Packaging machine with a cutting device with optimized power consumption

Information

  • Patent Grant
  • 11124325
  • Patent Number
    11,124,325
  • Date Filed
    Friday, August 16, 2019
    4 years ago
  • Date Issued
    Tuesday, September 21, 2021
    2 years ago
Abstract
A packaging machine packages items using film. The packaging machine includes: a film transporter for feeding film; and a cutting device for cutting film. The cutting device is transferrable by a driving force from a rest position into an extended position. The film is severable by the cutting device in the extended position. The cutting device is connected to a housing surrounding the cutting device via a return mechanism. The return mechanism is activatable upon the cutting device being transferred from the rest position into the extended position. A return force in a direction of the rest position is exertable by the return mechanism in the activated state on the cutting device in its extended position, the force being greater than a return resistance of the cutting device in its extended state by which the cutting device is held in the extended state without action of the driving force.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

Priority is claimed to European Patent Application No. EP 18 189 912.1, filed on Aug. 21, 2018, the entire disclosure of which is hereby incorporated by reference herein.


FIELD

The present invention relates to a packaging machine for packaging items by means of a stretchable film.


BACKGROUND

EP 3 093 244 B1 discloses a packaging machine for packaging items by means of films, wherein the film is cut to size with a film trimming device or cutting device.


A high-performance stretch-film packaging machine can package more than 35 packaging items, in particular large tray shells, per minute. In the case of small tray shells, machines of very high performance can also handle more than 40, even up to 50, packages per minute, depending on the package size.


In order to package a packaging item, the following steps are carried out:


The packaging item is picked up and weighed.


Film from a film supply is fed through the film feeder to a film transport device, in particular taking the form of conveyor belts, and is then used to package a packaging item. The film is cut to size by the cutting device. To cut the film to size, the blade of the cutting device is transferred by the drive from the rest position into the extended position.


The film comes in particular from an “endless roll” and is unrolled therefrom. Once a required length of film is reached for a packaging operation, that section of the film must be separated from the endless film. The blade is used when cutting the film off the endless roll. Cutting a stretch film in particular is made more difficult by the fact that a stretch film is typically comparatively thin and, due to its stretching properties, easily just wraps around the blade without being cut through.


The packaging item is raised by a lifting table and pressed up beneath the film.


The film is pushed under the packaging item by the lateral sliders on the left and right simultaneously. Furthermore, the film is pushed under the packaging item from the rear by the rear slider.


The packaging item is labeled and pushed onto the sealing tape, wherein the front section of the film is pushed under the package.


The film is sealed on the underside of the tray shell and the packaged item is ejected.


Typically, during the cutting to size of the film, a blade of the cutting device is moved through the film, resulting in a relatively slow cutting operation. For a rapid cutting operation, the cutting device is moved up to the film by the drive before the cutting operation, cuts through the film over its full width, and is moved away from the film after the cutting operation.


The use of the drive for moving the cutting device in the two directions—towards the film and away from the film—requires a rapid switch-over of the drive and a high associated energy consumption.


SUMMARY

An embodiment of the present invention provides a packaging machine that packages items using a stretchable film. The packaging machine includes: a film transporter for feeding the stretchable film to a packaging item to be packaged; and a cutting device with a blade for cutting the stretchable film from the film transporter to size. The cutting device is transferrable by a drive with a driving force from a rest position into an extended position. The stretchable film is severable by the cutting device in the extended position. The cutting device is connected to a housing surrounding the cutting device via a return mechanism spatially separate from the drive. The return mechanism is activatable upon the cutting device being transferred from the rest position into the extended position. A return force in a direction of the rest position is exertable by the return mechanism in the activated state on the cutting device in its extended position, the force being greater than a return resistance of the cutting device in its extended state by which the cutting device is held in the extended state without action of the driving force.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be described in even greater detail below based on the exemplary figures. The invention is not limited to the exemplary embodiments. All features described and/or illustrated herein can be used alone or combined in different combinations in embodiments of the invention. The features and advantages of various embodiments of the present invention will become apparent by reading the following detailed description with reference to the attached drawings which illustrate the following:



