Operators use packers downhole to isolate portions of a wellbore's annulus when performing various operations. For example, operators can selectively frac multiple isolated zones by deploying a tool string having one or more packers into an open or cased wellbore. When activated, the packers isolate the wellbore's annulus so the isolated zones can be separately treated.
Different types of packers can be used in the wellbore. One conventional packer uses a compression-set element that expands radially outward to the borehole wall when subjected to compression. Being compression-set, the element's length is limited by practical limitations because a longer compression-set element would experience undesirable buckling and collapsing during use. However, a shorter compression-set element may not adequately seal against irregularities of the surrounding borehole wall. Moreover, this type of packer typically needs a sophisticated mechanism to actuate the compression-set element.
Another conventional packer uses an inflatable element. When deployed, a differential pressure is introduced to inflate the element so that it produces a seal with the surrounding borehole wall. Compared to a compression-set packer, however, the inflatable packer can be significantly more costly and can be more difficult to implement and deploy.
Another conventional packer uses a swellable element. When run into position downhole, fluid enlarges the swellable element until it produces a seal with the borehole wall. This can take up to several days to complete in some implementations. Once swollen, the element's material can begin to degrade during its continued exposure to the fluid, and a high differential pressure or an absence of the activating fluid that swelled the element can compromise the swellable element's seal.
In addition, the swellable element may become extruded if it is allowed to swell in an uncontrolled manner. To limit the axial swelling of the element, metal rings can anchor the top and bottom of the swellable element and prevent it from expanding axially beyond the anchoring points. Examples of such metal rings are used by TAM International and Swelltec. Backup rings may also be used in addition to the metal anchoring rings at either end, as done by Easywell, for example.
The subject matter of the present disclosure is directed to overcoming, or at least reducing the effects of, one or more of the problems set forth above.
A downhole tool such as a packer provides multiple seals when deployed downhole. When exposed to an activating agent (e.g., oil, water, etc.), a swellable packer element on the tool's mandrel swells. Because the swelling may take several days to seal the downhole annulus, the tool has one or more isolation elements disposed adjacent the swellable element to at least partially isolate the downhole annulus. For example, when the tool is deployed, the swellable packer element is exposed to the activating agent so it can begin to swell. As the swellable element swells, the one or more isolation elements are activated to at least partially isolate the downhole annulus. By doing so, the isolation elements can produce one or more secondary seals (either full or partial) with the surrounding borehole wall to prevent fluid flow through the downhole annulus while the swellable element swells. In addition, the isolation elements can keep the swellable element from becoming overly extruded as it swells by limiting the axial expansion of the swellable element along the tool's mandrel. Finally, the isolation elements can at least partially isolate the swellable element from the downhole annulus and thereby limit the swellable elements exposure to downhole fluids that may tend to degrade the element over time.
The one or more isolation elements are disposed on the tool's mandrel adjacent the swellable packer element and are at least partially deformable radially outward to the surrounding borehole wall to produce the isolation discussed above. In one arrangement of an isolation element, one or more cup packers are biased to deform radially outward and are oriented to restrict fluid flow through the downhole annulus in one or more directions. These one or more cup packers may be biased to deform radially outward by their natural configuration, by fluid pressure in the downhole annulus acting on the cup packer, or by a bias unit configured to deform the cup packer.
In another arrangement of an isolation element, a compressible packer is disposed on the mandrel adjacent the swellable element, and a bias unit is releasably affixed on the mandrel adjacent the compressible packer. The bias unit is releasable on the mandrel and is axially biasable toward the compressible packer to at least partially deform the compressible packer radially outward to the surrounding borehole wall.
The bias unit can be released in a number of ways. In one arrangement, the swellable element can release the bias unit to compress the compressible packer. For example, axial swelling of the swellable element can break the bias unit's temporary connection to the mandrel. This temporary connection can use shear pins and dogs to releasably affix the bias unit on the mandrel. Once released, the bias units can then compress against the compressible packer to deform the packer.
