Exploring, drilling and completing hydrocarbon and other wells are generally complicated, time consuming, and ultimately very expensive endeavors. As a result, over the years, a significant amount of added emphasis has been placed on well monitoring and maintenance. By the same token, perhaps even more emphasis has been directed at initial well architecture and design. All in all, careful attention to design, monitoring and maintenance may help maximize production and extend well life. Thus, a substantial return on the investment in the completed well may be better ensured.
In the case of well design, architecture and subsequent maintenance, there is often the need to isolate high pressure regions of a cased or lined well with a packer assembly which anchors in place and seals off a region of the well. For example, isolation for the sake of targeted production from a particular region of a well is quite common. However, as well depths continue to become greater and greater, so do well pressures. Thus, the likelihood exists that the well may exceed 20,000 feet in depth, for example, with an architecture targeting an isolated region for production that exceeds 10,000-15,000 PSI. By the same token, a host of interventional applications may also be undertaken which have the effect of introducing such dramatically high pressures in a well. For example, perforations may be formed into the wall of the well at a given location by way of a perforating application which involves isolating the location with a packer assembly. Thus, the packer assembly is subjected to such high pressures introduced by way of the adjacent explosive perforating application.
Faced with such dramatically high pressures, packer assemblies utilize slips to engage and anchor at the wall of the well with a substantial amount of force. For example, the slips may include cast iron teeth which forcibly extended outward into an anchoring biting engagement with the tubular defining the well (i.e. the casing or liner). While generally well suited for anchoring the packer for sake of isolation, the slips may pose a challenge to subsequent applications and interventions. For example, where the packer is utilized for a temporary isolation such as in perforating, there is a subsequent need to remove the packer in advance of production. However, relatively large anchoring slips of cast iron may be a challenge to remove for sake of subsequent production.
A mechanical packer utilizing slips for sake of isolation as described above is generally removed following the isolation application by way of a drill-out or milling application. As noted, this may be a challenge in terms of getting all of the cast iron slip features removed. Indeed, removal of a fully cast iron slip may take well over an hour. Once more, due to the robust nature and high specific gravity of the cast iron material, milling often results in the tool becoming stuck or the material failing to be fully removed. Failure to more fully remove the cast iron material may result in its unintended retrieval during production, potentially harming surface equipment. Potentially even worse though, if the milling tool becomes stuck, all oilfield operations may need to be shut down, followed by time-consuming fishing and/or workover efforts to remediate the situation.
With the above challenges and consequences in mind, efforts have been undertaken to reduce the amount of cast iron or other similarly robust, heavy materials in the slip components of an isolation packer. For example, packers now often reserve the cast iron-type of materials for the teeth or “wicker” portion of the slip while utilizing aluminum for underlying slip components such as the slip ring and base. By way of comparison, an aluminum base material would have a specific gravity of under about 3, whereas cast-iron based materials have a specific gravity that is between about 7 and 8. Therefore, the time required to mill out the plug may be substantially reduced, for example, taking closer to about 30 minutes than say an hour or more which is likely if the slip is fully cast iron. Once more, the odds of the milling tool becoming stuck during the removal application are also dramatically reduced.
With this type of thinking in mind, efforts have also been undertaken to replace underlying aluminum components with even lighter polymer composite materials. That is, while the opportunity may not be available to make the teeth of the slip even lighter due to the casing biting requirements, opportunities to make the underlying components lighter and lighter may be available. Indeed, many slips today incorporate such lighter composite materials with specific gravities below about 2. Thus, milling time for such a plug removal may be even further reduced, for example to perhaps less than about 15 minutes depending on the surrounding circumstances.
Unfortunately, utilizing less structurally robust materials for underlying slip components has its drawbacks. That is, while more readily millable after the isolation application, new challenges may be presented in terms of reliably deploying and anchoring the packer for the isolation application itself. For example, once positioned downhole, the slips are configured to shear away from one another and anchor to a casing as a result of the breaking up of the underlying ring or similar feature. However, when considering that the packer is a large piece of equipment being lowered potentially several thousand feet into a well, there is a strong possibility that a composite polymer ring will prematurely break. When this occurs, the packer may become anchored at the wrong location in the well. Not only is this ineffective for the sought isolation but it will require a separate application run to retrieve the packer and start over. Alternatively, there is also the possibility that the packer does not prematurely begin to set but nevertheless does not uniformly shear as intended, again due to the less robust ring being utilized. In this case, the isolation may be compromised due to a less reliable anchoring. Thus, as a practical matter, operators are often left utilizing the less desirable aluminum or even cast iron components from a milling perspective due to the less reliable composite components from an isolation perspective.
A packer utilizing a unique slip assembly for anchoring in a well is disclosed. The slip assembly includes a downhole cone with a plurality of spaced apart counterbore projections. Slips are disposed in spaces between the counterbore projections. However, retainable wings emerge from the sides of the slips with each being located below one of the counterbore projections in advance of the anchoring and also having a predetermined shear rating for the anchoring.
Embodiments herein are described with reference to certain types of packer assemblies. For example, a mechanical packer is shown which is utilized downhole for a temporary isolation. However, a variety of different types of packer assemblies may take advantage of the unique anchoring embodiments detailed herein. For example, a more permanent packer assembly utilized with production tubing may utilize such anchoring features. So long as the packer includes a slip assembly with counterbore projections utilized to retain shearable wings of slips disposed in spaces between the projections, appreciable benefit may be realized.