FIG. 1 is a longitudinal section through a film transfer point of a packaging machine;



FIG. 2 is longitudinal section through the film guide element and the cutting device with a return mechanism according to the invention in the rest position and the blade in the first blade position;



FIG. 3 is a longitudinal section through the film guide element and the cutting device, wherein the cutting device is in the extended position and the blade is in the first blade position;



FIG. 4 is a longitudinal section through the film guide element and the cutting device, wherein the cutting device is in the extended position and the blade is in the second blade position;



FIG. 5 is a plan view of the pressure magnet, the film guide element and the cutting device in the rest position and with the blade in the first blade position;



FIG. 6 is a plan view of the pressure magnet, the film guide element and the cutting device in the extended position and with the blade in the first blade position; and



FIG. 7 is a plan view of the pressure magnet, the film guide element and the cutting device in the extended position, wherein the blade is in the second blade position.





DETAILED DESCRIPTION

Embodiments of the present invention modify not only a packaging machine but also a packaging method such that retraction of the cutting device (or cutter) is effected without any action on the part of the drive, preferably automatically.


Embodiments of the present invention improve upon the state of the art packaging machines in a technically particularly simple and surprisingly effective manner, for example the cutting device is connected to a housing surrounding the cutting device via a return mechanism spatially separate from the drive. The return mechanism can be activated with the transfer of the cutting device from the rest position into the extended position. A return force in the direction of the rest position can be applied in the extended position by the return mechanism in the activated state. The return force is greater than the return resistance of the cutting device in the extended state, by which the cutting device is held in the extended state without the application of the drive force.


Among other things, blades can press on the film with a cutting edge having the full width of the film. In order to cut the film through, the blade is pressed onto the film over its full width by means of an electric motor or a solenoid. After the cutting operation, the blade is retracted by the electric motor or the solenoid. The blade is possibly retracted by means of a spring support. A tension spring is used in particular in the case of a spring support. A tension spring can be tensioned and released three to five times per minute. Retracting the blade using only the force of a tension spring is not possible. The blade drive, in particular in the form of the electric motor or solenoid, always acts in both directions, not only during the movement of the blade towards the film but also during the movement of the blade away from the film.


In contrast, retraction from the extended position into the rest position is effected by the return mechanism according to the invention against the return resistance of the cutting device, wherein the return mechanism does not require the drive. The return resistance comprises all forces, excluding the force of the drive, which act on the cutting device in the extended state and oppose a return of the cutting device. These forces in particular include frictional and inertial forces. The drive can be of a mechanical, electrical or magnetic design. The return mechanism here allows the drive to act only in the cutting direction of the blade, the blade guide being transferred in the cutting direction from the rest position into the extended position. The drive is then preferably disengaged or switched off. The return mechanism then effects an automatic retraction of the cutting device from the extended position into the rest position counter to the cutting direction.


An advantageous embodiment of the packaging machine according to the invention is characterized in that the return mechanism has a first elastic element, which is fastened in particular indirectly to the blade of the cutting device. The first elastic element fastened to the blade can be brought into a tensioned form by the movement of the cutting device from the rest position into the extended position. As a result, the force required for returning the cutting device to the rest position is built up. The return then takes place automatically with the relaxation of the elastic element.


A preferred development of this embodiment is characterized in that the first elastic element is designed as a compression spring and is preferably connected to the cutting device by means of a rod. Compression springs are characterized by a high loading capacity and spring constants in comparison with other springs, such as tension springs. They can be used when there is rapid repetition and with strong spring forces to return the blade guide into the rest position. The rod is preferably passed through the compression spring. A compression spring can be tensioned and relieved up to a hundred times a minute.


In a class of further advantageous embodiments of the invention, the cutting device comprises a blade guide, in particular comprising one or more guide plates, preferably in the form of two mutually opposite guide plates. The control of the movement of the blade is considerably improved by a blade guide.