In another arrangement, fluid pressure communicated through the mandrel can release the bias unit to compress the compressible packer. For example, fluid pressure from the mandrel's bore can enter a port and fill a chamber of the bias unit. The fluid pressure filling this chamber can then break the bias unit's temporary connection to the mandrel and can bias the unit axially toward the compressible packer to compress it.
These and other arrangements are disclosed below. The foregoing summary is not intended to summarize each potential embodiment or every aspect of the present disclosure.
A tool 50 in
The packer 50 has one or more swellable packer elements 60 disposed on a mandrel 52 and has one or more isolation elements 70 disposed on the mandrel 52 adjacent the swellable elements 60. As shown particularly in
Because the swelling of the element 60 can take several days to complete (e.g., 7-10 days), fluid may still be able to travel between portions of the downhole annulus 12 past the packer 50. This may be undesirable because fluid loss and contamination may occur while the swellable element 60 continues to swell. For this reason, operators use the isolation elements 70A-B to at least partially isolate the downhole annulus 12. In generally, each of the isolation element 70A-B has one or more deformable elements. When deploying the tool 10 downhole, these one or more deformable elements of the isolation elements 70A-B are at least partially deformed radially outward to the surrounding borehole wall so the elements 70A-B can at least partially isolate the downhole annulus 12.
The isolation from the elements 70A-B can reduce or prevent issues with fluid passing through the downhole annulus 12 while the swellable element 60 swells. In addition, the isolation can prevent the swellable element 60 from over exposure to wellbore fluids in the annulus 12 (including the activating agent) that could degrade the element's material. Finally, the isolation elements 70A-B can also limit the possible extrusion of the swellable element 60 as its swells.
One arrangement of a packer 50 is shown in
When the packer 50 is deployed and activated, these elements 60/70A-B are capable of forming different seals with the surrounding borehole wall. For example, the compressible packers 80AB can provide a compressed form of seal particularly suited for sealing against uniform surfaces and for maintaining a high pressure differential. On the other hand, the swellable element 60 can provide an engorged or swollen form of seal. Although this swollen seal may be weaker than the compressed seal, the swollen seal can extend along a greater expanse of the borehole and may actually provide a better seal against less uniform surfaces downhole than can be achieved with the compressed seal.
As shown in further detail in
Beyond the compressible packers 80A-B, the isolation elements 70A-B (shown in
Each barrel 92 encloses a variable chamber 94 around the mandrel 52 that contains atmospheric pressure or other low pressure level sealed therein by seals 96/98. For example, a lip on the end of the barrel 92 has an outer sealing ring 96 that engages the outside of the mandrel 52. Also, an inner sealing ring 98 disposed on the outside of the mandrel 52 engages an inside of the barrel 92 to enclose the chamber 94, although other forms of sealing could be used.
With an understanding of the components of the packer 50, discussion now turns to how the packer 50 is deployed and used downhole. As shown in the partial view of
As noted previously, the chamber 94 has atmospheric pressure or some other low pressure level when assembled at the surface. When the packer 50 is deployed in the wellbore, however, the high pressure environment of pumped or existing fluids in the annulus tends to compress this chamber 94 and force the barrel 92 and attached sleeve 95 axially on the mandrel 52 towards the compressible packer 80A. Yet, the barrel 92 initially remains fixed on the mandrel 52, being retained by the dogs 56 engaged in the mandrel's groove 54.
Eventually, a pumped or existing activating agent in the downhole annulus interacts with the swellable element 60, causing it to expand both axially and radially. (For example, operators may use a mud system 30 as depicted in
Meanwhile, the swellable element's axial expansion pushes against the adjacent compressible packer 80A. In turn, the packer 80A pushes against the adjacent sliding sleeve 85. When enough force is achieved, the shear pins 88 break, allowing the sliding sleeve 85 to shift along the anchoring sleeve 95 and away from the swellable element 60. In some implementations, the swellable element 60 may produce about 100 to 200-psi of force so that the breakable connection provided by the shear pins 88 or other temporary connection would need to be configured accordingly.
