This application is related to currently pending U.S. patent application Ser. No. 10/237,507 filed on Sep. 9, 2002, the entire disclosure of which is incorporated herein by reference.
The present invention relates to a method and apparatus for packaging products for shipping.
Mail-order companies and other organizations that deliver products by mail or courier are continually striving to improve the efficiency of the processes of packaging products and getting them ready for shipment, which generally includes labeling (i.e., affixing a label on each package indicating the address of the recipient), and franking (i.e., putting the correct postage on each package). In many cases, even if the products are packaged by an automated packaging machine, the processes of labeling and franking are performed at least in part by hand.
For instance, many small- to medium-volume shippers still manually weigh each package after the packages are produced. A label is then printed, and a worker manually applies the label to the package. Not only is this procedure inefficient, but it has potential for errors, such as applying the wrong label to a package.
The present invention addresses the above needs and achieves other advantages. In one aspect of the invention, there is provided a packaging method and apparatus that automates the process of packaging products and that labels the packages during the process of producing the packages. In some embodiments, the weight of each package is automatically determined so that no post-production weighing procedure is required.
A method in accordance with one embodiment of the invention is suitable for packaging products of varying weights and physical dimensions for shipping, wherein each product is packaged by enveloping the product in flexible packaging material of predetermined width and predetermined weight per unit area (or, equivalently, predetermined weight per unit length). The method includes using a programmed microprocessor to calculate the length of flexible packaging material needed to package the product, based on the physical dimensions of the product, and to calculate the weight of the flexible packaging material needed to package the product based on the length, the predetermined width, and the predetermined weight per unit area of the flexible packaging material. The microprocessor then calculates a total package weight as the sum of the weight of the product and the calculated weight of the flexible packaging material.
The method further includes using a printer to print information onto a label that is then affixed to the flexible packaging material, wherein the label is specific to the product that is being packaged. In some embodiments, the information can be a function of the package weight (e.g., the information can include the amount of postage payable for shipping the package, which depends on package weight). Accordingly, the calculated total package weight can be communicated from the microprocessor to the printer. Finally, the product is packaged in the flexible packaging material having the label already affixed thereto.
In preferred embodiments, first and second rolls of the flexible packaging material are provided and an upper web is drawn from one of the rolls and a lower web is drawn from the other roll, each of the upper and lower webs being advanced by a web drive system. The product is disposed between the upper and lower webs and the webs with the product therebetween are advanced by the web drive system through a nip to adhere the webs to each other and envelop the product therebetween. The lower web upstream of the nip is generally horizontal for receiving the product thereon.
The lower web upstream of the nip can be advanced over a scale for weighing the product. The scale determines the weight of the product and communicates the weight to the microprocessor. Alternatively, the weight of each product can be determined by scanning a product code on the product or on a packing slip associated with the product and consulting a database that includes information such as product weight corresponding to each of various product codes stored in the database.
In one embodiment, the method includes the step of using a product length detector to determine the length of the product disposed on the lower web. The microprocessor calculates the length of each of the upper and lower webs of flexible packaging material needed for packaging the product based in part on the length of the product. The length of web material needed can also depend on the product height, which can be either measured by a height detector or known in advance (e.g., by consulting the database based on a scanned product code) and input to the microprocessor.
When a scale is used for weighing products, the method can be implemented in a batch mode wherein a first product of a batch of identical products is weighed by the scale and the weight is determined for the first product. The first product is then packaged as previously described. Thereafter, the weighing step is skipped and the microprocessor uses the same weight for each subsequent product of the batch.
In preferred embodiments of the invention, an automated label applicator affixes the label to the flexible packaging material. The method includes verifying whether the label was affixed by the label applicator, and the web drive system advances the webs and the product through the nip only after it has been verified that the label was affixed.
