The present invention generally relates to tissue forms used for augmentation, restoration or replacement of intervertebral discs.
A healthy intervertebral disc facilitates motion between pairs of vertebrae while absorbing and distributing compression forces and torque forces. The disc is composed of two parts; namely a tough outer ring (the annulus fibrosis) which holds and stabilizes a soft central core material (the nucleus pulposus) that bears the majority of the load forces.
The tissue form of the present invention is dense cancellous tissue, which may be derived from proximal and distal femur, proximal and distal tibia, talus, calcaneus, proximal humerus, patella, or ilium that is first fully demineralized, cleaned, treated such that the bone is non-osteoinductive, and then processed into small uniform geometries that may be either cuboidal, disc-shaped (“mini-discs”), or spherical. The relative sizes of these shapes are on the order of 1.0 mm to 4.0 mm in either length or diameter. The tissue forms, following demineralization, are compressible such that individual units can be packed tightly together in a confined space and when packed together behave mechanically as one coherent unit while providing suitable load-bearing properties in the disc nucleus. When confined in the disc space under normal loading conditions, this plurality of shaped units functions as an elastic body, which is deformable, yet resilient under dynamic loading and has intrinsic shape-memory properties.
Minimally invasive surgery that is aimed to treat degenerative disc disease and preserve motion in the spine is currently under investigation. Since the onset of the degenerative cascade in the disc is typically associated with dehydration and volume loss in the nucleus pulposus, a potential early intervention step may involve adding mechanically suitable material to the nucleus pulposus at the first observable signs of discomfort and loss of disc height. This procedure would restore nuclear volume and pressure against the inner wall of the annulus fibrosus. In certain embodiments, a degree of decompression or “lift” between the adjacent vertebrae may be possible with this technique. In effect, the result would be the “re-inflation” of the annulus fibrosus, the annular “tire”. Desirable outcomes of the procedure would be motion preservation, pain relief, and maintenance or restoration of disc height. Long-term re-modeling of the biological allograft-based implant into fibrous tissue or disc-like tissue would also provide favorable clinical outcomes.
At present, there are no nucleus pulposus replacement devices or augmentation technologies available for clinical usage in the United States. The Prosthetic Disc Nucleus (PDN), which is manufactured by Raymedica, was the first implant designed for nucleus replacement with the intention of attempting to restore natural mechanics in the spine. This implant is an acrylic-based hydrogel encased in a polyethylene jacket. While this technology has been implanted in over 3000 patients in Europe, significant issues regarding implant migration and implant hardening have been encountered. Other drawbacks in the design of this implant include the requirement of a substantial annulotomy and total nucleotomy as well as the inability of the implant to fill the entire nuclear cavity. In addition, the limited ability of the implant to swell inside the disc nucleus leads to high extrusion rates and inadequate load transfer of compressive forces in the disc nucleus to tensile forces on the annulus fibrosus.
Generally speaking artificial disc replacements falls into two general categories, total disc replacement and nuclear replacement. Total disc replacement devices have a number of problems; namely that they are large and non-compressible, require the removal of a large portion of the annulus and require a highly invasive surgical approach in order to be implanted. If these disc replacement devices do not remain firmly attached to the vertebral bodies, these implants can extrude or migrate from their intended position, cause significant complications and are very difficult to revise. The second category of disc replacement is nuclear replacement which is a form of partial disc replacement. Various types of methods and devices have been used to attempt to accomplish successful disc replacement.
U.S. Pat. No. 6,652,593 issued Nov. 25, 2003 is directed toward an osteoinductive implant comprising demineralized cancellous bone, which comprises a non-particulate bone. A unitary bone block is compressed into a smaller configuration such as a pellet and then hardened via drying. Upon re-hydration, the pellet will expand and assume its original shape inside a cavity. The implant is capable of being compressed and hardened into a first shape and then capable of expanding into a second shape larger than the first shape when re-softened and permitted to expand. The '593 implant is designed to be supplied either in geometries that fill correspondingly sized voids or in compressed initial geometries that are used to expand and fill any given shape smaller than or equal to their expanded size.
