The subject invention relates to an insulation blanket-packaging machine and method and, in particular, to an improved, versatile, high-speed insulation blanket-packaging machine and method especially well suited for economically, efficiently, and rapidly packaging insulation blanket in unfolded batt form, single-fold batt form, spiral wound batt roll form, or continuous length spiral wound form.
Faced and unfaced fiberglass insulation blankets are currently produced and packaged in unfolded batt form, single-fold batt form and spiral wound batt or continuous length roll form on high capacity production lines. Typically, these high capacity production lines each include a high capacity fiberglass insulation blanket manufacturing operation that produces the fiberglass insulation blankets, ready for packaging, as batts in unfolded, single-fold or spiral wound form or as continuous lengths in spiral wound form and a packaging operation for packaging the insulation blankets. The packaging operation normally uses one type of packaging machine for packaging the insulation blankets in their unfolded or single-fold batt form and another type of packaging machine for packaging the insulation blankets in their spiral wound form. To maintain or increase the overall throughput of these high capacity fiberglass insulation blanket production lines, the packaging operations of these production lines must be able to effectively accommodate and package the large amounts of insulation blanket produced, in unfolded batt form, single-fold batt form, and/or roll form, in the fiberglass insulation blanket manufacturing operations. If the packaging operations are unable to accommodate and effectively package the fiberglass insulation blanket in the forms produced for packaging in the manufacturing operations, the packaging operations become bottlenecks that limit the overall production capacity of the fiberglass insulation blanket production lines. Thus, there is a need for packaging operations in these fiberglass insulation blanket production lines that have capacities that at least equal and, preferably, exceed the production capacities of the fiberglass insulation blanket manufacturing operations.
In batt form, fiberglass insulation blankets are currently sold in packages that contain between two and twelve compressed batts per package. For sales to builders and commercial insulation contractors, the fiberglass insulation blankets are commonly sold in a package containing between four and thirty compressed batts. The shorter length batts (e.g. batts about four feet in length) are typically packaged in an unfolded condition. The longer batts (e.g. batts about eight feet in length) are typically folded in half so that the length of the package containing the batts approximates one-half of the length of the batts within the package (e.g. about four feet). For retail sales to do-it-yourselfers and the like, the fiberglass insulation blankets are commonly sold in a package containing several compressed batts that are wound in a spiral roll form or a compressed continuous length of insulation blanket that is wound in spiral form (e.g. an insulation blanket about thirty feet in length). As stated above, typically, a first type of packaging machine is used in the packaging operation to package the unfolded or single-fold batts of insulation blanket while a second type of packaging machine is used in the packaging operation to package spiral wound rolls of insulation blanket. The use of two different packaging machines in the packaging operation: may require the use of package forming sheet materials that differ from each other in size or other respects, reduces the efficiency of the packaging operation, increases the number of operators required for and the costs of the packaging operation, and increases the floor space required for the packaging operation. The amount of floor space required for a packaging operation to accommodate the production capacity of a fiberglass insulation blanket manufacturing operation can become quite a problem, especially when the capacity of a fiberglass insulation blanket manufacturing operation is increased and there is only limited floor space available for the packaging operation in an existing production facility.
In addition to the above, the fiberglass insulation blanket in the packages containing the fiberglass insulation blanket in spiral wound roll form can not be compressed to the degree that the fiberglass insulation blanket can be compressed in the packages containing the fiberglass insulation blanket in unfolded batt or single-fold batt form without damaging the insulation blanket and reducing the ability of the insulation blanket to recover in thickness after the insulation blanket is removed from the packages for installation. Thus, insulation blanket in roll form is typically not compressed to the degree that unfolded or single-fold batts are compressed and for packages containing the same cubic footage of insulation, the packages containing fiberglass insulation in roll form rather than unfolded or single-fold batt form take up additional warehouse space, transportation space, and shelf space at retail outlets to thereby increase the costs and handling problems involved in storing, transporting and selling the product.