As shown in
As shown in
Because the chamber 94 can have atmospheric pressure therein, the chamber 94 will move the barrel 92 as long as the packer 50 is run to a minimum depth for downhole pressure to actuate the barrel 92. Therefore, the pressure in the chamber 94 can be set for a particular implementation. Using the chambers 94 to energize the compressible packer 80A instead of—relying on the force generated by the swellable element 60 means that the force applied to the compressible packer 80A will likely not diminish over time. Although the current arrangement uses the barrel 92 and chamber 94 to provide the biasing force to compress the compressible packer 80A, other biasing arrangements that use springs or fluid filled chambers can be used in place of or in combination with this current arrangement. (See e.g.,
The counterforce from the bias unit 90A and the compressible packer 80A can help limit the axial movement of the swellable element 60, thereby making the element 60 swell more radially outward to effectively engage the surrounding borehole wall as intended and limiting the possible extrusion of the swellable element 60 as its swells. In addition, the seal (entire or partial) provided by the compressible packer 80A can isolate the downhole annulus in which the swellable element 60 is positioned. This isolates the swellable element 60 from further exposure to wellbore fluids (including the activating agent) that could degrade the element's material over time.
In the previous arrangement of FIGS. 2 & 3A-3B, the bias units 90A-B use barrels 92 with low pressure chambers 94. When the barrels 92 are released on the mandrel 52, the bias units 90A-B press axially against the compressible packers 80A-B. In an alternative arrangement shown in
In the previous arrangements of FIGS. 2 & 3A-3B, the bias units 90A-B are released by the axial movement of the swellable element 60 pushing the compressible elements 80A-B and the sleeves 85 until the shear pins 88 break and the dogs 56 release the anchoring sleeves 95. As an alternative, the packer 50 can use bias units that are mechanically or hydraulically released apart from the swelling of the swellable element 60. In
To activate the packer 50's bias unit 100, pumped fluid in the mandrel's bore enters the sealed chamber 89 through the port 58. Increased fluid pressure in this chamber 89 pushes the inner sliding sleeve 85 to break the shear pins 88. Once freed, the inner sliding sleeve 85 moves axially on the mandrel 52 and releases the dogs 56. With the dogs 56 released, the bias unit 100 pushes the anchoring sleeve 95 along the mandrel 52 and engages both sleeves 85/87. Pushed further by the bias unit 100, these sleeves 85/87/95 then compress against the compressible packer 80A to deform it. Although shown in connection with the spring-based unit 100, this alternate form of activation in
In
As shown in detail in
Internally, a sealing ring 126 affixed to the mandrel 52 separates the enclosed space inside the barrel 120 into a discharge chamber 122 and a charge chamber 124. Fluid can enter the charge chamber 128 via a port 58 in the mandrel 52. Likewise, fluid can leave the discharge chamber 122 via a discharge outlet 124. (Although not shown, the opposite portion of the packer 50 is similarly arranged.)