United States Patent Publication 2006/0030948 filed Sep. 21, 2005 is directed toward an osteogenic implant having a predetermined shaped formed of an aggregate of different sized elongate (possessing a high median length to median thickness ratio) bone particles.
United States Patent Publication No. 2004/0054414 filed on Sep. 18, 2002 is directed toward a method of augmenting an intervertebral disc nucleus by the surgical addition of a particulate collagen-based material. The collagen-based material, having a mean particle size ranging from 0.05 mm to 5 mm, may be injected in either a wet or dry state and may be supplemented with growth factors, proteoglycans, and cells. The '414 publication notes the use of demineralized bone matrix particles with sizes ranging from between 0.05 mm and 3 mm and the use of elongated cylindrical plugs. The plugs are described to be dehydrated and compressed in the radial direction and are inserted into delivery cannula for delivery into the disc space. The cylindrical plugs are delivered via extrusion through a cannula, and expand upon exiting the cannula by re-hydrating in the disc space. Examples 6 and 7 refer to the design and implementation of cylindrical plugs, which can be fabricated from solid, porous, or fibrous collagen.
Additional continuing United States Published Patent Applications Nos. 2005/0197707 filed Apr. 25, 2005 and 2005/0119754 filed Jan. 6, 2005 are based on the '414 publication. The '707 publication is directed toward the use of small particles of particulate fascia lata, particulate disc annulus material, annulus fibrosis, demineralized bone matrix and collagen which are added to the nucleus of an intervertebral disc. The '754 publication covers a method of augmenting an intervertebral disc nucleus by adding a plurality of collagen-rich tissue particles having a mean particle size between 0.25 and 1.0 mm to the disc plus a biologically active substance that promotes healing, repair or regeneration of the disc. This biologically active substance is further defined to be stem cells, hyaluronic acid, or growth factors while the collagen material is stated to be potentially allograft tissue. Radio contrast material may be added to enhance imaging of the injected material.
Another United States Patent Publication No. 2005/0055094 filed Nov. 5, 2003 discloses a system for replacing a disc nucleus involving an injection tube, a volume of fibrous tissue material to fill a nuclear cavity, and an insertion device for dispensing the tissue promoting material into the disc. Suitable fibrous tissue promoting material is listed as fascia, natural and/or man made polymeric fiber, fibrous tissue inducers such as talc, pharmaceuticals and/or minerals and fibrous tissue morphogenic protein.
U.S. Pat. No. 5,571,189 issued Nov. 5, 1996 describes an expandable bag filled with biological tissue for spinal fusion but does not show motion preservation in the spine.
The present inventive disc nucleus implant is a combination of multiple units of demineralized cancellous tissue treated to be non-osteoinductive that are designed to be small uniform geometric shapes which have the ability to pack together and act mechanically as a single unit under the compression of packing and not to comprise a non-particulate portion of a bone. The inventive tissue forms are compressed upon delivery into a cavity, but only to fit into the delivery device and not into a defined shape. In addition, the inventive tissue forms do not regain their original dimensions following the completion of the implantation procedure. In fact, the appropriate mechanical properties are only achieved if the mass of units is under compression and behaving as a coherent load-bearing material. The plurality of units that constitute the inventive implant, when taken together in an uncompressed state, have a geometry that is substantially larger than the cavity into which they are placed. Thus, the inventive implant takes on a smaller size in the confined space into which it is placed. Finally, the inventive allograft tissue form is treated to be non-osteoinductive, which achieves the desired outcome of motion preservation in the spine versus spinal fusion.
The noted prior art publications cite examples of various allograft tissues for usage such as demineralized bone matrix, disc annulus, fascia, ligaments, tendons, skin, or other connective tissues. The inventive tissue implant would not be provided in a dehydrated state and will be compressed axially inside the delivery tube rather than radially.