Thus, there has remained a need for an insulation blanket-packaging machine for use in these fiberglass insulation blanket production lines and other insulation blanket production lines: that can easily accommodate the production capacities of these production lines and future increases in the production capacities of these production lines; that has the versatility to package selected numbers of fiberglass insulation batts in a flat unfolded or single-fold form (e.g. between two and thirty batts) to achieve the maximum practical compression of the fiberglass insulation batts while maintaining the required thickness recovery characteristics for the batts; that forms packages sized to minimize the storage, transportation and retail space required for the packages; that forms packages that are easy to handle; that makes effective use of available floor space in the production facility; and that reduces the number of operators required for the packaging operation and is otherwise cost effective and efficient. The need has also remained for such an insulation blanket-packaging machine that is versatile so that the machine can also be used to package insulation blanket that is wound in spiral roll form where marketing or other considerations dictate the use of such packages even though such packages typically occupy more space for equal amounts in cubic footage of insulation.
The insulation blanket-packaging machine of the subject invention: can efficiently accommodate and package the batt output from high capacity fibrous insulation blanket production lines; can package any selected number of batts per package over a wide range, e.g. between 2 and 30 batts per package; can be easily adjusted to change the number of batts contained per package; and can package batts in a flat unfolded or a flat single-fold form to permit the maximum practical compression of the batts without any significant adverse affect on the thickness recovery characteristics of the batts. The blanket-packaging machine of the subject is particularly well suited for forming, compressing and packaging stacks of faced and unfaced fiberglass insulation batts. The insulation blanket-packaging machine of the subject invention can also be used to package spiral wound rolls of fibrous insulation blanket in packages containing one, two or three spiral wound rolls per package.
The insulation blanket-packaging machine of the subject invention includes: an infeed station; a loading station for receiving insulation blankets in the form of unfolded batts, single-fold batts, or spiral wound rolls; a transfer station for transferring insulation blankets in the form of unfolded batts, single-fold batts, or spiral wound rolls from the loading station to a compression station and for forming batt stacks; a compression station for compressing insulation blankets in the form of unfolded batts, single-fold batts, or spiral wound rolls; a packaging station for packaging stacks of compressed insulation blankets in the form of unfolded batts or single-fold batts or groupings of compressed spiral wound rolls of insulation blanket; and a takeoff conveyor for removing packages from the packaging station.
When packaging fibrous insulation blankets in the form of unfolded batts and single-fold batts, the fibrous insulation batts are preferably metered one at a time directly into the loading station of the insulation blanket-packaging machine from the downstream end of a fibrous insulation blanket production line. The loading station has a launch frame assembly for successively moving the batts in a generally vertical direction from the batt loading station into the transfer station/batt-stacking chamber. When packaging unfolded batts and single-fold batts, the transfer station also functions as a batt-stacking chamber for successively forming batt stacks of vertically stacked batts from the batts fed into the transfer station from the loading station. The number of batts contained in each batt stack can be selected by the operator to suit various packaging requirements. The loading and transfer stations also include a staging fork assembly for vertically moving a single batt from the loading station to the transfer station to complete the formation of each batt stack formed in the transfer station and for vertically moving the batt stack thus formed from the transfer station into the compression station of the insulation blanket-packaging machine. The compression station of the insulation blanket-packaging machine includes upper and lower compression conveyors for successively receiving there between the batt stacks fed from the transfer station. The upper and lower compression conveyors are movable relative to each other for successively compressing the batt stacks received intermediate the upper and lower compression conveyors to a selected thickness in a direction (except for the fold in the single-fold insulation batts) perpendicular to the thicknesses of the batts. After each batt stack has been compressed, the compression conveyors successively move the compressed batt stacks from the compression station into the packaging station. The packaging station successively envelopes the compressed batt stacks fed from the compression station within sheet material to successively form packages of the compressed batt stacks fed from the compression station.
Preferably, the control system of the insulation blanket-packaging machine operates the insulation blanket-packaging machine as a continuous operation. In the continuous packaging operation: insulation batts are successively metered one insulation batt at a time from the downstream end of a production line into the loading station: stacks of insulation batts are successively formed one stack at a time in the transfer station and successively moved into the compression station; stacks of insulation batts are successively compressed one stack at a time in the compression station; stacks of compressed insulation batts are packaged one stack at a time in the packaging station; and packages of compressed insulation batts are successively removed from the packaging station one package at a time by a takeoff conveyor.