In preferred developments of this class of embodiments, the return mechanism has a second elastic element, in particular in the form of a leaf spring, which is fastened at one end to the blade guide and at the other end to the blade. The movement of the blade guide and of the blade can be coupled by a second elastic element, which connects the blade guide and the blade, so that the blade guide is automatically moved along with a movement of the blade. The use of an elastic element here makes different settings possible for the blade and the blade guide relative to one another.


A preferred variant of these developments is characterized in that the blade can be transferred from a first blade position within the blade guide into a second blade position by tensioning the second elastic element, in which second blade position the blade projects beyond the blade guide and in which the blade can be transferred from the second blade position back into the first blade position by relaxing the second elastic element. The blade preferably cuts through the film during the transition from the first blade position into the second blade position. The movement of the blade in the cutting direction is preferably controlled by the drive, the blade guide being held back by a stop. As a result of the tensioning of the second elastic element, in particular of the leaf spring, a spring force is built up which is opposite to the cutting direction. After the drive is switched off, this spring force retracts the blade back into the first blade position. By relaxing the first elastic element, the blade can then in particular be returned to the rest position of the blade guide by means of a tappet, which carries along the blade guide.


Further advantageous embodiments of the packaging machine according to the invention are characterized in that the film feeder has a film guide element with a cutting gap which is separated from the cutting device in the rest position by a film feed gap, the cutting device in the extended position resting against the film guide element. The film preferably rests against the film guide element and is pressed against the film guide element by the cutting device. Deformation of the film, in particular of an elastic film, is thereby prevented. This allows a precise cutting of the film to length.


A further development of these embodiments is characterized in that in the extended position of the cutting device, in particular of the blade guide, the blade projects through the cutting gap of the film guide element. In particular, in the extended position of the blade guide, the blade can be transferred, preferably by the drive, from the first blade position into the second blade position, whereby it passes through the cutting gap while the blade guide abuts against the film guide element. When the blade is transferred from the first blade position into the second blade position, the blade cuts through the film. After the film has been cut through, the blade can be returned automatically by the second elastic element to the first blade position, in particular by switching off the drive.


In a further development of the packaging machine according to the invention, said packaging machine comprises further elastic elements, in particular in the form of at least one further compression spring and/or at least one further leaf spring. As a result, the return forces can be amplified and a failure of an elastic element can be compensated.


A preferred development of the packaging machine is characterized in that the blade guide has at least one slide guide, in particular two slide guides, for at least one slide block formed on the blade, in particular two slide blocks. The slide blocks are preferably located on the housing, which surrounds the cutting device, and thus serve to center the blade.


A further development of this embodiment is characterized in that at least one, in particular a circular, spacer is arranged on the blade guide between the blade guide and the housing surrounding the cutting device, which can be guided along the housing of the cutting device during the transfer of the cutting device from the rest position into the extended position, two spacers in particular being arranged opposite each other on the blade guide. Centering of the blade guide is effected by these spacers.


A particularly preferred variant of this class of developments is characterized in that the slide block is arranged on the housing, extends through the spacer and engages in the slide guide of the blade guide, wherein in particular one slide block in each case reaches through two mutually opposite spacers and engages in each case one slide guide of the blade guide. The slide block or the slide blocks then limit the displacement of the blade guide in the cutting direction.


A further development is characterized in that the film guide element has contact faces at the cutting gap, in particular rubber lips, for the attachment of the film. The elastic counterforce of the rubber lips allows the film to be clamped particularly well between the rubber lips and the blade guide, which in its extended position presses against the rubber lips.


In a further advantageous embodiment of the packaging machine according to the invention, the drive has a pressure magnet which preferably acts only in the cutting direction of the cutting device. The pressure magnet in particular takes the form of a solenoid, linear magnet and/or electromagnet. The pressure magnet effects in particular a linear movement. However, the force of the pressure magnet acts only in the cutting direction, from the rest state of the cutting device into the extended state. After extension of the blade guide and of the blade it can be switched off, wherein the return mechanism brings about an automatic return of the blade and the blade guide into the rest position.