Advantages of the present inventive approach in comparison to other techniques include its ability to be entirely performed in a minimally invasive manner, total nucleotomy is not required and the implant size is adjustable by the volume of material that is added into the pouch. If desired an expandable pouch that is intended to hold the shaped units can be inserted into the disc nucleus through a small diameter hole and it will be enlarged with implant material to a size considerably larger than the insertion hole allowing the implant dimensions to conform to the existing cavity of the disc nucleus, with the porous pouch preventing the escape of material from the nuclear space while allowing the free transfer of fluid across its surface along with potential tissue ingrowth.
The implantable allograft tissue form represents uniform demineralized cancellous tissue units treated to be non-osteoinductive placed under compression which will allow them to pack closely in the confined space inside an annulus. Following implantation, when the units are tightly pressed together, the collective volume of implanted material can play a similar biomechanical role inside the disc as native nucleus pulposus. The implant represents a motion preserving alternative in the treatment of degenerative disc disease.
The steps of the surgical technique described herein represent a minimally invasive method for replacing or augmenting a spinal disc nucleus and includes the complete or partial removal of nucleus material, sizing of the resulting cavity, inserting an expandable, porous pouch into the nucleus through either an existing annular tear or through an annulotomy, filling the pouch with compressed small fully demineralized, non-osteoinductive cancellous bone tissue forms, and closing the pouch.
Another object of the invention is the usage of a biologic nuclear implant material which can experience tissue ingrowth and reorganization once implanted within the disc space. Alternatively, the biological and structural nature of the demineralized cancellous bone allows it to be a potential scaffold that can be potentially supplemented with cells and/or growth factors, which may induce matrix remodeling and the subsequent regeneration of nucleus-like tissue inside the disc following implantation.
These and other objects, advantages, and novel features of the present invention will become apparent when considered with the teachings contained in the detailed disclosure which along with the accompanying drawings constitute a part of this specification and illustrate embodiments of the invention which together with the description serve to explain the principles of the invention.
The preferred embodiment and best mode of the invention is seen in
Cancellous bone may be derived from proximal or distal femur, proximal or distal tibia, proximal humerus, talus, calceneus, patella, or ilium. Cancellous tissue is first processed into sheets or blocks, which preferably range in thickness of about 2 mm to 3 mm, although sheets of about 1.0 mm to about 4.0 mm can be used. Blood and lipids are flushed from the tissue using high pressure water. The cancellous tissue is then substantially demineralized in dilute acid until the bone contains less than 0.1% wt/wt residual calcium. Demineralization of the cancellous bone creates a material that is spongy and pliable in nature, yet still possesses elastic properties and shape memory following deformation.
Following decalcification, the cancellous tissue is cleaned and treated via chemical or thermal treatment or by high energy irradiation so that the cancellous tissue is non-osteoinductive.
In a preferred embodiment, the cancellous tissue is treated with hydrogen peroxide for at least 1 hour in order to further clean the tissue and to achieve a non-osteoinductive material. The tissue is then soaked in ethanol as an additional cleaning step. After these steps, the tissue is soaked in phosphate buffered saline (PBS) in order to restore the pH of the tissue within the range of 6.6 to 7.4. After these treatment steps, small units of cancellous tissue are fabricated from the cancellous sheets or blocks. The cancellous tissue form units have a defined shape that may be cuboidal, spherical, or discoid in nature and are loaded into filler tubes prior to implantation. The cancellous shapes may have a single dimension ranging from 1.0 mm to 4 mm and preferably are between 2 mm to 3 mm.
In the most preferred embodiment, the fully demineralized cancellous sheets are then cut into cube shaped tissue forms 12 with a side dimension of 2 mm to 3 mm using a chip press cutting device. The cancellous cubes are then lyophilized to less than 6% residual moisture. Following the dehydration step, a specific amount of dry cancellous cubes is weighted out ranging between 0.4 to 1.2 g. This amount of dry cancellous tissue is hydrated in excess water or saline and then loaded into a small diameter tube (2 mm to 4 mm in inner diameter) that is to be used to fill the disc nucleus during the surgical procedure.
