This application is a national stage completion of PCT/GB2005/002089 filed May 26, 2005 which claims priority from British Application Serial No. 0412173.7 filed Jun. 1, 2004.
This invention relates to packaging and is concerned particularly with packaging for use in protecting articles against damage and shock during storage and transit.
Various packaging methods have been used for protecting, for example electronic components, during storage and transit. These methods, in addition to being generally labour-intensive, commonly involve a substantial outlay in cost and material-resources on packaging items in the form, for example, of cardboard cases and specially-designed items of plastics foam and corrugated cardboard to fit within them.
It is one of the objects of the present invention to provide a form of packaging case that may be used with advantage in the protection of articles against damage and shock, and for reducing outlay in cost and material-resources.
According to the present invention there is provided a packaging case for enclosing one or more articles to protect them against damage and shock during storage and transit, wherein the case has walls which are of sheet material with recesses therein for strengthening and which are for edge-to-edge abutment one with another, and wherein the abutting edges of the walls are each formed with ridges and grooves that nest with one another ridge-within-groove when in mutual abutment.
It has been found that the ridge-within groove nesting at abutting edges of the packaging case of the present invention is very effective for resisting and cushioning shock, and is a feature that enables enhanced packaging to be provided economically.
The packaging case of the invention may be of moulded-sheet construction, and may be moulded in one piece. Furthermore, and with advantage for storage before use and ease of bringing into use, the case may be adapted to be erected from a flat form, simply by folding. In the latter regard, the walls may be hinged one to another to facilitate erection. The hinges may be along edges of the walls which abut one another in the erected case and which are stepped to provide mutual ridge-within-groove nesting lengthwise of those edges.
The walls of the case may have flanges that abut one another edge-to-edge, and the abutting edges of these flanges may each be formed with ridges and grooves to nest with one another ridge-within-groove when they are in mutual abutment. In particular, where the walls of the case are rectangular and are hinged longitudinally to one another for erection of the case from a flat form, the flanges may be upstanding from ends of the walls so as to be brought into edge-to-edge abutment one with another on erection of the case. The flanges may be of serpentine profile, and in this event, the edge-to-edge abutment between one flange and another may be between flanges of substantially conformal, double- and single-hump serpentine profile respectively.
The recesses in the walls of the case may comprise recesses of circular configuration, and these may each be of a tiered form having a diameter that decreases with depth. Where the case is of moulded-sheet construction with the circular recesses inside the case, they may provide stepped, shock-cushioning projections on the outside of the case.
A packaging case in accordance with the present invention will now be described, by way of example, with reference to the accompanying drawing, in which:
Referring to
Erection of the case C is carried out with the article A to be protected (represented in chain-dotted outline in
The walls 1 to 4 have upstanding flanges 8 to 11 respectively, at each end of the case C; the outside faces of the flanges 6 to 11 are grooved for enhanced rigidity. The flanges 8 to 11 at each end come into conformal edge-to-edge abutment with one another when the case C is erected, and this is effective to close the end of the case except for a small central aperture 12 that enables the presence of the article A to be readily checked visually. The flanges 8 and 11 of the walls 1 and 4 are of a double-hump serpentine profile (to be seen in
The case C is clipped closed in the erect condition by means of a flap 17 which is integral through a hinge 18 with the base-wall 1. The flap 17 engages resiliently with the side-wall 3 to clip the side-wall 3 to the base-wall 1 and thereby lock the case C in its erect condition folded round the article A.
Referring more particularly to
A shallow recess 29 is let into the plinth-area 22 partly breaking into the recesses 25 to 28. The purpose of this is to accommodate a sachet (not shown) of silica gel or other desiccant, under the article A. As an alternative, the recess 29 may be used to accommodate literature associated with article A.
The top-wall 4 is configured in substantially the same way as the base-wall 1, but without a recess corresponding to the recess 29. In particular, the inside surface 31 of the wall 4 has a central, rectangular plinth-area 32 that rises up through steps 33 and 34 from the hinges 6 and 7 respectively, along the two longitudinal edges of the wall 4. The end-flanges 11 rise above the area 32, and two large, circular recesses 35 and 36 together with two smaller, circular recesses 37 and 38 are let into the area 32. Each of the recesses 35 to 38 is of a tiered form having a progressively decreasing diameter with depth, so as to provide cushioning against shock and add to the strengthening of the sheet-form wall 4 provided by the steps 33 and 34. However, and in distinction to the recesses 25 and 26 of the wall 1, each recess 35 and 36 has a central, raised portion 39 (to the height of the bottom two tiers only).
The two side-walls 2 and 3 are of essentially the same configuration as one another. In particular, the inside surface 41 of each wall 2 and 3 has a central, rectangular plinth-area 42 that rises up through steps 43 and 44 from the two longitudinal edges of the respective wall 2 and 3. The end-flanges 9 and 10 rise above the respective areas 42, and five small, circular recesses 45 to 49 are let into each area 42. Each recess 45 to 49 is of a tiered form having a progressively decreasing diameter with depth so as to provide cushioning against shock and add to the strengthening of the sheet-form walls 2 and 3 provided by the steps 43 and 44.
When the case C is erect, the steps 43 and 44 abut respectively the steps 23 of the base-side 1 and the steps 33 of the top-wall 4; the abutment in each case is effective to nest the ridges of the steps 43 and 44 within the grooves of the steps 23 and 33. Similarly, the steps 43 and 44 abut respectively the steps 34 of the top-wall 4 and the steps 24 of the base-wall 1, effectively nesting the ridges of the steps 43 and 44 within the grooves of the steps 34 and 24. This nesting, together with the nesting of the ridges 15 of the flanges 9 and 10 in the grooves 14 of the flanges 8 and 11, and the ridges 13 of the flanges 8 and 11 in the grooves 16 of the flanges 9 and 10, gives a degree of rigidity to the case C enclosing the article A.