Another preferred embodiment, finally, is characterized in that the drive and/or the return mechanism has coupling elements—in particular U-shaped ones—for connection to the blade, which can preferably be inserted into recesses in the blade guide. The U-shaped coupling elements grip around the blade and can then be fastened to the blade in a simple manner by bolts guided through the blade. The coupling elements are formed on rods of the pressure magnet, of the first elastic element and/or on the second elastic element in each case in order to form a mechanical connection to the blade.


Other features and advantages of the invention arise from the following detailed description of an exemplary embodiment of the invention with reference to the figures in the drawing, which shows details essential to the invention, and also from the claims. The individual features can be implemented individually or combined in any combination in variants of the invention.


In the schematic drawing, an exemplary embodiment of the invention is shown which is explained in more detail in the following description.



FIG. 1 shows a longitudinal section through a film transfer point as part of a packaging machine 10. The packaging machine 10 comprises a film feeder 11, through which film from a film supply is fed to a film transport device (or film transporter) 12. The film transport device 12 conveys the film to the location where a packaging item is packaged. Between the film feeder 11 and the film transport device 12 there is a cutting device (or cutter) 13 according to the invention for cutting the film to length.


The cutting device 13 has a blade guide 14 in the form of two guide plates 14a, 14b opposite each other. Between the guide plates 14a, 14b there is a blade 15. The blade 15 and the blade guide 14 are connected elastically to each other (see FIG. 5). Circular spacers 16a, 16b for maintaining the distance between the guide plates and a housing 17 of the cutting device 13 that surrounds the cutting device 13 are attached to the guide plates 14a, 14b. The blade 15, the guide plates 14a, 14b and the circular spacers 16a, 16b form a sandwich-like structure.


Opposite the cutting device 13 is a film guide element (or film guide) 19 with contact faces 20a, 20b (see FIG. 2) in the form of rubber lips for attaching the film. A film feed gap 22 for feeding through the film is formed between the cutting device 13 and the film guide element 19. The guide plates 14a, 14b are pressed against the contact faces 20a, 20b during the cutting of the film (see FIG. 3). The contact surfaces 20a, 20b are arranged around a cutting gap 23 through which the blade 15 can pass for cutting the film (cf. FIG. 4).


Fastened to the housing 17 is at least one screw 24 which passes through at least one spacer 16b and engages in at least one recess of a guide plate 14b. This limits a displacement of the blade guide 14 to the length of the recess in the guide plate 14a, 14b.


A drive 9, in the form of a pressure magnet 25, via a pressure-magnet rod 26, moves the cutting device 13 only in a cutting direction 27 toward the film guide element 19. On the pressure-magnet rod 26 there is a stop 28 of the pressure-magnet rod 26, said stop bearing against the housing 17 of the cutting device 13. The pressure magnet 25 in particular takes the form of a solenoid, a linear magnet or an electromagnet, which acts only in the cutting direction 27. The movement of the blade guide 14 in the direction 30 opposite the cutting direction 27 is effected by a return mechanism according to the invention (see FIG. 2).



FIG. 2 shows a longitudinal section through the film guide element 19 and the cutting device 13 with a return mechanism according to the invention 31a. The return mechanism 31a is arranged along the guide plates 14a, 14b offset from the pressure magnet 25 (see FIG. 5). The cutting device 13 has the blade guide 14 in the form of the guide plates 14a, 14b and the blade 15 arranged between the guide plates 14a, 14b. The return mechanism 31a comprises a first elastic element 32a in the form of a compression spring 33a around a rod 34a of the return mechanism 31a where a stop 35a for the compression spring 33a is arranged. The compression spring 33a and the rod 35a are arranged in the housing 17 of the cutting device 13. The housing 17 can have a single- or multi-part design. The rod 34a has at one end 37a a U-shaped coupling element 38a, which is permanently connected to the blade 15 via a bolt 39a passing through the blade 15.