In
A sufficient amount of cancellous bone is added to the expandable mesh pouch container 16 such that the volume of the nucleus is restored when the implant is packed so that it conforms to the shape of the nuclear cavity. Due to the design of the implant, the amount of filling material loaded into the bag may thus be customized for the specific size of the target nuclear cavity of the patient. In certain embodiments, the pouch may be filled with cancellous bone until it expands to a volume greater than that of the existing nuclear cavity, thereby providing a degree of decompression or “lift” between the two adjacent vertebrae. After the pouch is tightly packed with the shaped demineralized cancellous bone shaped units, the implant is designed to possess mechanical properties that withstand the compressive loads in the spine and facilitate load transfer from the nucleus to the annulus. Once filling is complete, pouches will be closed or sealed to prevent the escape of any cancellous tissue.
As shown in
Additional embodiments of this invention may include the supplementation of the cancellous bone with synthetic material that is of similar physical dimensions as the implanted cancellous tissue forms. Such synthetics may include polymeric hydrogels, biodegradable polymers, rubbers, or other materials that are elastic in nature and capable of being packed together in a similar fashion to the cancellous tissue.
Other additional embodiments of this invention may include the addition of cells and/or biological agents to the cancellous bone either prior to implantation or post-implantation. Transplanted cells may include those derived from bone marrow, other pluripotent stem cells, chondrocytes, and nucleus pulposus cells. Bioactive molecules may include viral particles, plasmids, hormones, extracellular matrix proteins, platelet rich plasma, or growth factors such as those in the TGF-β, FGF, VEGF, IGF, and BMP families. Another embodiment of the invention may include the addition of a radiopaque marker to the cancellous tissue in order to make the implant visible during surgery. The radiopaque marker may be derived from beryllium copper, brass, bronze, carbon steel, clad metals, copper, kovar, molybdenum, nickel, niobium, stainless steel, tantalum, titanium, zirconium, or other radiopaque material. Other suitable materials may include barium, platinum, platinum iridium, gold and iodine-containing compounds.
This invention also utilizes a method of treating a degenerative spinal disc by replacing or augmenting the disc nucleus with allograft tissue through a minimally invasive approach. In a preferred embodiment, the allograft tissue form comprises small uniformly shaped fully demineralized, non-osteoinductive cancellous bone units. The target disc will be accessed and nuclear material will be removed via microdiscectomy or minimally invasive nucleotomy. Following this step, the resulting nuclear cavity is sized and an expandable, porous pouch is inserted into the disc nucleus via an existing annular tear or a small annulotomy. The pouches are initially empty and in a collapsed state such that it can be passed through a small diameter portal in the disc annulus (˜3 mm-4 mm). This mesh bag may be made from synthetic materials such as polyester or biological material such as allograft bone, dermis, or fascia, hyaluronic acid, collagen, or other structural protein. In a preferred embodiment, a woven fabric mesh is utilized as the implantable pouch, with a pore size that is sufficiently small such that allograft material units do not extrude through the mesh openings. This containment device may also be sewn such that it expands into a disc nucleus-like shape upon addition of implant material and may have a radiographic marker in order to track its location following implantation. The porous nature of the pouch may allow the transfer of fluid from the surrounding disc tissue to the implant material and vice-versa. The porosity and mesh size of the pouch may also be critical for obtaining an appropriate biological response to the allograft material contained within it. By allowing cellular infiltration and fluid exchange, it may be possible for tissue remodeling or fibrous tissue formation to occur inside the implanted mesh pouch within the disc.
After the porous pouch has been inserted and positioned inside the disc, a plurality of small, demineralized non-osteoinductive cancellous bone units are passed into the bag through a hollow rod until the bag is appropriately filled. In a preferred embodiment, the hollow rod has an internal diameter between 3 mm to 4 mm, and is utilized in combination with cancellous units that are cube shaped with 2 mm to 3 mm sides or disc-shaped with a diameter of 2 mm to 3 mm and a height of 2 mm to 3 mm or spherical with a diameter of 2 mm to 3 mm. The cancellous tissue forms may have a defined shape that may be spherical, discoid, or cuboidal in nature and may be loaded into filler tubes prior to implantation. The cancellous tissue forms may also have a single dimension of no more than 5 mm and no less than 1.0 mm and will be designed to pack tightly under pressure. It is recognized the size of the individual units will be considerably smaller than the diameter of the filler bag once it has been expanded.