When packaging fibrous insulation blankets in spiral wound roll form (either a series of batts or a continuous length of insulation blanket in spiral wound roll form), groupings of one, two or three spiral wound rolls of fibrous insulation blankets are preferably metered one grouping at a time directly into the loading station of the insulation blanket-packaging machine from the downstream end of a fibrous insulation blanket production line. Where groupings of two or three spiral wound rolls of insulation blanket are metered together directly into the loading station, the spiral wound rolls in each grouping are fed into the loading station in a side-by-side relationship. When packaging spiral wound rolls of insulation blanket, the launch frame assembly in the loading station is deactivated and the staging fork assembly is used to vertically move the grouping of one or two spiral wound rolls of insulation blanket directly from the loading station through the transfer station and into the compression station of the insulation blanket-packaging machine. In the compression station, each grouping of one, two or three spiral wound rolls of insulation blanket moved into the compression station from the loading station is successively received between the upper and lower compression conveyors of the compression station. The upper and lower compression conveyors then move relative to each other to successively compress each grouping of one, two or three spiral wound rolls received intermediate the upper and lower compression conveyors to a selected thickness in a direction perpendicular to central axes of the rolls and reform the rolls from a generally round shape to a flat oval shape. After each grouping of one, two or three rolls has been compressed, the compression conveyors successively move the compressed grouping of one or two rolls from the compression station into the packaging station. The packaging station successively envelopes the compressed groupings of one, two or three rolls of insulation blanket within sheet material to successively form packages of the compressed groupings of one or two rolls of insulation blanket fed from the compression station.
Preferably, the control system of the insulation blanket-packaging machine operates the insulation blanket-packaging machine as a continuous operation. In the continuous packaging operation: groupings of one or two spiral wound rolls of insulation blanket are successively metered one grouping at a time from the downstream end of a production line into the loading station; groupings of one or two spiral wound rolls of insulation blanket are successively moved one grouping at a time from the loading station through the transfer station into the compression station; groupings of one, two or three spiral wound rolls of insulation blanket are successively compressed one grouping at a time in the compression station; groupings of one or two compressed spiral wound rolls of insulation blanket are packaged one grouping at a time in the packaging station; and packages of compressed insulation rolls are removed from the packaging station one package at a time by the takeoff conveyor.
As shown in
The infeed station 22 of the insulation blanket-packaging machine 20 has upper and lower conveyors 34 and 36 for successively feeding insulation blanket in the form of batts or rolls between upper and lower metering conveyor assemblies 38 and 40. The metering conveyor assemblies 38 and 40 each include a stop mechanism 42 and 44 that, at selected intervals, are actuated and cooperate with each other to prevent the movement of an insulation batt or roll into the loading station 24. By preventing the movement of an insulation batt or roll into the loading station at selected intervals, the stop mechanisms 42 and 44 prevent an insulation batt or roll, being fed into the loading station by the metering conveyor assemblies, from interfering with the movement from the loading station 24 into the transfer station 26 of an insulation batt or roll already in the loading station.
The upper and lower metering conveyor assemblies 38 and 40 each include a plurality of narrow, parallel extending, spaced-apart conveyor belts. The plurality of narrow spaced-apart conveyor belts 46 of the upper metering conveyor assembly 38 only extend part of the way into loading station 24 so that the upper metering conveyor assembly 38 does not obstruct the passageway from the loading station 24 into the transfer station 26 though which the insulation batts or rolls are moved from the loading station into the transfer station. The plurality of narrow spaced-apart conveyor belts 48 of the lower metering conveyor assembly 40 extend through the loading station 24 and support the insulation batts or rolls while the insulation batts or rolls are in the loading station 24 prior to be moved from the loading station into the transfer station 26. The spacings between the spaced-apart conveyor belts 48 of the lower metering conveyor assembly 40 is such that the spaced-apart conveyor belts 48 of the lower metering conveyor assembly 40 will not obstruct the operation of a launch frame assembly 50 or a staging fork assembly 52 of the insulation blanket-packaging machine.
