The present invention is related to a packaging product, and more particularly to dunnage product for lining a shipping container, a corresponding method of making the packaging product, and a method of using the packaging product.
Dunnage conversion machines convert a stock material into a dunnage product that can be used to pack articles in a shipping container and thus minimize or prevent damage during shipment. Dunnage conversion machines, also referred to as dunnage converters, generally include a conversion assembly that converts a stock material into a relatively lower density dunnage product as the stock material moves through the conversion assembly from an inlet at an upstream end toward an outlet at a downstream end.
Exemplary dunnage conversion machines already in use convert a sheet stock material, such as kraft paper, into a dunnage product that can then be placed into a container to protect articles being shipped. Such dunnage conversion machines typically convert a substantially continuous length of sheet stock material into a strip of dunnage, from which discrete lengths of dunnage product are severed for placement in a container by a packer in a desired configuration.
The present invention provides a method for the production of a bundle of dunnage products that can be produced on demand, and a method for using the bundled dunnage products in packing an article for shipment in a container protected by the dunnage products drawn from the bundle. That method may include placing a bundle of dunnage products in a container and opening the bundle to line the container. The present invention may be particularly useful for use with insulating dunnage products. The current method for assembly of on-demand sheet-based insulating liners limits the available throughput for end-users due to the labor time and speed of the machine. To improve this throughput and allow for an easily-assembled insulated shipping container, and to provide a method for easy storage of ready-to-use sheet-based insulating liners, the present invention provides an improved method for bundling insulating dunnage products that can be used as insulating liners.
While currently-available insulating materials tend to be bulky, expensive, and are not fully recyclable, the present invention also provides a cost-effective, curbside-recyclable insulating lining for local deliveries. The lining can be provided as part of a kit that can be inserted into a container, but which is compact for storage until ready for use. The insulating lining also can be integrated into the walls of a container as a finished product to remove the kit assembly steps at the packing location.
More particularly, the present invention provides a bundle of packing material that includes at least two strips of packing material folded into a compact bundle. The strips of packing material include a top strip of packing material having a length dimension with first and second end portions and a central portion between the first end portion and the second end portion, and a bottom strip of packing material having a length dimension with first and second end portions and a central portion between the first end portion and the second end portion. The central portion of the top strip overlays the central portion of the bottom strip and the length dimension of the top strip is oriented orthogonal to the length dimension of the bottom strip. The first and second end portions of top strip are folded over the central portion of the top strip, and the first and second end portions of the bottom strip are folded over the central portion of the bottom strip.
The bundle may further include one or more of the following features: (a) the central portion of the top strip has a top side and a bottom side opposite the top side, and the first and second end portions of the top strip are folded over the top side of the top strip, and the first and second end portions of the bottom strip are folded over a top side of the central portion of the top strip; (b) one of the first end portion and the second end portion of the top strip are folded over one of the first end portion and the second end portion of the bottom strip; (c) the first end portions and the second end portions of the top strip and the bottom strip are interleaved; and (d) the strips of packing material are made at least partially of paper, and may include randomly-crumpled paper.
The bundle may further include a restraining member to temporarily secure the strips of packing material in the bundled configuration. The restraining member may be a strap.
The strips of packing material may be selected based on one or more of the following factors: (a) a width dimension of the strip of packing material relative to a width of a respective side wall of a container; (b) insulating properties of the strip of packing material; and (c) cushioning properties of the packing material.
The present invention also provides a method of making a bundle of packing material from two strips of packing material. The method includes the following steps: (a) providing two strips of packing material, including a top strip of packing material having a length dimension with first and second end portions and a central portion between the first end portion and the second end portion, and a bottom strip of packing material having a length dimension with first and second end portions and a central portion between the first end portion and the second end portion; (b) placing the central portion of the top strip over the central portion of the bottom strip such that the length dimension of the top strip is orthogonal to the length dimension of the bottom strip; (c) folding the first end portion and the second end portion of top strip over the central portion of the top strip; and (d) folding the first end portion and the second end portion of the bottom strip over the central portion of the bottom strip.
The method may further include, after the folding steps, the step of (e) applying a restraining member to temporarily secure the strips of packing material in a bundled configuration.
The folding steps may include interleaving the first end portions and the second end portions of the top strip and the bottom strip.
The providing step may include selecting strips of packing material made at least partially of paper.