The free-edge 50 of the side-wall 3 projects into the fold of the hinge 18 and the flap 17 is turned over onto the outside of the wall 3 to bring steps 51 to 54 of the flap 17 into abutment with the reverse faces of the steps 44. The steps 44 are broken into by three channels 55 that correspond to channels 56 that divide the steps 51 to 54 from one another, and these channels 56 engage resiliently over the reverse faces of the channels 55 on the outside of the wall 3, in the locking of the wall 3 to the wall 1.
Additional or alternative means may be provided for retaining or locking the case closed. For example, studs may be moulded into the flap 17 for push-fit retention within apertures in the channels 56, or the flap 17 may be welded closed.
Cases having the form of case C described above, can be stacked one upon the other to provide a coherent stack that is advantageous for storage and transportation.
Referring to
More particularly, as illustrated in
The remainder of the stack is built up with a case (not shown) set alongside the case C3, and with further cases stacked correspondingly with the successive levels set transversely to one another so as to afford a measure of bonding for enhanced rigidity of the stack. In addition to there being absorption of lateral shock in the stack through abutment of the stepped, frusto-conical projections 57 of adjacent cases with one another, there is also absorption of vertical shock through abutment principally of the stepped, frusto-conical projections 60 of each case with the stepped, frusto-conical projections 58 of the underlying ones.
The interlocking of cases C with one another and resilient cushioning of shock between them, applies also when an overlying case is aligned with an underlying one. In these circumstances, however, push-fit of the tops 61 of the projections 60 of the overlying case C within the sockets 59 of the two projections 58 of the underlying case C, brings the projection 62 of the overlying case C into abutment with respective ones of the projections 63 of the underlying case C.
The stepped form of the frusto-conical projections 57, 58, 60, 62 and 63 gives each case C a degree of resilient cushioning for resisting shock that might otherwise damage the enclosed article A or the case C itself. The protection afforded is especially effective against components of shock at right angles to the walls 1 to 4 and is augmented by the resilient cushioning of the plinth-areas 22, 32 and 42 of the walls 1 to 4 that results from the steps 23, 24, 33, 34, 43 and 44. However, the nesting abutment of the steps 43 and 44 with the steps 23 and 33, and with the steps 34 and 24, results in resistance also to shock components at other angles to the walls 1 to 4 and on the hinges 5 to 7 and 18. All this is in addition to the resilient cushioning that results from the bellows-like structure provided by the ridge-and-groove moulding of the edges of the flanges 8 to 11 at either end of the case. The ridges 13 and 15 are moulded with rounded (as opposed to pointed) tops and the grooves 14 and 16 with correspondingly-rounded bottoms, so that the edge of each flange 8 to 11 has compressibility with strong restorative resilience for resisting shock acting longitudinally of the case C. Moreover, the serpentine profiles of the flanges 8 to 11 reduce the likelihood of shocks being transmitted along the abutment interfaces between them.
Small holes may be drilled into the bottoms of the grooves 14 and 16 adjacent the hinges 5, 6, 7 and 18 and the free-edge 50. These holes stiffen the abutting edges of the flanges 8 to 11 and increase the damping effect of shock absorption. Furthermore, each of the hinges 5, 6, 7 and 18 may be grooved along its full length, or at least for a short distance from its ends, for stiffening purposes. The existence of the grooving, certainly at the ends, of the hinges, can be of advantage in providing enhanced resistance and cushioning against shock applied to any of the eight corners of the case.
A modified form of the case C is illustrated and will now be described with reference to FIGS. 7 to 9.
Referring initially to
The walls 71 to 74 have upstanding end-flanges 78 to 81 with inter-nesting ridged-and-grooved edges of single- and double-hump serpentine profile in essentially the same manner as the flanges 8 to 11 of the case C. However, in the case C′, the outer faces 82 of the flanges 78 and 81 are straightened from the double-hump form, so that there is no aperture corresponding to the aperture 12 in either end of the erect case C′ (see
The case C′ is specially adapted for the packaging of rectangular trays T which carry electronic chips and cards. The trays T are carried by the case C′ in a stack S with the individual trays T held in place one upon the other by packaging caps 83 at either end of the stack S.
Referring now also to
Each end-cap 83 has indents 85 that in the reverse (on the inside of the cap 83) provide projections which engage resiliently with respective alignment slots in the trays T for enhancing retention of the cap 83 on the end of the stack S. Furthermore, the spacings between the ribs 84 allow two or three straps (not shown) to be used to bind the caps 83 and trays T together longitudinally as one.
The stack S fitted with its end-caps 83 will normally be sealed within an anti-static bag together with a desiccant pack; the desiccant pack will be positioned within the bag to rest in any specially-provided recess corresponding to the recess 29 of the case C. Because of the internal stepped and recessed form of the moulding, there will be space for air-movement within the bag to enable the desiccant to be effective.
The case C′ incorporates recesses 86 let into both ends of each wall 71 and 74, and recesses 87 let into both ends of each wall 72 and 73, to accommodate the end-caps 83. Undercuts against the flanges 78 to 81 at both ends of each wall 71 to 74 may be provided to ensure that the corners of the stack S within the end-caps 83 float.
Number | Date | Country | Kind |
---|---|---|---|
0412173.7 | Jun 2004 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB05/02089 | 5/26/2005 | WO | 11/30/2006 |