As shown in
Meanwhile, pumped fluid (which can include the activating agent) passing through the mandrel 52 enters the charge chamber 128 via the mandrel's port 58. As fluid pressure builds, it forces the barrel 120 towards the compressible packer 80A, but the shear pins 132 prevent the barrel 120 from moving. Eventually as shown in
As the barrel 120 is biased axially toward the compressible packer 80A, the build-up of fluid pressure causes the barrel's engagement shoulder 140 to press against the compressible packer 80A. The force applied can be over several thousand psi to deform the compressible packer 80A. Meanwhile, the ratchet mechanism 133 ratchets along the mandrel's serrated surface 53, preventing the barrel 120 from returning towards the retention shoulder 112. Eventually as shown in
In previous arrangements, the packer 50 has a symmetrical arrangement with isolation elements 70A-B flanking both ends of the swellable element 60. (See e.g.,
As an alternative to a symmetrical arrangement, the packer 50 can have an asymmetrical arrangement. In
In previous arrangements, the isolation elements 70A-B use compressible packers 80A-B that are deformed outwardly toward the surrounding borehole wall by compression. In
When deployed downhole, the cup packers 150 of the elements 70A-B at least partially isolate the swellable element 60 from the downhole annulus, thereby preventing fluid loss while the swellable element 60 takes time to swell and limiting over exposure of the element 60 to downhole fluids. For example, the first element 70A can prevent fluid buildup uphole from the packer 50 from passing downhole while the swellable element 60 is swelling with time. Likewise, the second element 70B can prevent fluid buildup downhole from the packer 50 from passing uphole.
The packer 50 in
The cup packers 150 in
An adjacent cup packer (not shown) disposed on the mandrel 52 may or may not also undergo a similar expansion. For example, the sleeve 156 engaged by the cup packer's ring 154 may simply fit against the adjacent cup packer (not shown) in a similar way shown previously. Alternatively, the sleeve 156 can have a similar expanding contour to deform the adjacent cup packer (not shown), especially if the ring 154 is allowed to move along the mandrel 52.
As disclosed herein, swelling of the swellable element 60 can be initiated in a number of ways. For example, oil, water, or other activating agent existing downhole may swell the element 60, or operators may introduce the agent downhole. In general, the swellable element 60 can be composed of a material that an activating agent engorges and causes to swell. Any of the swellable materials known and used in the art can be used for the element 60. For example, the material can be an elastomer, such as ethylene propylene diene M-class rubber (EPDM), ethylene propylene copolymer (EPM) rubber, styrene butadiene rubber, natural rubber, ethylene propylene monomer rubber, ethylene vinylacetate rubber, hydrogenated acrylonitrile butadiene rubber, acrylonitrile butadiene rubber, isoprene rubber, chloroprene rubber and polynorbornen, nitrile, VITON® fluoroelastomer, AFLAS® fluoropolymer, KALREZ® perfluoroelastomer, or other suitable material. (AFLAS is a registered trademark of the Asahi Glass Co., Ltd., and KALREZ and VITON are registered trademarks of DuPont Performance Elastomers). The swellable material of the element 60 may or may not be encased in another expandable material that is porous or has holes.
What particular material is used for the swellable element 60 depends on the particular application, the intended activating agent, and the expected environmental conditions downhole. Likewise, what activating agent is used to swell the element 60 depends on the properties of the element's material, the particular application, and what fluid (liquid and gas) is naturally occurring or can be injected downhole. Typically, the activating agent can be mineral-based oil, water, hydraulic oil, production fluid, drilling fluid, or any other liquid or gas designed to react with the particular material of the swellable element 60.
As disclosed herein, the deformable elements used for the isolation elements 70 can be compressible packers 80 or cup packers 150. It will be appreciated that other deformable elements could be used, including, but not limited to, metallic rings, elastomeric seals, etc. In general, these deformable elements (e.g., compressible packers 80, cup packers 150, etc.) can be composed of any expandable or otherwise malleable material such as metal, plastic, elastomer, or combination thereof that can stabilize the packer 50 and withstand tool movement and thermal fluctuations within the borehole. In addition, the compressible packers 80 when used can be uniform or can include grooves, ridges, indentations, or protrusions designed to allow the packers to conform to variations in the shape of the interior of the borehole. Moreover, the cup packer 150 when used may be formed of any suitable type elastomeric material and may contain suitable reinforcing materials therein.