The providing step may include selecting strips of packing material that include randomly-crumpled paper.
The providing step may include selecting strips of packing material based on one or more of the following factors: (a) a width dimension of the strip of packing material relative to a width of a respective side wall of a container; (b) insulating properties of the strip of packing material; and (c) cushioning properties of the packing material.
The present invention also provides a method of using a bundle of packing material as described above. The method includes the steps of (a) providing a rectangular packing container with an open top side and a closed bottom side opposite the top side; (b) placing the bundle of packing material in the packing container with a bottom side of the central section of the bottom strip against an inner surface of the bottom side of the packing container; and (c) unfolding the first end portions and the second end portions of the top strip and the bottom strip against respective side walls of the packing container.
The method may further include the step of releasing the bundle from a temporary restraining member.
The method may include the step of placing an article to be packed on a top side of the central section of the top strip, and folding respective first end portions and second end portions of the top strip and the bottom strip over the article, and closing the open top side of the packing container.
The foregoing and other features of the invention are hereinafter fully described and particularly pointed out in the claims, the following description and annexed drawings setting forth in detail certain illustrative embodiments of the invention, these embodiments being indicative, however, of but a few of the various ways in which the principles of the invention may be employed.
The present invention provides a method for making a bundled dunnage product, a method for making the bundled dunnage product, and a method for using the bundled dunnage product to prepare a shipping container to receive one or more articles to be shipped in the container. The bundled dunnage product, which also may be referred to as a bundle, facilitates placement of multiple dunnage products in a container simultaneously, such as for providing cushioning or thermal insulation properties for the shipping container. The bundled dunnage products are readily unbundled to line the container, whereupon the container is ready to receive the articles to be shipped. The bundle also may be referred to as a liner or lining for a shipping container. Unbundling the bundled dunnage products arranges the dunnage products along the inside surfaces of the container to provide the desired cushioning, thermal, or other dunnage properties.
An exemplary strip of dunnage suitable for use in the present invention may be produced by a dunnage conversion machine that converts a sheet stock material into a dunnage product that is relatively thicker and less dense than the stock material. An exemplary machine for converting sheet stock material into a strip of dunnage suitable for use in the present invention is disclosed in International Patent Application Publication No. WO 2009/042664, which is hereby incorporated by reference. That exemplary dunnage conversion machine produces a wrappable dunnage product, but the present invention is not limited to that dunnage product or the illustrated dunnage conversion machine.
Referring to
A suitable sheet stock material includes paper or plastic sheets or a combination thereof, supplied as a roll or a fan-folded stack, for example. An exemplary sheet stock material for use in the conversion machine includes either a single-ply or a multi-ply kraft paper provided either in roll form or as a series of connected rectangular pages in a fan-folded stack. Paper is an environmentally-responsible choice for a sheet stock material because it generally is recyclable, reusable, and composed of a renewable resource. The supply of sheet stock material may include multiple rolls or stacks to provide the plies or webs of sheet stock material for conversion into the dunnage product, and subsequent rolls or stacks may be spliced to trailing ends of preceding rolls or stacks to provide a continuous length of sheet stock material to the dunnage conversion machine.
The connecting assembly 206 passes the plies P1 and P2 or sheets of stock material therethrough at a slower rate than the rate at which the plies P1 and P2 are fed from the feed assembly 204 to and through the connecting assembly 206, the connecting assembly 206 thereby cooperating with the feed assembly 204 to cause the stock material to randomly longitudinally crumple or fold in a confined space extending longitudinally between the feed assembly 204 and the connecting assembly 206. The connecting assembly 206 connects the crumpled sheet to another sheet to hold the crumpled sheet in its crumpled state in a continuous strip of dunnage 207. The conversion machine also may include a cutting assembly 208 downstream of the connecting assembly 206 to sever discrete lengths of dunnage product 209 from the strip 207.
At least one ply of the dunnage product 209 thus includes a randomly crumpled web or sheet. Randomly crumpling at least one sheet provides cushioning properties to the dunnage product 209. The crumpled sheet or sheets are held in the crumpled state, for example along the connecting bands, which may be formed from lines of mechanical interconnection with at least one other sheet. The lines of connection where the multiple overlaid sheets or plies are held together also can provide convenient fold lines.