In operation, a small nucleotomy is created in the disc annulus by first making an incision in the disc and then expanding the same using dilators of increasing size. The nucleus is then mechanically removed while avoiding damage to the inner annulus or the cartilaginous end plates. Following the nucleotomy, an inflatable balloon is inserted in the disc nucleus and the nucleus is filled with radio contrast fluid to a specific pressure between 30 and 60 psi such that the nuclear cavity is visible under fluoroscopy. This step allows visualization of the cavity created by the nucleotomy and also provides a measurement of the cavity volume, which will be used to select the mesh pouch size and determine the amount of fill material needed for the implant. After sizing, the porous mesh pouch is inserted through the portal in the disc annulus. In order to ensure that the mesh pouch is not restricted from deploying properly, an inflatable balloon is placed into the empty mesh pouch in situ and the balloon is again filled with radio contrast material. Subsequently, the balloon is removed from the mesh pouch and demineralized non-osteoinductive cancellous tissue in the form of cubes, discs or spheres is added to the mesh pouch by extruding the filler implant material that has been pre-loaded in small diameter tubes. Based on the empty cavity volume of the disc nucleus, the mesh pouch will be filled to a packing density of 0.3 to 0.9 g/cc where the weight of the tissue is based upon its dry weight. After the filling step, the mesh pouch is released from its holder tube and its opening is tied off to prevent migration of the cancellous tissue from the disc space. In another embodiment of the invention, a degenerated or diseased intervertebral disc is treated with the above noted steps wherein after the step of removing a portion of or the entire disc nucleus via mechanical disruption, at least one region of the vertebral end plates is removed or disrupted.
The principles, preferred embodiments and modes of operation of the present invention have been described in the foregoing specification. However, the invention should not be construed as limited to the particular embodiments which have been described above. Instead, the embodiments described here should be regarded as illustrative rather than restrictive. Variations and changes may be made by others without departing from the scope of the present inventions defined by the following claims:
This application claims priority from Provisional Application No. 60/832,956 filed Jul. 25, 2006.
Number | Name | Date | Kind |
---|---|---|---|
3867728 | Stubstad et al. | Feb 1975 | A |
3875595 | Froning | Apr 1975 | A |
4349921 | Kuntz | Sep 1982 | A |
4399814 | Pratt et al. | Aug 1983 | A |
4466435 | Murray | Aug 1984 | A |
4488549 | Lee et al. | Dec 1984 | A |
4501269 | Bagby | Feb 1985 | A |
4576152 | Muller et al. | Mar 1986 | A |
4625722 | Murray | Dec 1986 | A |