The stop mechanism 44 of the lower metering conveyor assembly 40 includes one or more stop arms 54 that are mounted to pivot from a first retracted position (shown in phantom line in
As shown in
Preferably, the sidewalls and end walls of the transfer station 26 are each formed by a plurality of parallel, vertically extending, spaced-apart frame members 68. Preferably, the frame members 68 forming the sidewall 60 of the transfer station 26 extend from immediately above the downstream end of the metering conveyor assembly 38 upward through the transfer station to the compression station 28. Preferably, the frame members 68 of the sidewall 62 extend from immediately above the downstream end of the metering conveyor assembly 40 upward through the transfer station 26 and the compression station 28 to form a common sidewall for the loading station 24, transfer station 26 and compression station 28. The frame members 68 of the sidewall 62 are spaced from each other so that the frame members do not obstruct the operation of either the launch frame assembly 50 or the staging fork assembly 52 and, preferably, are vertically aligned with the belts 48 of the lower metering conveyor assembly 40. Preferably, the end wall 64 extends from a level immediately above the lower metering conveyor assembly 40 upward through the transfer station 26 to the compression station 28 to form a common end wall for the loading station and transfer station. The end wall 66 also extends from a level immediately above the lower metering conveyor assembly 40 upward through the transfer station 26 to the compression station 28 to form a common end wall for the loading station and transfer station. Preferably, the end walls 64 and 66 include conventional drive trains for moving the end walls toward and away from each other to regulate the length of the loading station 24 and the transfer station 26.
The sidewalls 60 and 62 are each equipped with shelf dog assemblies 70 that permit insulation batts or rolls to be moved from the loading station 24 up into the transfer station 26, but prevent insulation batts that have been moved up into the transfer station from dropping back down into the loading station. There are a plurality of shelf dog assemblies 70 associated with each sidewall 60 and 62 that, preferably, are mounted on each frame member 68 of each sidewall. The shelf dog assemblies 70 are positioned so that the shelf dog assemblies do not obstruct the operation of either the launch frame assembly 50 or the staging fork assembly 52. The shelf dog assemblies are also positioned to retain insulation batts within the transfer station 26 on a level immediately above the level of the upper metering conveyor assembly 38. In a preferred embodiment, each of the shelf dog assemblies 70 includes a pivotally mounted generally triangular shaped support member 72 that is normally held in an extended position by a coil spring 74. In the extended position an upper surface 76 of the support member 72 will engage the underside of a batt in the transfer station 26 to retain, in cooperation with the other shelf dog assemblies, the batt within the transfer station. However, as the inclined underside 78 of the support member 72 is engaged by an insulation batt or roll when an insulation batt or roll in moved into the transfer station 26 from the loading station 24, the forces exerted on the underside of the support member 72 by the insulation batt or roll compress the coil spring 74 and the support member 72 is pivoted out of the way to permit the passage of the insulation batt or roll from the loading station 24 into the transfer station 26.
The launch frame assembly 50 shown in
The launch frame assembly 50 is positioned relative to the conveyor belts of 48 of the lower metering conveyor 40 so that the launch frame members 80 of the launch frame assembly extend between the conveyor belts 48. In the retracted lowermost position of the launch frame members 80, the upper surfaces 84 of launch frame members 80 of the launch frame assembly are at or immediate below the upper surfaces of the conveyor belts 48 of the lower metering conveyor assembly 40 so that the launch frame members do not obstruct the movement of batts into the loading station 24. In the extended uppermost position of the launch frame members 80, the upper surfaces 84 of launch frame members 80 of the launch frame assembly are at a level immediate above the upper surfaces 76 of the shelf dog assemblies 70 so that when the launch frame members 80 of the launch frame assembly are retracted from their uppermost position, the batts are transferred from the upper surfaces of the launch frame members 80 to and supported by the shelf dog assemblies 70 of the transfer station 26.