The invention in another aspect provides a packaging method and apparatus wherein an extendable and retractable infeed gate is disposed upstream of the nip through which the product is advanced between the webs of flexible packaging material. The infeed gate is extended into a blocking position proximate the lower web so that a product to be packaged can be placed onto the lower web and abutted against the infeed gate. In this manner, the leading edge of the product is positioned at a known location along the longitudinal direction (i.e., the product length direction) in which the product is advanced into the nip. The infeed gate thus facilitates automatic detection of the product length using a product length detector. The infeed gate is then retracted to its unblocking position such that the webs and product can be advanced through the nip.
A packaging apparatus in accordance with another embodiment of the invention, which facilitates labeling of the packaging material prior to the packaging operation, comprises a pair of opposed rollers forming a nip therebetween, a web guide system for guiding a pair of opposing upper and lower webs of flexible packaging material into the nip, an infeed bed located upstream of the nip, the lower web being supported by the infeed bed such that a product to be packaged can be placed onto the lower web on the infeed bed and advanced along with the lower web in a longitudinal direction into the nip, and a generally planar labeling support member spaced upstream of the nip. The web guide system includes upper web guides structured and arranged to guide the upper web to travel along a surface of the labeling support member such that the upper web is supported by the labeling support member and an upper surface of the upper web is accessible for affixing an adhesive label thereon. The affixing can be accomplished manually or by using an automated label applicator.
Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
The present inventions now will be described more fully hereinafter with reference to the accompanying drawings, in which some but not all embodiments of the inventions are shown. Indeed, these inventions may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout.
A packaging apparatus 20 in accordance with one embodiment of the invention is shown in
The main frame also includes a superstructure that extends up from the base and above the infeed bed 40. The superstructure is formed by upward extensions of the support columns 26, 26′, 28, 28′, 30, and 30′. An upper transverse member 44 is rigidly connected between the upper ends of the columns 26 and 26′, and an upper transverse member 46 is rigidly connected between the upper ends of the columns 30 and 30′. An upper longitudinal member 48 is rigidly connected between the upper ends of the columns 26 and 30, and an upper longitudinal member 50 is rigidly connected between the upper ends of the columns 26′ and 30′.
Upstream columns 26 and 26′ support web mounts 52, 54 that respectively support supply rolls of the webs 22, 24 in a rotatable manner. The upper web 22 is drawn from its supply roll and advanced over a guide 56 supported between the longitudinal members 48, 50, then over a guide 58 supported between the longitudinal members 48, 50 and spaced longitudinally downstream from the first guide 56, and then downward for further handling as described in detail below. The lower web 24 is drawn from its supply roll and advanced under a lower guide 60 supported between columns 28, 28′, then over an upper guide 62 supported between columns 28, 28′, then onto the upper surface of the infeed bed 40. The infeed bed supports a pair of web edge guides 64, 66 that extend parallel to the longitudinal axis of the machine and are spaced apart by a distance about equal to the width of the lower web 24. The edge guides capture the opposite edges of the web 24 between the infeed bed and the guides and thereby hold the lower web flat on the infeed bed and substantially prevent transverse movement of the web, while allowing the web to freely move in the longitudinal direction. A product P to be packaged is placed upon the lower web 24 on the infeed bed, as further described below.
With reference to
With reference to
The apparatus 20 in the illustrated embodiment also includes a module frame 82, best seen in
The module frame 82 includes releasable fastening devices 112 mounted on the longitudinal base member 84. The fastening devices 112 are configured to releasably engage corresponding fastening devices 114 (
The labeling unit 100 comprises a printer 116 operable to print on adhesive labels that are preferably in the form of a continuous web of release liner material with the labels releasably adhered to the liner and spaced along its length direction. A roll 118 of the adhesive labels is mounted on the module frame adjacent the labeling unit. The label web is advanced through the printer, the printer prints on each label, and then the label is separated from the release liner for application to the upper web 22. The labeling unit includes an automated label applicator 120 that receives the label from the printer. A sensor 122 (
With primary reference to
With reference to
With reference to
With reference to
As noted, the apparatus includes a product scanner 110. The product scanner is positioned above the infeed bed near the infeed gate 140 so that a product placed on the lower web against the gate can be scanned to detect a product code on the product or on an item that is packaged along with the product, such as a packing slip. The product code can be in the form of a bar code the encodes a universal product code or the like. The scanner can comprise a bar code reader. Based on the product code, information about the identity of the product and its characteristics (e.g., product weight, product length, product height, etc.) and other information associated with the product can be determined. Such information can be stored in the memory of the customer terminal 102, for instance.