4655749 | Fischione | Apr 1987 | A |
4655777 | Dunn et al. | Apr 1987 | A |
4735625 | Davidson | Apr 1988 | A |
4751921 | Park | Jun 1988 | A |
4755184 | Silverberg | Jul 1988 | A |
4772287 | Ray et al. | Sep 1988 | A |
4815454 | Dozier, Jr. | Mar 1989 | A |
4834757 | Brantigan | May 1989 | A |
4863477 | Monson | Sep 1989 | A |
4865604 | Rogozinski | Sep 1989 | A |
4904260 | Ray et al. | Feb 1990 | A |
4911718 | Lee et al. | Mar 1990 | A |
4932969 | Frey et al. | Jun 1990 | A |
4932975 | Main et al. | Jun 1990 | A |
4936848 | Bagby | Jun 1990 | A |
5015255 | Kuslich | May 1991 | A |
5047055 | Bao et al. | Sep 1991 | A |
5053049 | Campbell | Oct 1991 | A |
5059193 | Kuslich | Oct 1991 | A |
5071040 | Laptewicz, Jr. | Dec 1991 | A |
5108438 | Stone | Apr 1992 | A |
5171280 | Baumbgartner | Dec 1992 | A |
5171281 | Parsons et al. | Dec 1992 | A |
5181918 | Brandhorst et al. | Jan 1993 | A |
5192325 | Kijima et al. | Mar 1993 | A |
5192326 | Bao et al. | Mar 1993 | A |
5192327 | Brantigan | Mar 1993 | A |
5282863 | Burton | Feb 1994 | A |
5298254 | Prewett et al. | Mar 1994 | A |
5303718 | Krajicek | Apr 1994 | A |
5306307 | Senter et al. | Apr 1994 | A |
5306308 | Gross et al. | Apr 1994 | A |
5306309 | Wagner et al. | Apr 1994 | A |
5306310 | Siebels | Apr 1994 | A |
5306311 | Stone et al. | Apr 1994 | A |
5314476 | Prewett et al. | May 1994 | A |
5314477 | Marnay | May 1994 | A |
5314478 | Oka et al. | May 1994 | A |
5324273 | Discko, Jr. | Jun 1994 | A |
5431654 | Nic | Jul 1995 | A |
5439684 | Prewett et al. | Aug 1995 | A |
5443514 | Steffee | Aug 1995 | A |
5501687 | Willert et al. | Mar 1996 | A |
5507813 | Dowd et al. | Apr 1996 | A |
5545222 | Bonutti | Aug 1996 | A |
5549679 | Kuslich | Aug 1996 | A |
5571189 | Kuslich | Nov 1996 | A |
5577517 | Bonutti | Nov 1996 | A |
5658341 | Delfosse | Aug 1997 | A |
5697932 | Smith et al. | Dec 1997 | A |
5702454 | Baumgartner | Dec 1997 | A |
5711957 | Patat et al. | Jan 1998 | A |
5718707 | Mikhail | Feb 1998 | A |
5755797 | Baumgartner | May 1998 | A |
5782919 | Zdeblick et al. | Jul 1998 | A |
5814084 | Grivas et al. | Sep 1998 | A |
5824087 | Aspden et al. | Oct 1998 | A |
5842786 | Solomon | Dec 1998 | A |
5863297 | Walter et al. | Jan 1999 | A |
5899939 | Boyce et al. | May 1999 | A |
5910315 | Stevenson et al. | Jun 1999 | A |
5972368 | McKay | Oct 1999 | A |
5989289 | Coates et al. | Nov 1999 | A |
5997581 | Khalili | Dec 1999 | A |
5997582 | Weiss | Dec 1999 | A |
6004325 | Vargas, III | Dec 1999 | A |
6019765 | Thornhill et al. | Feb 2000 | A |
6022376 | Assell et al. | Feb 2000 | A |
6025538 | Yaccarino, III | Feb 2000 | A |
6027743 | Khouri et al. | Feb 2000 | A |
6039762 | McKay | Mar 2000 | A |
6090998 | Grooms et al. | Jul 2000 | A |
6096081 | Grivas et al. | Aug 2000 | A |
6123731 | Boyce | Sep 2000 | A |
6132465 | Ray et al. | Oct 2000 | A |
6183518 | Ross et al. | Feb 2001 | B1 |
6200347 | Anderson et al. | Mar 2001 | B1 |