As shown in
The lower compression conveyor 96 is mounted on a carriage 100 so that the lower compression conveyor 96 can be moved horizontally between a retracted position and an extended position. In the retracted position, the lower compression conveyor 96 does not extend into the compression chamber 92 where the lower compression conveyor would obstruct the passage of a stack of insulation batts or a grouping of insulation rolls from the transfer station 26 into the compression station 28. In the extended position, the lower compression conveyor 96 forms the lower wall of the compression chamber 92. The upper compression conveyor 94 forms the upper wall of the compression chamber 92 and is mounted on a carriage 102 so that the upper compression conveyor 94 can be moved between an uppermost retracted position and a selected lower extended position for compressing a stack of insulation batts or a grouping of insulation rolls between the upper compression conveyor 94 and the lower compression conveyor 96. The lower extended position of the upper compression conveyor 94 can be vertically adjusted and is selected to achieve a desired degree of compression for the stack of insulation batts or a grouping of insulation rolls being packaged. Once a stack of insulation batts or a grouping of insulation rolls has been compressed to a desired degree, the upper and lower compression conveyors 94 and 96 are actuated to discharge the compressed stack of insulation batts or the compressed grouping of insulation rolls into the packaging station 30. The carriages supporting the compression conveyors and the compression conveyors are driven and controlled during their operating cycles by conventional drive trains and control systems.
The stacks of insulation batts formed in the transfer station 26 and the groupings of one or two insulation rolls fed into the loading station 24 are moved from the transfer station and the loading station, respectively, into the compression station 28 to be compressed by the compression conveyors 94 and 96 by the staging fork assembly 52 of FIG. 11. In a preferred embodiment, the staging fork assembly 52 includes a carriage 104 with a plurality of horizontally extending, spaced-apart, parallel support prongs 106 that are affixed to a carriage 104. The carriage 104 moves the support prongs 106 between a retracted position and an extended position. In the lowermost position of the carriage 104, the upper generally horizontally extending surfaces of the support prongs 106 are immediately below the level of the upper surfaces of the conveyor belts 48 of the lower metering conveyor 40 that support the insulation batts or rolls in the loading station 24. The carriage 104 of the staging fork assembly 52 is positioned relative to the conveyor belts of 48 of the lower metering conveyor 40 so that the support prongs 106 of the staging fork assembly extend between the conveyor belts 48 when the carriage 104 has the support prongs 106 in their extended position. When the carriage 104 is retracted so that the support prongs are in their retracted position, the support prongs 106 of the staging fork assembly 52 do not extend into the loading station 24 to interfere with the operation of the launch frame assembly 50 as it moves batts from the loading station into the transfer station to form stacks of insulation batts in the transfer station. When the carriage 104 is extended to place the support prongs 106 in their extended position, the support prongs 106 extend almost to the far side of the loading station 24.
The carriage 104 carrying the support prongs 106 of the staging fork assembly 52 is in turn mounted on a second carriage 108 that moves carriage 104 of the staging fork assembly 52 vertically between its lowermost position in the loading station 24 to its uppermost position in the compression station 28. With the carriage 104 and the support prongs 106 of the staging fork assembly 52 in their extended and lowermost position, the carriage 104 and support prongs 106 of the staging fork assembly 52 can be raised by the carriage 108 from the loading station through the transfer station and into the compression station to move a batt from the loading station into the transfer station to complete the formation of a batt stack in the transfer station and to move the completed batt stack from the transfer station into the compression station. With the carriage 104 and the support prongs 106 of the staging fork assembly 52 in their extended and lowermost position, the carriage 104 and support prongs 102 of the staging fork assembly 52 can be raised by the carriage 108 from the loading station through the transfer station and into the compression station to move a grouping of insulation rolls from the loading station through the transfer station and into the compression station.
When the carriage 104 and support prongs 106 of the staging fork assembly 52 are in their uppermost and extended position in the compression station 92, the undersides of the support prongs 106 are located above the level of the upper surface of the lower compression conveyor 96 so that the lower compression conveyor can be extended from its retracted position to its extended position into the compression chamber. Once the lower compression conveyor 96 has been extended into the compression chamber 92, the carriage 104 with its support prongs 106 is retracted from the compression chamber and transfers a stack of insulation batts or a grouping of insulation rolls from the staging fork assembly 52 to the upper surface of the lower compression conveyor 96. Once the carriage 104 and support prongs 106 of the staging fork assembly 52 are fully retracted, the carriage 104 and support prongs 106 of the staging fork assembly are returned to their lowermost position in preparation for the next operating cycle. The carriage 104 on which the support prongs 106 are mounted and the carriage 108 that carries the carriage 104 are driven and controlled during their operating cycles by conventional drive trains and control systems.