An exemplary dunnage product 100, shown in
The random crumpling of the crumpled ply or plies 104 and the laterally-spaced connecting bands 102 holding the uncrumpled ply or plies 106 to the crumpled ply or plies 104 provides a high quality dunnage product. Although the exact variation in the crumpled undulations is unpredictable, the amplitude and frequency of the undulations generally can be approximately predicted statistically, and is the result of the differential speed of the feed assembly 204 and the connecting assembly 206, and the size of the space through which a ply P1 or P2 travels.
Changing the number of crumpled sheets, the weight of the stock material employed, or the use of either a crumpled or an uncrumpled carrier sheet can be used to vary the cushioning or other properties of the wrapping product. Cushioning properties also can be controlled by changing a ratio of the feed rate of the stock material through the feed assembly 204 and the connecting assembly 206.
While the dunnage products 100 produced by such a conversion machine described above are particularly suitable for use as a wrapping dunnage product, as described above, the dunnage products 100 also or alternatively may provide desirable cushioning and thermal insulation properties. The use of a dunnage conversion machine allows dunnage products to be produced on-demand, if necessary or desirable. Strips or lengths of such dunnage products, or other dunnage products, may be employed in accordance with the present invention in the following manner.
Strips of packing material, also referred to as strip dunnage products, or sometimes referred to as pads, may have varying lengths, and may have insulating, cushioning, or some combination of such properties. The pads typically have a length dimension greater than a width dimension, and both the width dimension and the length dimension typically are greater than a thickness dimension. The center of the pad is halfway between respective first and second ends or end portions of the pad at opposite ends of the length dimension. A central portion of the pad lies between the lengthwise opposite ends and includes the center. The length of the pad may vary, but typically is long enough to extend across a corresponding dimension of a shipping container. The pad may have a length that is sufficient to extend across multiple inside surfaces of the container, including the inside surfaces of one or more upright side walls and a bottom wall of the container. If a width dimension of the inside surface of the container is greater than a width dimension of a pad, multiple adjacent pads extending in a common direction may be provided.
As an alternative to the pads described above and shown in
Similar to the pads shown in
The present invention forms or uses a bundled configuration of two or more strips to facilitate inserting multiple strips into a container at one time, ready to be deployed to a desired orientation where the strips are ready to receive and protect articles for shipment. This bundled configuration also may be referred to as a kit.
Turning now to a
Before the present invention, an operator generally would manually place each pad 22 and 24 across the shipping container, one at a time, potentially having to wait in between for a dunnage conversion machine to dispense the second pad 24. The operator also had to push central portions of the pads to the bottom of the shipping container before placing the article or articles to be shipped in the container and wrapping the ends of the first and second pads 22 and 24 over the article. The present invention provides a method of folding the first pad 22 and the second pad 24 to form a bundle that allows an operator to more quickly and efficiently place multiple pads in the bottom of a shipping container at one time, ready to be unbundled within a container to receive the article to be shipped.
In the first step of bundling the pads, the first pad and the second pad may be arranged to form either a “T” configuration (
Returning to
The resulting folded bundle 50 may be placed in a container for use directly, or may be stored, ready for later use. The bundle 50 also may include a strap 52, or other restraining member or means for holding or securing the first pad 30 and the second pad 32 in the bundled configuration. An exemplary strap 52 is made of paper, with an adhesive securing overlapping ends of the strap 52.
Referring now to
Each of these methods may vary the order in which the various sections would be folded inward. The size of the bundle preferably is correlated to the size of the packing container and the packaging requirements needed for that container. Factors to consider include the desired properties, whether insulating or cushioning or a combination thereof; the size of the container; the size of the articles being shipped; and the size of the dunnage products in the bundle. Thus, as noted above, more than two pads may be folded into a compact bundle for simultaneous placement in a container, with multiple pads aligned in a common direction, side-by-side, employed to cover container walls that are wider than a single pad. Accordingly, the bundle may include one or multiple first pads, along with one or multiple second pads, as needed for a particular container. Regardless of the number of pads, the resulting bundle makes it very easy for an operator to place multiple pads in a container at once. The bundled arrangement also facilitates aligning the pads against the inside surfaces of the container as the pads are unfolded from the bundle.
The present invention also provides a method for using the bundle to quickly place the dunnage products in a container in a configuration suitable for receiving an article to be shipped. The method includes the following steps, illustrated in
After the bundle 50 is placed into the container 74 against an inside surface of a bottom wall (
Subsequently, the respective sections may be folded over the articles to cover and protect all sides of the articles during shipment. Alternatively or additionally, one or more additional pads may be provided on top of or around the articles before the container is closed, to provide additional protection.