The apparatus 20 includes a controller 160 comprising a microprocessor and memory (e.g., a personal computer or the like). The controller 160 is programmed to control the various motors and actuators of the apparatus 20 that effect movement of the moving parts such that the movements are properly synchronized with respect to one another and so that packages are properly made and labeled.
The controller 160 is also connected to the product scanner 110 for receiving a signal therefrom indicative of the product code read by the scanner. The memory of the controller 160 can store a database that includes product information correlated with product codes, so that based on the product code indicated by the signal from the scanner 110, information about the product can be retrieved from the database. The information can include, for example, the height of the product. The product height is important because the length of the packaging material webs 22, 24 required for packaging a product depends not only on the product length but also on the product height. In particular, the length of the fin (i.e., the portion of web material that extends upstream of the product's leading edge and the portion that extends downstream of the product's trailing edge) advantageously depends on product height; for instance, the fin length can be a multiple of the product height such that the greater the product height, the greater the fin length. Thus, product height must be known. This can be accomplished either by storing the predetermined product height in the database of the controller 160 and accessing it based on the scanned product code, or by using a product height detector. As an example, the product height detector can be incorporated into or mounted alongside the scanner 110, or in another suitable location.
The microprocessor of the controller 160 advantageously is programmed to calculate the length of the webs 22, 24 needed for packaging the product scanned by the scanner 110. The required length, as noted, depends on the product length and product height. The microprocessor is also programmed to calculate the weight of the required length of the webs 22, 24 based on the web length and a predetermined weight per unit length of the web material stored in the memory of the controller; thus, the weight of each web is equal to the length multiplied by the weight per unit length. Alternatively, the weight of each web can be calculated by multiplying the length by a predetermined weight per unit area or basis weight and multiplying that product by a predetermined width of the web material.
The controller 160 is connected to the scale 154, when a scale is present. The scale provides a signal indicative of the weight exerted on the scale and communicates the signal to the controller 160. As previously noted, the scale advantageously is tared to effectively subtract the weight of the lower web (and taring preferably is performed before each product is weighed), such that the signal from the scale is directly indicative of the product weight. The microprocessor of the controller calculates the total package weight as the sum of the product and web material weights.
The controller 160 is also connected to the labeling unit 100 for controlling its operation. As previously described, the labeling unit includes a sensor 122 for detecting when a label has been received at the tamp head 124 of the label applicator 120. The signal from the sensor 122 is received by the controller 160. The microprocessor of the controller is programmed so that the web drive system is activated to advance the webs and product through the nip if and only if the sensor 122 confirms that a label was received at the tamp head, which gives a positive confirmation (once the tamp head is lowered against the upper web) that a label has been affixed to the upper web 22. Preferably, the label is printed and affixed only if the product code has been successfully scanned by the scanner 110. Thus, the invention ensures that packages are made only if a good scan has been accomplished and a label has been printed and affixed.
The operation of the apparatus 20 is now explained with primary reference to
The customer terminal 102 then can generate information to be printed on a packing slip for packaging along with the product, and that information can be sent to a packing slip printer (not shown), if desired. The customer terminal 102 also sends the label information to the printer 116 of the labeling unit 100, which prints a label and sends the label to the label applicator 120. The label sensor 122 monitors to detect when the label is received by the tamp head 124 of the applicator, and the applicator then affixes the label onto the upper web 24 on the support plate 74. Finally, the controller 160 causes the web drive system motor 162 to drive the rollers 70, 72 to advance the webs 22, 24 and the product P through the nip to produce a package 200, which is cut off by the cutoff device 130 and conveyed by the outfeed conveyor 132 to the machine discharge. The process generally as described above is repeated for each subsequent package. The microprocessor of the controller 160 is programmed to alternately advance the webs by an index distance (i.e., the required length of the webs for packaging each product) and bring the webs to a stop, with the index distance being determined by the controller for each product based on the length of the product indicated by the product length detector, as previously described.