As stated above, each stack of compressed insulation batts or grouping of compressed insulation rolls formed in the compression station 28 is discharged from the compression station 28 into the packaging station 30 by the upper and lower compression conveyors 94 and 96. In the packaging station 30, each compressed stack of insulation batts or grouping of compressed insulation rolls is received between upper and lower transfer conveyors 112 and 114. The upper transfer conveyor 112 is vertically adjustable relative to the lower transfer conveyor 114 so that the spacing between the transfer conveyors 112 and 114 can be maintained the same as the spacing between the upper and lower compression conveyors 94 and 96 selected for compressing each stack of insulation batts or grouping of insulation rolls being packaged. This spacing of the transfer conveyors 112 and 114 maintains each stack of compressed insulation batts or grouping of compressed insulation rolls fed into the packaging station at the selected degree of compression for packaging.
After each stack of compressed insulation batts or grouping of compressed insulation rolls passes between the transfer conveyors 112 and 114, each stack of compressed insulation batts or grouping of compressed insulation rolls is fed by the transfer conveyors 112 and 114 between upper and lower conveyors 116 and 118 of a package forming unit 120. Like the transfer conveyors 112 and 114, the upper conveyor 116 in the packaging unit 120 is vertically adjustable relative to the lower conveyor 118 so that the spacing between the conveyors 116 and 118 can be maintained the same as the spacing between the upper and lower compression conveyors 94 and 96 selected for compressing each stack of insulation batts or grouping of insulation rolls being packaged. This spacing of the conveyors 116 and 118 thereby maintains each stack of compressed insulation batts or grouping of compressed insulation rolls fed into the packaging unit 120 by the transfer conveyors 112 and 114 at the selected degree of compression for packaging. At the upstream end of the conveyors 116 and 118 in the packaging unit 120, continuous sheets of packaging material 122 and 124 are fed beneath the lower surface of the upper conveyor 116 and above the upper surface of the lower conveyor 118, respectively. Thus, as each stack of compressed insulation batts or grouping of compressed insulation rolls is fed from the transfer conveyors 112 and 114 between the upper and lower conveyors 116 and 118 of the packaging unit 120, each stack of insulation batts or grouping of insulation rolls is fed between the continuous upper and lower sheets of packaging material 122 and 124. The sheets 122 and 124 of packaging material are greater in width than the width of the stack of compressed insulation batts or grouping of compressed insulation rolls being packaged and have lateral edge portions that can be brought together and sealed to form the lateral package tabs 126 shown in
The packaging unit 120 also includes a transverse sealing unit 130 that is located at the downstream end of the packaging unit immediately upstream of the takeoff conveyor 32. The transverse sealing unit 130 may be a heat sealing unit, an ultrasonic sealing unit or other conventional sealing unit. The transverse sealing unit 130 is intermittently actuated to seal together transversely extending portions of the sheets 122 and 124 to form the leading transverse package tab 132 of a package being formed in the packaging unit 120 to further enclose a stack of compressed insulation batts or grouping of compressed insulation rolls still in the packaging unit. While forming the leading package tab 132 of a package being formed within the packaging unit 120, the transverse sealing unit 130 simultaneously seals together the trailing transverse portions of the sheets 122 and 124 enclosing a stack of compressed insulation batts or grouping of compressed insulation rolls on the takeoff conveyor 32 to form a trailing package tab 134 on that package. This completes the formation of the package 200 on the takeoff conveyor and completely encloses or envelops the stack of compressed insulation batts or grouping of compressed insulation rolls within the package 200. In addition to simultaneously forming the leading and trailing package tabs 132 and 134 on the two packages, the transverse sealing unit 130 reduces the integrity or severs the sheets 122 and 124 at the juncture of the leading and trailing tabs of the packages so that the packages are or can be easily separated.