The cutting device 13 is in a rest position 40. The film feed gap 22 is formed between the cutting device 13 and the film guide element 19 with the contact faces 20a, 20b. In the case of a movement of the cutting device 13 in the cutting direction 27 toward the film guide element 19 that is effected by the pressure magnet 25 (see FIG. 1), the compression spring 33a is pressed against the housing 17 and compressed. It then acts on the stop 35a with a force which is opposite to the cutting direction 27. After the pressure magnet 25 is switched off, the compression spring 33a relaxes, as a result of which the cutting device 13 is returned to the resting position 40.



FIG. 3 shows a longitudinal section through the film guide element 19 and the cutting device 13, the cutting device 13 being in an extended position 41. The two guide plates 14a, 14b bear against the contact faces 20a, 20b of the film guide element 19 while bridging the film feed gap 22. The rod 34a of the return mechanism 31a is extended, and a separation 42 in the cutting direction 27 is created between the housing 17 of the cutting device 13 and the U-shaped coupling element 38a. The blade 15 is arranged in a first blade position 43 within the blade guide 14 between the two guide plates 14a, 14b.



FIG. 4 shows a longitudinal section through the film guide element 19 and the cutting device 13, the blade 15 being in a second blade position 44. The blade guide 14 in the form of the two guide plates 14a, 14b bears against the contact faces 20a, 20b of the film guide element 19. In the second blade position 44, the blade 15 reaches between the two guide plates 14a, 14b of the blade guide 14, passing through the cutting gap 23 of the foil guide element 19. During the transition from the first blade position 43 (see FIG. 3) to the second blade position 44, due to the driving force of the pressure magnet 25 (see FIG. 1) the blade 15 severs the film attached to the film guide element 19.



FIG. 5 shows a plan view of the pressure magnet 25, the film guide element 19 and the cutting device 13 in the rest position 40 (see FIG. 2). In particular the blade 15, the contact face 20b of the film guide element 19 and the film feed gap 22 are shown. A return mechanism 31a, 31b, with in each case a first elastic element 32a, 32b in the form of a compression spring 33a, 33b, is arranged in each case along the blade 15 on each side of the pressure magnet 25. Each return mechanism 31a, 31b and the pressure magnet 25 is permanently connected to the blade 15 via a coupling element 38a, 38b, 38c on the respective rod 26, 34a, 34b (see FIG. 6) and a bolt 39a, 39b, 39c. The blade 15 is connected to the blade guide 14 by second elastic elements 45a, 45b in the form of leaf springs 46a, 46b. The leaf springs 46a, 46b are attached to the blade 15 via coupling elements 38d, 38e of the leaf springs 46a, 46b. The coupling elements 38a-38e during the movement of the blade 15 in the cutting direction 27 can be introduced into recesses 47a, 47b, 47c, 47d, 47e of the blade guide 14. Slide blocks 48a, 48b are attached to the blade 15 which are moved within slide guides 49a, 49b in the blade guide 14 and are guided along in the housing 17 that surrounds the cutting device 13. As a result, the slide blocks 48a, 48b ensure centering of the blade 15. They further assist the return movement of the blade guide 14 after the pressure magnet 25 is switched off.



FIG. 6 shows a plan view of the pressure magnet 25, the film guide element 19 and the cutting device 13 in the extended position 41 (see FIG. 3). The blade 15 reaches through the film feed gap 22 (see FIG. 5). The rods 26, 34a, 34b of the return mechanisms 31a, 31b and of the pressure magnet 25 are extended. The coupling elements 38a-38e of the return mechanisms 31a, 31b and the stop 28 of the pressure magnet 25 in each case are at a distance from the housing 17 of the cutting device 13 in the cutting direction 27.



FIG. 7 shows a plan view of the pressure magnet 25, the film guide element 19 and the cutting device 13 in the extended position 41 (see FIG. 3), the blade 15 being in the second blade position 44 (see FIG. 4). The coupling elements 38a-38e associated with the return mechanisms 31a, 31b, with the pressure magnet 25 and with the leaf springs 46a, 46b are retracted into the respective recesses 47a-47e of the blade guide 14.


While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive. It will be understood that changes and modifications may be made by those of ordinary skill within the scope of the following claims. In particular, the present invention covers further embodiments with any combination of features from different embodiments described above and below. Additionally, statements made herein characterizing the invention refer to an embodiment of the invention and not necessarily all embodiments.