Referring now to
In the embodiment of
As with other conventional mechanical packers or bridge plugs, the packer 101 of
Referring now to
In spite of the conventional stressors imparted on the slip assembly 100, it is of a unique architecture so as to substantially prevent premature deployment or “anchoring” of the slips 130 during advancement through a well 580 as shown in
In one embodiment, with added reference to
With the above-described architecture in mind, it is apparent that the shearing of the wings 200 is less likely to take place accidentally and instead may be more controllably directed through an intended setting mechanism for the packer 101. This may include use of a hydrostatic set module or other similar setting device, perhaps incorporated into the subassembly 175, the cone 150 or at another suitable location.
With added reference to
Referring now to
However, it is also apparent in the embodiment shown that the remainder of the slip 130 may be of other, more millable materials. For example, the base 235 and wings 200 may be of a single molded polymer based composite. In one embodiment, the composite may include glass particles or a variety of other manufacturing and/or performance additives incorporated therein. Regardless, the specific gravity of the base 130 and wings 200 may remain below about 3. Furthermore, even though of a substantially greater specific gravity, the wicker 230 and teeth 300 may be comparatively thinner, constituting a minority of the overall volume of the slip 130. Thus, during milling, the majority of the slip 130, the underlying base 235 and wings 200, may be readily removed without undue time required to produce the materials thereof.
Referring now to
Continuing with reference to
Referring now to
With a reliable fluid isolation achieved by way of the packer 101, an application directed at a region above (or below) the packer 101 may ensue. For example, in the embodiment shown, the well 580 traverses an underground formation 590 and includes perforations 595. The perforations extend from the main bore of the well 580 into the formation 590. Thus, they may promote the uptake of hydrocarbon fluids from the formation 590 through the well 580. Further, the fluid isolation provided by the packer 101 may support an application directed at these perforations 595. This may include a fluidly isolated stimulation application directed at the perforations 595 to enhance the productiveness of the perforations. Of course, following such an application, there may be a desire to remove the packer 101 to achieve production or otherwise provide access to areas therebelow.
Referring now to
Referring now to
As also indicated above, the configuration of the assembly also provides advantages in the controlled nature of the winged shearing for setting of the packer and the options available for slip release forces which may be reliably employed. That is, even for a more permanent packer without significant concern over material choice for sake of later removal, such slip assembly configurations may be desirable. Regardless, once assembled, the slip assembly may be incorporated into the packer as indicated at 650 and advanced through a well to a target location for fluid isolation.
Once positioned at the target location, the packer may be set through the unique manner of wing shearing described above and a fluidly isolated application run in the well (see 665 and 680). In embodiments where the majority of the slips are made up of underlying composite and the packer includes no substantial features with a specific gravity exceeding that of the wickers, the entire packer may be removed in less than about 15 minutes as indicated at 695.
Embodiments described hereinabove provide a slip assembly that is able to utilize more readily millable composite materials without substantial compromise to shearing and anchoring reliability to the associated packer. That is, the packer utilizing such a slip assembly may reliably and more uniformly deploy when triggered to do so because of separate wing and projection components. In this way, the shearing and deploying of the slips are not solely reliant upon underlying, less reliable composite materials. Nevertheless, such materials may be utilized for the underlying components so as to promote efficient post-isolation removal.
The preceding description has been presented with reference to presently preferred embodiments. Persons skilled in the art and technology to which these embodiments pertain will appreciate that alterations and changes in the described structures and methods of operation may be practiced without meaningfully departing from the principle, and scope of these embodiments. Furthermore, the foregoing description should not be read as pertaining only to the precise structures described and shown in the accompanying drawings, but rather should be read as consistent with and as support for the following claims, which are to have their fullest and fairest scope.
This Patent Document claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application Ser. No. 62/143,495, entitled Non-metallic Slips, filed on Apr. 6, 2015, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3643737 | Current | Feb 1972 | A |
4044826 | Crowe | Aug 1977 | A |
4702313 | Greenlee | Oct 1987 | A |
4711326 | Baugh | Dec 1987 | A |
5174397 | Currington | Dec 1992 | A |
5487427 | Curington | Jan 1996 | A |
6431277 | Cox | Aug 2002 | B1 |
7424909 | Roberts et al. | Sep 2008 | B2 |
7455118 | Roberts et al. | Nov 2008 | B2 |
7810558 | Shkurti et al. | Oct 2010 | B2 |
7980300 | Roberts et al. | Jul 2011 | B2 |
8047280 | Tran et al. | Nov 2011 | B2 |
9739105 | Badrak | Aug 2017 | B2 |
9752418 | Meador | Sep 2017 | B2 |
20040194954 | Cram | Oct 2004 | A1 |
20060102361 | Fay | May 2006 | A1 |
20080190600 | Shkurti et al. | Aug 2008 | A1 |
20080308266 | Roberts et al. | Dec 2008 | A1 |
20100326650 | Tran et al. | Dec 2010 | A1 |
20150021042 | Melenyzer et al. | Jan 2015 | A1 |
20150159449 | Moyes | Jun 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20160290095 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
62143495 | Apr 2015 | US |