The invention relates to a packaging machine, in particular for producing cigarette packs, having folded subassemblies and elements for folding blanks and having conveying elements for transporting packaging material and (partly) finished packs.
In the cigarette industry, there is increasing interest in producing cigarette packs of different configurations, in particular of different designs. On account of the variety of packs which can be produced, in some circumstances in limited quantities, there is a corresponding requirement for converting packaging machines from one type of pack to another.
The object of the invention is to design packaging machines, in particular for producing cigarette packs, such that conversion from one type of pack to another can be reliably carried out within a short period of time.
In order to achieve this object, the packaging machine according to the invention is characterized in that, in the case of production changeover, in particular in respect of size and/or configuration of the (cigarette) pack, folding subassemblies and/or elements and/or conveying elements can be wholly or partially exchanged or uncoupled from the drive.
The correct and complete exchange or changeover of the elements and subassemblies concerning the relevant features of the packs is checked, according to the invention, by sensors, in particular by contactless initiators. These are connected to a central control unit. A signal for starting up the packaging machine for producing a new type of pack is given when the subassemblies and elements which can be exchanged or changed over or uncoupled from the drive are completely ready for the new type of pack.
The invention concerns, in particular, a packaging machine for producing cigarette packs of the hinged-lid (-box) type). One special feature of the invention consists in converting the packaging machine alternatively to standard packs of this type, to packs with beveled pack edges (octagonal pack) or to packs of rounded pack edges (round corner pack). For this purpose, selected elements and subassemblies are exchanged, changed over or uncoupled from the drive.
Details of the packaging machine according to the invention and of these specifically designed pack-specific elements and subassemblies are explained hereinbelow with reference to the patent drawings, in which:
The packaging machine discussed here (
The packaging machine can be adjusted and/or converted for producing hinge-lid boxes or hinge-lid packs in different, in this case three, configurations (
During the production of hinge-lid boxes, the packaging machine is supplied with prefabricated blanks in stacks. The stacks of blanks are held ready in a blank magazine 16. The blanks are removed individually from the underside of the latter and fed to a folding turret 17 via a blank path (EP 0 667 230). Said folding turret is of plate-like design (
In the case of this type of pack being changed over, the entire folding turret 17 is exchanged, that is to say replaced by a folding turret 17 with pockets 19 adapted to the respective type of pack. For this purpose, the folding turret 17 is fastened in a releasable manner on the shaft 18, that is to say by means of screws 20 in the region of a carrying flange 21. By virtue of the screws 20, which are arranged all the way round, being released, the folding turret 17 can be removed and a different folding turret can be fastened. For a precise adjustment of the relative position of the folding turret 17, use is made of an adjusting pin 22 on the shaft 18, or on the carrying flange 21, for entering into a precisely positioned bore of the folding turret 17.
(Contactless) sensors, in the present case (two) initiators 23, 24, check as to whether the packaging machine has been correctly equipped with the necessary folding turret 17. Said initiators are assigned in each case to a contact protrusion, in the present case one of two contact rings 25, 26 on the underside of the folding turret 17. With the aid of this monitoring system, it is possible to detect and/or indicate centrally, that is to say via a central (machine) control means 27, whether the correct folding turret 17 for the respective type of pack has been installed. In the case of three different folding turrets, the arrangement may be selected such that either one or the other or both of the contact rings 25, 26 is/are fitted and a corresponding control signal can be derived therefrom.
One special feature is brought to bear in respect of another subassembly for shaping or prefolding blanks 28. This is a blank or shaping subassembly (EP 0 667 230) for preshaping round edges during the production of round-edged packs 14 (
The subassembly is arranged as standard in the packaging machine, that is to say in the region of the blank path for feeding the blanks 28 from the blank magazine 16 to the folding turret 17. The blanks 28 are positioned, in the region of a shaping station, beneath a shaping body 29 with rounded (or beveled) longitudinal borders. Shaping tools, namely shaping rollers 30, 31, grip folding tabs of the blank 28 which project laterally beyond the shaping body 29, and shape the same by moving upward around the contour of the shaping body 29.
The shaping rollers 30, 31 are moved by a specifically designed gear mechanism 32 (EP 0 667 230). The special feature, then, consists in uncoupling the gear mechanism 32 from its drive and thus bringing the shaping rollers 30, 31 to a standstill as the machine continues running. The arrangement is such that, during the production of standard packs 13 or octagonal packs 15, the shaping rollers 30, 31 remain in a position according to
The gear mechanism 32 is connected to a drive via an actuating element, that is to say via a push rod 33, to be precise to a shaft 35 via a further intermediate gear mechanism 34. Said shaft is preferably connected to the central machine drive and circulates continuously. The intermediate gear mechanism 34 transmits drive movements, via the push rod 33, to the gear mechanism 32 of the shaping tools. If the latter are to be rendered inactive, disconnection takes place in the region of the intermediate gear mechanism 34.
A cam plate 36 is mounted on the shaft 35. This cam plate actuates, via a cam roller 37, a pivoting arm 38 which, in turn, is connected to an actuating shaft 40 mounted in a housing component 39. The actuating shaft transmits the drive to a pivoting lever 41 which, for its part, is connected to the push rod 33 via a spherical head 42.