The terms used in the claims should be construed to have the broadest reasonable interpretation consistent with the foregoing description. For example, the use of the article “a” or “the” in introducing an element should not be interpreted as being exclusive of a plurality of elements. Likewise, the recitation of “or” should be interpreted as being inclusive, such that the recitation of “A or B” is not exclusive of “A and B,” unless it is clear from the context or the foregoing description that only one of A and B is intended. Further, the recitation of “at least one of A, B and C” should be interpreted as one or more of a group of elements consisting of A, B and C, and should not be interpreted as requiring at least one of each of the listed elements A, B and C, regardless of whether A, B and C are related as categories or otherwise. Moreover, the recitation of “A, B and/or C” or “at least one of A, B or C” should be interpreted as including any singular entity from the listed elements, e.g., A, any subset from the listed elements, e.g., A and B, or the entire list of elements A, B and C.


What follows is a listing of reference numbers used herein:



9 Drive



10 Packaging machine



11 Film feeder



12 Film transport device



13 Cutting device



14 Blade guide



14
a,b Guide plates



15 Blade



16
a,b Spacers



17 Housing



19 Film guide element



20
a,b Contact faces



22 Film feed gap



23 Cutting gap



24 Screw



25 Pressure magnet



26 Pressure magnet rod



27 Cutting direction



28 Stop of the pressure magnet



30 Opposite direction to cutting direction



31
a,b Return mechanism



32
a,b First elastic element



33
a,b Compression spring



34
a,b Rod of the return mechanism



35
a Stop for the compression spring



37 End of the rod of the return mechanism



38
a-e Coupling elements



39
a,b,c Bolt



40 Rest position



41 Extended position



42 Distance



43 First blade position



44 Second blade position



45
a,b Second elastic elements



46
a,b Leaf springs



47
a-e Recesses in the blade guide



48
a,b Slide blocks



49
a,b Slide guides

Claims
  • 1. A packaging machine for packaging packaged items using a stretchable film, the packaging machine comprising: a film transporter for feeding the stretchable film to a packaging item to be packaged; anda cutting device with a blade for cutting the stretchable film from the film transporter to size,wherein the cutting device is transferrable by a drive with a driving force from a rest position into an extended position,wherein the stretchable film is severable by the cutting device in the extended position,wherein the cutting device is connected to a housing surrounding the cutting device via a return mechanism spatially separate from the drive,wherein the return mechanism is activatable upon the cutting device being transferred from the rest position into the extended position,wherein a return force, which is opposite to that of the driving force, is exertable by the return mechanism in an activated state on the cutting device in its extended position, the force being greater than a return resistance of the cutting device in its extended state by which the cutting device is held in the extended state without action of the driving force,wherein the cutting device has a blade guide comprising one or more guide plates, andwherein the return mechanism comprises a second elastic element in the form of a leaf spring, having one end fastened to the blade guide and with a second end fastened to the blade.
  • 2. The packaging machine according to claim 1, wherein the return mechanism has a first elastic element, which is fastened indirectly to the blade of the cutting device.
  • 3. The packaging machine according to claim 2, wherein the first elastic element is a compression spring.
  • 4. The packaging machine according to claim 3, wherein the compression spring is connected to the cutting device by a rod.
  • 5. The packaging machine according to claim 2, wherein the packaging machine has further elastic elements in the form of at least one compression spring and/or at least one leaf spring.
  • 6. The packaging machine according to claim 1, wherein the blade is transferable from a first blade position within the blade guide into a second blade position by tensioning the second elastic element, in the second blade position, the blade projects beyond the blade guide and in which the blade is transferable from the second blade position back into the first blade position by relaxing the second elastic element.
  • 7. The packaging machine according to claim 1, wherein the film transporter has a film guide with a cutting gap which is separated from the cutting device in the rest position by a film feed gap, the cutting device resting against the film guide in the extended position.
  • 8. The packaging machine according to claim 7, wherein in the extended position of the cutting device, in particular of the blade guide, the blade projects through the cutting gap of the film guide.