The packaging station 30 may also include a banner infeed system for inserting banners 142 intermediate the stack of compressed insulation batts or grouping of compressed insulation rolls being packaged in the packaging unit 120 and the sheet 122 of packaging material. When the banner infeed system is being utilized to insert banners 142, the sheet 122 would be sufficiently clear or translucent to enable information on the banner to be read through the sheet 122. The feed of the banners 142 would be intermittent and timed to locate each banner in a desired location on the stack of compressed insulation batts or grouping of compressed insulation rolls being packaged in the packaging unit 120. The sheets 122 and 124 are typically made of conventional packaging sheet materials, such as, but not limited to polymeric films, kraft paper, etc.
In the method of packaging unfolded and single-fold insulation batts 202 with the insulation blanket-packaging machine 20, the insulation blanket-packaging machine 20 is typically used to compress and package between 2 and 30 insulation batts 202. The operation of the insulation blanket-packaging machine 20 to package compressed insulation batts 202 will be described in connection with
While the launch frame assembly 50 is deactivated for the one operating cycle, the staging fork assembly 52 is actuated to begin one of its operating cycles. At the beginning of its operating cycle and while the carriage 104 and support prongs 106 of the staging fork assembly are in their lowermost positions, the carriage 104 is extended to extend the support prongs 106 of the staging fork assembly horizontally into the loading station between the conveyor belts 48 of the lower metering conveyor assembly 40 as shown schematically in solid line in FIG. 14. As shown in phantom line in
Once the carriage 104 and extended support prongs 106 are in their uppermost positions in the compression station 28, the lower compression conveyor 96 is moved horizontally from its retracted position, shown in
Once the upper compression conveyor 94 is in its lowermost position, the upper and lower compression conveyors 94 and 96 are actuated to move the stack of compressed insulation batts from the compression station 26 into the packaging station 28 that is shown in
As the carriage 104 and the extended support prongs 106 of the staging fork assembly are being moved upward from the loading station 24 through the transfer station 26 as shown in
Once the carriage 104 and extended support prongs 106 of the staging fork assembly are again in their uppermost positions in the compression station 28, the lower compression conveyor 96 is moved horizontally from its retracted position, shown in
In the method of packaging insulation rolls 206 with the insulation blanket-packaging machine 20, the insulation blanket-packaging machine 20 is typically used to compress and package 1, 2 or 3 insulation rolls. When packaging insulation rolls with the insulation blanket-packaging machine 20, the launch frame assembly 50 is deactivated. For illustrative purposes, the operation of the insulation blanket-packaging machine, when packaging a grouping of two compressed insulation rolls 206 per package 200, will be described in connection with
Once the carriage 104 and extended support prongs 106 of the staging fork assembly are in their uppermost positions in the compression station 28, the lower compression conveyor 96 is moved horizontally from its retracted position, shown in
Once the upper compression conveyor 94 is in its lowermost position, the upper and lower compression conveyors 94 and 96 are actuated to move the grouping of compressed insulation rolls from the compression station 26 into the packaging station 30, shown in
As the carriage 104 and the extended support prongs 106 of the staging fork assembly are being moved upward through the transfer station as shown in
Once the carriage 104 and extended support prongs 102 are again in their uppermost positions in the compression station 28, the lower compression conveyor 96 is moved horizontally from its retracted position, shown in
In describing the invention, certain embodiments have been used to illustrate the invention and the practices thereof. However, the invention is not limited to these specific embodiments as other embodiments and modifications within the spirit of the invention will readily occur to those skilled in the art on reading this specification. Thus, the invention is not intended to be limited to the specific embodiments disclosed, but is to be limited only by the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
3837138 | Terry | Sep 1974 | A |
3964232 | Bender et al. | Jun 1976 | A |
4805383 | Allwein | Feb 1989 | A |
5331788 | Cinotti | Jul 1994 | A |
5353576 | Palamides et al. | Oct 1994 | A |
5979145 | Louis et al. | Nov 1999 | A |
Number | Date | Country | |
---|---|---|---|
20050044815 A1 | Mar 2005 | US |