An alternative infeed gate assembly in accordance with another embodiment of the invention is depicted in
Still another embodiment of an infeed gate assembly is shown in
The packaging machine and method described above can be modified in various other ways within the scope of the present invention. For example, the infeed gate 140 can be omitted and instead, a detector system can be used for detecting the leading edge of the product to ensure that the leading edge is in the proper location before the packaging sequence is initiated. As an illustrative example,
In accordance with another embodiment of the invention, the detected product length is used in order to center a label on a package. More particularly, in this embodiment, the label applicator 120 tamps the label onto the upper web 22 while the upper web is being advanced toward the nip (i.e., “on-the-fly” tamping). The timing of the tamping is controlled by the controller 160, based on the product length, so that the label is substantially centered on the resulting package in the longitudinal direction. The objective is to have the longitudinal midpoint of the label and the longitudinal midpoint of the product substantially coincide in the longitudinal direction.
Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Number | Name | Date | Kind |
---|---|---|---|
2309621 | Allat | Feb 1943 | A |
2340260 | Clunan | Jan 1944 | A |
2525651 | Clunan | Oct 1950 | A |
2597042 | Stokes et al. | May 1952 | A |
2639567 | Murdoch et al. | May 1953 | A |
3432981 | Minten | Mar 1969 | A |
3432988 | Minten | Mar 1969 | A |
3453169 | Buck et al. | Jul 1969 | A |
3552088 | Niwa | Jan 1971 | A |
3991540 | Ballestrazzi et al. | Nov 1976 | A |
4064792 | Gess | Dec 1977 | A |
4074505 | Keren et al. | Feb 1978 | A |
4085560 | McClosky | Apr 1978 | A |
4319443 | Watts, Jr. | Mar 1982 | A |
4369613 | Gess | Jan 1983 | A |
4415048 | Teraoka | Nov 1983 | A |
4458470 | Fine | Jul 1984 | A |
4466228 | Gess | Aug 1984 | A |
4505092 | Bowers et al. | Mar 1985 | A |
4548024 | Fine | Oct 1985 | A |
4601157 | Adelman | Jul 1986 | A |
4684025 | Copland et al. | Aug 1987 | A |
4705588 | Treiber | Nov 1987 | A |
4905457 | Bene | Mar 1990 | A |
4964263 | Ballestrazzi et al. | Oct 1990 | A |
5057169 | Adelman | Oct 1991 | A |
5165221 | Udelson et al. | Nov 1992 | A |
5199247 | Björkman et al. | Apr 1993 | A |
5269122 | Reichental et al. | Dec 1993 | A |
5444964 | Hanagata | Aug 1995 | A |
5704481 | Lutz | Jan 1998 | A |
5956931 | Stork | Sep 1999 | A |
5966908 | Philipp et al. | Oct 1999 | A |
6145283 | Noordenbos et al. | Nov 2000 | A |
20020124529 | van der Lely | Sep 2002 | A1 |
Number | Date | Country |
---|---|---|
0 311 213 | Apr 1989 | EP |
0 631 936 | Jan 1995 | EP |
1 396 428 | Mar 2004 | EP |
1 053 915 | Jan 1967 | GB |
1 206 163 | Sep 1970 | GB |
2 403 198 | Dec 2004 | GB |
WO 9406689 | Mar 1994 | WO |
Number | Date | Country | |
---|---|---|---|
20060218881 A1 | Oct 2006 | US |