower tower segment is moved out of alignment with the upper tower segment so as to position the lower outlet end over the container receiving path.
In another aspect, an apparatus for use in delivering cup-like containers to a container receiving path of a packaging station includes: a first infeed tower and a second infeed tower, each of the first infeed tower and the second infeed tower having: a stationary upper segment and a movable lower segment, wherein the movable lower segment is movable between a load position, in alignment with the stationary upper segment for receiving cup-like containers from the stationary upper segment, and an unload position, in alignment with the container receiving path for delivering cup-like containers to the container receiving path; a transfer gate controllable to block feed of cup-like containers from the stationary upper segment down into the movable lower segment; and an outlet gate controllable to block feed of cup-like containers down out of the movable lower segment.
In a further aspect, a method of delivering cup-like containers to a container receiving path of a packaging station, involves: (a) utilizing a first infeed tower with a first movable tower segment and a second infeed tower with a second movable tower segment; (b) loading cup-like containers into the first movable tower segment while the first movable tower segment is in a first load position offset from the container receiving path (c) loading cup-like containers into the second movable tower segment while the second movable tower segment is in a second load position offset from the container receiving path; (d) shifting the first movable tower segment to an unload position aligned with the container receiving path and dropping cup-like containers from the first movable tower segment to the container receiving path; (e) shifting the first movable tower segment back toward the first load position; and (f) shifting the second movable tower segment to the unload position and dropping cup-like containers from the second movable tower segment to the container receiving path.
The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
Referring to
The cup feed section 14 includes a pair of infeed towers 18 and 20, each of which may include a respective infeed tube 22, 24 to the infeed tower. Cups may typically be delivered into the infeed tubes 22, 24 by an upstream forming press coupled with pneumatic tubing to act as the path of conveyance. Each infeed tower 18, 20 includes an upper tower segment 18a, 20a and a lower tower segment 18b, 20b. An upper inlet end 18c, 20c, at the top of the upper tower segment, provides an inlet opening for receiving cups into the upper tower segment, and a lower outlet end 18d, 20d, at the bottom of the lower tower segment, provides an outlet opening for selectively feeding cups down out of the lower tower segment. Here, each tower segment is formed by a set of generally parallel bars that surround a path along with cups can drop, but other configurations are possible. Here, each infeed tower runs substantially vertically. However, embodiments in which the infeed towers are offset from vertical (e.g., at an angle of sixty degrees or more relative to horizontal) are possible.
Each upper tower segment 18a, 20a includes a respective lower transfer end 18e, 20e and each lower tower segment 18b, 20b includes a respective upper transfer end 18f, 20f. Each lower tower segment is movable between a load position (e.g., shown in
Each infeed tower 18, 20 includes an upper transfer gate or gates 18g, 20g located proximate the lower transfer end of the upper tower segment. Here, two diametrically opposed gates are used. The upper transfer gates have an open position (e.g.,
Each infeed tower 18, 20 also includes a lower outlet gate or gates 18h, 20h located proximate the lower outlet end of the lower tower segment. The lower outlet gates may be of similar configuration to the transfer gates 18g, 20g, having a closed position for retaining cup-like containers in the lower tower segment and an open position for allowing cup-like containers to pass down out of the lower tower segment. Here, each lower outlet gate 18h, 20h is mounted on a plate (e.g., 44) that actually moves with the lower tower segment, where the plate has an opening (e.g., 46) through which cups pass to pass downward out of the lower tower segment and to the container receiving path 16 or the bypass path 32, 34, depending upon the position of the lower tower segment when the lower outlet gate 18h, 20h is opened.
Each lower tower segment 18b, 20b is movable by a respective servo linear drive 50, 52. In this regard, and referring only to drive 52 by way of example, the drive is mounted on a drive frame 53 that operates as a shuttle. The interior side of the drive frame carries a slide rail 54. The lower tower segment is mounted to a box frame structure 56 that includes a mount plate 58 facing the slide rail 54. An upper portion of the mount plate 58 carries a slide channel 60 that is slidingly engaged onto the slide rail 54, and a lower portion of the mount plate 58 is linked to the movable side portion of the drive 52 via a connecting block 62. Thus, movement of the drive causes sliding movement of the box frame structure 56 and lower tower segment along the rail between the desired load and unload positions.
A controller 100 is provided for control of the drives and the gates. Here, the controller 100 controls both the packaging section 12 and the cup feed section 14. As used herein, the term controller is intended to broadly encompass any circuit (e.g., solid state, application specific integrated circuit (ASIC), an electronic circuit, a combinational logic circuit, a field programmable gate array (FPGA)), processor(s) (e.g., shared, dedicated, or group—including hardware or software that executes code), software, firmware and/or other components, or a combination of some or all of the above, that carries out the control and/or processing functions of the device or the control and/or processing functions of any component thereof. In addition, each feed tower 18, 20 includes a respective cup sensor arrangement 70, 72. Referring to
Thus, the controller 100, the sensor arrangements 70, 72 and the drives 50, 52 form a control system that can count cups and deliver specific cup counts to the container receiving path 16 as needed. An exemplary operation of the cup infeed section 14 is shown schematically in
It is to be clearly understood that the above description is intended by way of illustration and example only, is not intended to be taken by way of limitation, and that other changes and modifications are possible. Although cups are primarily referred to above, it is understood that other containers of a similar nature could be handled in the same way. As used herein, the term “cup-like containers” refers to both cups and other nestable containers with a closed end and an open end, such as tubs or bowls.
Number | Date | Country | |
---|---|---|---|
63231290 | Aug 2021 | US |