Placing the bundled dunnage products in a container and then unfolding the pads is much easier and quicker than manually arranging multiple pads in a container one at a time, as has been done in the past. Prior methods for assembly of on-demand sheet-based insulating liners, for example, were limited by the speed at which operators could arrange the pads in the container and by the speed at which a dunnage conversion machine could produce pads having the needed length. By providing bundled dunnage products, un-bundling the dunnage products automatically places the dunnage products in a desired configuration for receipt of the articles to be shipped. The bundled dunnage products may be produced on-demand for bundling and use, or pre-produced and stored in a compact bundled configuration until ready to use. The bundling and banding operations may be automated.
In summary, the present invention provides a bundle of packing material that includes at least two strips of packing material folded into a compact configuration. The strips of packing material include a top strip having a length dimension between first and second end portions and a central portion between the first end portion and the second end portion, and a bottom strip having a length dimension between first and second end portions and a central portion between the first end portion and the second end portion. The central portion of the top strip overlays the central portion of the bottom strip and the length dimension of the top strip is oriented orthogonal to the length dimension of the bottom strip. The first and second end portions of top strip are folded over the central portions, and the first and second end portions of the bottom strip are folded over the central portions. A strap may hold the strips in the bundled configuration.
Although the invention has been shown and described with respect to a certain illustrated embodiment or embodiments, equivalent alterations and modifications will occur to others skilled in the art upon reading and understanding the specification and the annexed drawings. In particular regard to the various functions performed by the above described integers (components, assemblies, devices, compositions, etc.), the terms (including a reference to a “means”) used to describe such integers are intended to correspond, unless otherwise indicated, to any integer which performs the specified function (i.e., that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the herein illustrated embodiment or embodiments of the invention.
This application is a national phase of International Application No. PCT/US2018/041549, filed Jul. 11, 2018 and published in the English language, and which claims priority to U.S. Application No. 62/661,402 filed Apr. 23, 2018, both of which are hereby incorporated herein by reference in their entireties.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/041549 | 7/11/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/209359 | 10/31/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5044493 | Crawford | Sep 1991 | A |
5180060 | Forti et al. | Jan 1993 | A |
5643167 | Simmons | Jul 1997 | A |
7044277 | Redzisz | May 2006 | B2 |
20080210591 | Cheich | Sep 2008 | A1 |
20110127272 | Crespo et al. | Jun 2011 | A1 |
20150114875 | McDonald | Apr 2015 | A1 |
20150305537 | Zich | Oct 2015 | A1 |
20160023831 | Cheich | Jan 2016 | A1 |
Number | Date | Country |
---|---|---|
110382369 | Oct 2019 | CN |
2203304 | May 2015 | EP |
H06501669 | Feb 1994 | JP |
H06156540 | Jun 1994 | JP |
3008532 | Mar 1995 | JP |
H07187242 | Jul 1995 | JP |
H10305801 | Nov 1998 | JP |
2000313482 | Nov 2000 | JP |
2001501896 | Feb 2001 | JP |
2003276767 | Oct 2003 | JP |
2005178834 | Jul 2005 | JP |
2016517375 | Jun 2016 | JP |
960029207 | Aug 1996 | KR |
1998012496 | Mar 1998 | WO |
0189936 | Nov 2001 | WO |
WO-0189936 | Nov 2001 | WO |
2006081360 | Aug 2006 | WO |
2014144428 | Sep 2014 | WO |
Entry |
---|
First Examination Report dated May 17, 2021, for related Indian Patent Application No. 202017047726. |
Communication pursuant to Rule 164(2)(b) and Article 94(3) dated Nov. 30, 2021, for corresponding European Regional Phase Patent Application No. 18746813.7. |
Notice of Reason for Rejection dated Apr. 13, 2022, for corresponding Korean Patent Application No. 10-2020-7031991. |
International Search Report and Written Opinion dated Feb. 2, 2019 for International Patent Application No. PCT/US2018/041549. |
Office Action published Sep. 20, 2022, for co-pending Brazilian Patent Application No. BR1120200215031. |
Number | Date | Country | |
---|---|---|---|
20210237961 A1 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
62661402 | Apr 2018 | US |