6224630 | Bao et al. | May 2001 | B1 |
6240926 | Chin Gan et al. | Jun 2001 | B1 |
6245107 | Ferree | Jun 2001 | B1 |
6261586 | McKay | Jul 2001 | B1 |
6270528 | McKay | Aug 2001 | B1 |
6294187 | Boyce et al. | Sep 2001 | B1 |
6379385 | Kalas et al. | Apr 2002 | B1 |
6383221 | Scarborough et al. | May 2002 | B1 |
6395034 | Suddaby | May 2002 | B1 |
6398811 | McKay | Jun 2002 | B1 |
6419707 | Leclercq | Jul 2002 | B1 |
6432436 | Gertzman et al. | Aug 2002 | B1 |
6437018 | Gertzman et al. | Aug 2002 | B1 |
6443988 | Felt et al. | Sep 2002 | B2 |
6447514 | Stalcup et al. | Sep 2002 | B1 |
6458144 | Morris et al. | Oct 2002 | B1 |
6458158 | Anderson et al. | Oct 2002 | B1 |
6554803 | Ashman | Apr 2003 | B1 |
6599293 | Tague et al. | Jul 2003 | B2 |
6620162 | Kuslich et al. | Sep 2003 | B2 |
6620169 | Peterson et al. | Sep 2003 | B1 |
6620196 | Trieu | Sep 2003 | B1 |
6626912 | Speitling | Sep 2003 | B2 |
6632247 | Boyer, II et al. | Oct 2003 | B2 |
6645213 | Sand et al. | Nov 2003 | B2 |
6652593 | Boyer et al. | Nov 2003 | B2 |
6676664 | Al-Assir | Jan 2004 | B1 |
6692528 | Ward et al. | Feb 2004 | B2 |
6696073 | Boyce et al. | Feb 2004 | B2 |
6712853 | Kuslich | Mar 2004 | B2 |
6758863 | Estes et al. | Jul 2004 | B2 |
6761739 | Shepard | Jul 2004 | B2 |
6767369 | Boyer et al. | Jul 2004 | B2 |
6783546 | Zucherman et al. | Aug 2004 | B2 |
6855167 | Shimp et al. | Feb 2005 | B2 |
6902578 | Anderson et al. | Jun 2005 | B1 |
6991653 | White et al. | Jan 2006 | B2 |
7025771 | Kuslich et al. | Apr 2006 | B2 |
7044968 | Yaccarino, III et al. | May 2006 | B1 |
7048762 | Sander et al. | May 2006 | B1 |
7048765 | Grooms et al. | May 2006 | B1 |
7056345 | Kuslich | Jun 2006 | B2 |
7087082 | Paul et al. | Aug 2006 | B2 |
7094258 | Lambrecht et al. | Aug 2006 | B2 |
7115146 | Boyer et al. | Oct 2006 | B2 |
7179299 | Edwards et al. | Feb 2007 | B2 |
7220282 | Kuslich | May 2007 | B2 |
7226481 | Kuslich | Jun 2007 | B2 |
7226482 | Messerli et al. | Jun 2007 | B2 |
7309359 | Trieu et al. | Dec 2007 | B2 |
7323011 | Shepard et al. | Jan 2008 | B2 |
7479160 | Branch et al. | Jan 2009 | B2 |
7537617 | Bindsell et al. | May 2009 | B2 |
7563455 | McKay | Jul 2009 | B2 |
7601173 | Messerli et al. | Oct 2009 | B2 |
7608113 | Boyer et al. | Oct 2009 | B2 |
20010020188 | Sander | Sep 2001 | A1 |
20010031254 | Bianchi et al. | Oct 2001 | A1 |
20010039457 | Boyer, II et al. | Nov 2001 | A1 |
20010041941 | Boyer, II et al. | Nov 2001 | A1 |
20010043940 | Boyce et al. | Nov 2001 | A1 |
20010339458 | Boyer, II et al. | Nov 2001 | |
20020013600 | Scribner et al. | Jan 2002 | A1 |
20020016592 | Branch et al. | Feb 2002 | A1 |
20020026195 | Layne et al. | Feb 2002 | A1 |
20020035401 | Boyce et al. | Mar 2002 | A1 |
20020045942 | Ham | Apr 2002 | A1 |
20020068974 | Kuslich et al. | Jun 2002 | A1 |
20020077701 | Kuslich | Jun 2002 | A1 |
20020106393 | Bianchi et al. | Aug 2002 | A1 |
20020138143 | Grooms et al. | Sep 2002 | A1 |