The gear mechanism 32 is disconnected by virtue of the actuating shaft 40 being uncoupled from subsequent gear-mechanism parts. That end of the actuating shaft which is remote from the pivoting arm 38 is connected to the pivoting lever 41 via a coupling which can be operated from the outside. Said pivoting lever is fitted on an axially displaceable sleeve 43, which is displaced axially on the actuating shaft 40 for coupling and disconnection purposes. Provided for this purpose is an adjusting element, that is to say an adjusting wheel 44 that is fitted at the free end. This can be actuated by rotation from the outside, manually or using a suitable tool. The adjusting wheel 44 is mounted on a carrying part, that is to say on a threaded component 45 which is connected to the end of the actuating shaft 40. By virtue of rotation, the adjusting wheel 44 is thus adjusted out of one end position, that is to say the coupled position (
The coupling which can be actuated by the adjusting wheel 44 comprises two coupling parts 48 and 49. The former is connected to the sleeve 43, and the latter coupling part is connected to the actuating shaft 40, to be precise at the end of the same. In the coupled position (
It is also the case with this blank subassembly that a check is made of the operating position in respect of the pack which is to be produced. For this purpose, once again, two sensors, namely initiators 23, 24, are provided, a protrusion 50 on the sleeve 43 acting thereon. Depending on the position of this protrusion 50, one initiator 23, 24 or the other is activated. A corresponding signal is given to the central control means 27.
This subassembly is intended for preparing a blank for a collar 12. The blanks severed from a continuous web are fed to a collar subassembly corresponding to
The rollers 52, 53 are fitted on adjusting levers 54, 55. These are actuated in the manner described by a specific gear mechanism 56. The gear mechanism 56 contains a cam roller 57 which is driven in rotation. The latter, in turn, is moved via a further gear mechanism, namely a preliminary gear mechanism 58, by way of a central drive. During the production of a type of pack without round edges—the standard pack 13 or octagonal pack 15—the drive for the roller 52, 53 is brought to a standstill, to be precise with the rollers 52, 53 in a position beneath the shaping body 51 (dashed lines in
The cam roller 57 is driven by a gearwheel 59, which engages with an intermediate wheel 60. The latter, in turn, meshes with a drive wheel 61 of a central drive.
The drive is disconnected by adjustment of the intermediate wheel 60, such that the latter disengages from the drive wheel 61. For this purpose, the intermediate wheel 60 is displaced axially into a position (dashed lines in
In order to execute this displacement, the intermediate wheel 60 is fitted on a spindle, namely hollow spindle 62. The latter can be displaced axially in a carrying wall 63 of the machine framework. On one side, an actuating element 64 is connected to the hollow spindle 62. The actuating element 64 is adjusted axially by hand and is designed with a corresponding widened portion at the end.
Connection between the actuating element 64 and the intermediate wheel 60 which is to be adjusted is such that rotary movements of the intermediate wheel 60 are not transmitted to the actuating element. For this purpose, the spindle of the intermediate wheel 60 is designed as hollow spindle 62, into which the actuating element 64 enters by way of a centering component 66. A claw-like connection 65 allows the transmission of axial forces, but permits relative rotary movements.
Once again, two initiators 23, 24 are provided in order to check the correct position of the gear mechanism and/or of the coupling brought about by the pack which is to be produced. Said initiators are assigned to a thickened portion or a contact border 67 at the end of the hollow spindle 62. The latter has a corresponding length projecting through an opening in the carrying wall 63. Depending on the position of the hollow spindle 62, and thus of the intermediate wheel 60, the contact border 67 acts on one initiator 23, 24 or the other.
The two examples according to
The subassembly according to
The scoring rollers 72, 73 are driven. The bottom spindle 70 is, in functional terms, a shaft which is driven by a driving gearwheel 74. Via the material web 71, the top scoring rollers 72 are likewise driven, with corresponding rotation of the top spindle 69.
The ends of the spindles 69, 70 and/or of the (bottom) shaft are mounted for rotation in lateral housing walls 75, 76. A section of the spindles 69, 70 in which the two scoring rollers 72, 73 are fitted, namely a spindle component 77, 78, can be removed (with the scoring rollers 72, 73). For this purpose, the ends of the spindle components 77, 78 are seated in mounts or lateral carrying components 79, 80 as an extension of the spindles 69, 70. The carrying components 79, 80 are mounted in a rotatable manner in each case in the housing walls 75, 76 and have conical depressions on the sides which are directed toward the spindle components 77, 78. Correspondingly conically designed coupling ends 81, 82 of the spindle components 77, 78 enter in a form-fitting manner into said depressions.
For coupling and uncoupling the spindle components 77, 78 in respect of the coupling ends 81, 82, the conical coupling ends 81 in each case can be displaced axially on one side of the spindle components 77, 78, to be precise counter to the loading of a spring 83. The displaceable coupling ends 81, 82 are secured against rotation by a slot guide. By virtue of being displaced from the position which is shown by solid lines in
Initiators 23, 24 are provided in order to check the presence of the two spindle components 77, 78 (or the absence of these parts), the initiators interacting with a thickened portion 85 in each case on the outside of the spindle components 77, 78. In particular, the thickened portion 85 is provided at the displaceable coupling end 81. Using two initiators 23, 24 in conjunction with a single thickened portion 85 also ensures that an incorrect position of the displaceable coupling end 81 is established by the initiator 24.
A functional diagram is illustrated schematically in
List of Designations
Number | Date | Country | Kind |
---|---|---|---|
101 15 563.8 | Mar 2001 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP02/01317 | 2/8/2002 | WO |