  • 9. The packaging machine according to claim 7, wherein the film guide has contact faces at the cutting gap for the attachment of the stretchable film.
  • 10. The packaging machine according to claim 1, wherein the blade guide has at least one slide guide for at least one slide block formed on the blade.
  • 11. The packaging machine according to claim 10, wherein at least one spacer is arranged between the blade guide and the housing surrounding the cutting device, which can be guided along the housing of the cutting device during the transfer of the cutting device from the rest position into the extended position.
  • 12. The packaging machine according to claim 11, wherein the slide block is arranged on the housing, extends through the spacer and engages in the slide guide of the blade guide.
  • 13. The packaging machine according to claim 12, wherein the slide block reaches through two mutually opposite spacers and engages the slide guide of the blade guide.
  • 14. The packaging machine according to claim 1, wherein the drive has a pressure magnet.
  • 15. The packaging machine according to claim 14, wherein the pressure magnet acts only in the cutting direction of the cutting device.
  • 16. The packaging machine according to claim 1, wherein the drive and/or the return mechanism has coupling elements for connection to the blade.
  • 17. The packaging machine according to claim 16, wherein the coupling elements have a curved cross profile and are insertable into recesses in the blade guide and are configured to grip around the blade.
  • 18. The packaging machine according to claim 1, wherein the guide plates are in the form of two mutually opposite guide plates.
  • 19. A packaging machine for packaging packaged items using a stretchable film, the packaging machine comprising: a film transporter for feeding the stretchable film to a packaging item to be packaged; anda cutting device with a blade for cutting the stretchable film from the film transporter to size,wherein the cutting device is transferrable by a drive with a driving force from a rest position into an extended position,wherein the stretchable film is severable by the cutting device in the extended position,wherein the cutting device is connected to a housing surrounding the cutting device via a return mechanism spatially separate from the drive,wherein the return mechanism is activatable upon the cutting device being transferred from the rest position into the extended position,wherein a return force in a direction of the rest position is exertable by the return mechanism in an activated state on the cutting device in its extended position, the force being greater than a return resistance of the cutting device in its extended state by which the cutting device is held in the extended state without action of the driving force, andwherein the cutting device has a blade guide comprising one or more guide plates,wherein the blade guide has at least one slide guide for at least one slide block formed on the blade, andwherein at least one spacer is arranged between the blade guide and the housing surrounding the cutting device, which can be guided along the housing of the cutting device during the transfer of the cutting device from the rest position into the extended position.
  • 20. A packaging machine for packaging packaged items using a stretchable film, the packaging machine comprising: a film transporter for feeding the stretchable film to a packaging item to be packaged; anda cutting device with a blade for cutting the stretchable film from the film transporter to size,wherein the cutting device is transferrable by a drive with a driving force from a rest position into an extended position,wherein the stretchable film is severable by the cutting device in the extended position,wherein the cutting device is connected to a housing surrounding the cutting device via a return mechanism spatially separate from the drive,wherein the return mechanism is activatable upon the cutting device being transferred from the rest position into the extended position,wherein a return force in a direction of the rest position is exertable by the return mechanism in an activated state on the cutting device in its extended position, the force being greater than a return resistance of the cutting device in its extended state by which the cutting device is held in the extended state without action of the driving force,wherein the drive and/or the return mechanism has coupling elements for connection to the blade,wherein the coupling elements have a curved cross profile and are insertable into recesses in the blade guide and are configured to grip around the blade.
Priority Claims (1)
Number Date Country Kind
18 189 912 Aug 2018 EP regional
US Referenced Citations (2)
Number Name Date Kind
4624169 Nelson Nov 1986 A
5014489 Terminella May 1991 A
Foreign Referenced Citations (5)
Number Date Country
1922327 Aug 1965 DE
69705175 Feb 2002 DE
102004029430 Jan 2006 DE
102004029430 Jan 2006 DE
3093244 Nov 2016 EP
Related Publications (1)
Number Date Country
20200062436 A1 Feb 2020 US