20020147496 | Belef et al. | Oct 2002 | A1 |
20020156531 | Felt et al. | Oct 2002 | A1 |
20030023311 | Trieu | Jan 2003 | A1 |
20030093154 | Estes et al. | May 2003 | A1 |
20030144743 | Edwards et al. | Jul 2003 | A1 |
20040006348 | Peterson et al. | Jan 2004 | A1 |
20040054414 | Trieu et al. | Mar 2004 | A1 |
20040073314 | White et al. | Apr 2004 | A1 |
20040102850 | Shepard | May 2004 | A1 |
20040115172 | Bianchi et al. | Jun 2004 | A1 |
20040138748 | Boyer, II et al. | Jul 2004 | A1 |
20040143344 | Malaviya et al. | Jul 2004 | A1 |
20040215201 | Lieberman | Oct 2004 | A1 |
20040215343 | Hochschuler et al. | Oct 2004 | A1 |
20040225296 | Reiss et al. | Nov 2004 | A1 |
20040243242 | Sybert et al. | Dec 2004 | A1 |
20050004672 | Pafford et al. | Jan 2005 | A1 |
20050043808 | Felt et al. | Feb 2005 | A1 |
20050055094 | Kuslich | Mar 2005 | A1 |
20050065609 | Wardlaw | Mar 2005 | A1 |
20050119754 | Trieu et al. | Jun 2005 | A1 |
20050125077 | Harmon et al. | Jun 2005 | A1 |
20050131417 | Ahern et al. | Jun 2005 | A1 |
20050197707 | Trieu et al. | Sep 2005 | A1 |
20050209602 | Bowman et al. | Sep 2005 | A1 |
20050228498 | Andres | Oct 2005 | A1 |
20050261681 | Branch et al. | Nov 2005 | A9 |
20050261767 | Anderson et al. | Nov 2005 | A1 |
20060030948 | Manrique et al. | Feb 2006 | A1 |
20060149379 | Kuslich et al. | Jul 2006 | A1 |
20060195193 | Bloemer et al. | Aug 2006 | A1 |
20060235534 | Gertzman et al. | Oct 2006 | A1 |
20060276907 | Boyer et al. | Dec 2006 | A1 |
20070016214 | Kuslich et al. | Jan 2007 | A1 |
20070067040 | Ferree | Mar 2007 | A1 |
20070093912 | Borden | Apr 2007 | A1 |
20070100450 | Hodorek | May 2007 | A1 |
20070134291 | Ting et al. | Jun 2007 | A1 |
20070168030 | Edwards et al. | Jul 2007 | A1 |
20070260324 | Joshi et al. | Nov 2007 | A1 |
20080015709 | Evans et al. | Jan 2008 | A1 |
20080027546 | Semler et al. | Jan 2008 | A1 |
20080045952 | Kuslich | Feb 2008 | A1 |
20080113008 | Roche | May 2008 | A1 |
20080305145 | Shelby et al. | Dec 2008 | A1 |
20090099661 | Bhattacharya et al. | Apr 2009 | A1 |
20090131986 | Lee et al. | May 2009 | A1 |
20090297580 | Dony et al. | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
29908794 | Sep 1999 | DE |
0277282 | Aug 1991 | EP |
0322334 | Feb 1992 | EP |
0517030 | Dec 1992 | EP |
0621020 | Oct 1994 | EP |
0517030 | Sep 1996 | EP |
1868539 | Dec 2007 | EP |
2076220 | Jul 2009 | EP |
2639823 | Aug 1990 | FR |
2662073 | Nov 1991 | FR |
2262238 | Jun 1993 | GB |
WO 9316664 | Sep 1993 | WO |
WO 9420047 | Sep 1994 | WO |
WO 9908616 | Feb 1999 | WO |
9909914 | Mar 1999 | WO |
WO 0028907 | May 2000 | WO |
0040177 | Jul 2000 | WO |
02064180 | Aug 2002 | WO |
WO 2006113586 | Oct 2006 | WO |
WO 2006113586 | Sep 2007 | WO |
WO 2008013763 | Jan 2008 | WO |
WO 2008013763 | Jun 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20080027546 A1 | Jan 2008 | US |
Number | Date | Country | |
---|---|---|---|
60832956 | Jul 2006 | US |