As disclosed herein, the combination of one or more swellable elements 60 and one or more isolation elements 70 on the packer 50 produces a dual sealing system. The isolation elements 70 can provide a more immediate seal or isolation with the surrounding borehole wall, while the swellable elements 60 may enlarge over time and produce a seal along a longer expanse of the borehole. As discussed above, an isolation element 70 flanking each end of a swellable element 60 can help contain the swellable element 60, limiting its extrusion and engorgement that may weaken the element 60 overtime. In addition, the elements 60/70A-B may or may not be configured to work independently of one another as discussed previously.
As disclosed herein, the swellable element 60 has been described as providing a primary seal while the isolation elements 70A-B provide secondary seals or at least partially isolate the swellable element 60 from the downhole annulus. This should not be taken to mean that one seal is stronger than the other, encompasses a greater volume of the borehole's annulus, is superior to the other, etc. Rather, particular characteristics of the various seals produced can be configured for a given implementation and may be intentionally varied. In fact, some implementations of the packer 50 may only require that the swellable element 60 expand enough axially to activate the bias units (e.g., 90 of
The foregoing description of preferred and other embodiments is not intended to limit or restrict the scope or applicability of the inventive concepts conceived of by the Applicants. Arrangements disclosed in one embodiment can be combined or exchanged with those disclosed for another arrangement herein. As one example, a packer having a swellable element 60 and isolation elements 70A-B can use one type of bias unit (e.g., 90 as in
In exchange for disclosing the inventive concepts contained herein, the Applicants desire all patent rights afforded by the appended claims. Therefore, it is intended that the appended claims include all modifications and alterations to the full extent that they come within the scope of the following claims or the equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
2657751 | Johnston | Nov 1953 | A |
2725941 | Henshaw | Dec 1955 | A |
4433847 | Weinberg | Feb 1984 | A |
4711301 | Stringfellow | Dec 1987 | A |
5423382 | Barton et al. | Jun 1995 | A |
5447200 | Dedora et al. | Sep 1995 | A |
5806596 | Hardy et al. | Sep 1998 | A |
5810082 | Jordan, Jr. | Sep 1998 | A |
5819854 | Doane et al. | Oct 1998 | A |
5924491 | Jordan, Jr. et al. | Jul 1999 | A |
5988287 | Jordan, Jr. et al. | Nov 1999 | A |
6119774 | Doane et al. | Sep 2000 | A |
6230798 | Appleton | May 2001 | B1 |
6241017 | Doane et al. | Jun 2001 | B1 |
6513595 | Freiheit et al. | Feb 2003 | B1 |
6612372 | Freiheit et al. | Sep 2003 | B1 |
6834725 | Whanger et al. | Dec 2004 | B2 |
6907937 | Whanger et al. | Jun 2005 | B2 |
7108071 | Freiheit et al. | Sep 2006 | B2 |
7128147 | Marcin et al. | Oct 2006 | B2 |
7143832 | Freyer | Dec 2006 | B2 |
7228915 | Thomson | Jun 2007 | B2 |
7299882 | Brezinski et al. | Nov 2007 | B2 |
7387158 | Murray et al. | Jun 2008 | B2 |
7392841 | Murray et al. | Jul 2008 | B2 |
7431098 | Ohmer et al. | Oct 2008 | B2 |
20040020662 | Freyer | Feb 2004 | A1 |
20050110217 | Wood et al. | May 2005 | A1 |
20050171248 | Li et al. | Aug 2005 | A1 |
20050199401 | Patel et al. | Sep 2005 | A1 |
20060090905 | Brennan, III et al. | May 2006 | A1 |
20070027245 | Vaidya et al. | Feb 2007 | A1 |
20070151724 | Ohmer et al. | Jul 2007 | A1 |
20080093086 | Courville et al. | Apr 2008 | A1 |
20080149351 | Marya et al. | Jun 2008 | A1 |
20080185158 | Chalker et al. | Aug 2008 | A1 |
20080220991 | Slay et al. | Sep 2008 | A1 |
Number | Date | Country |
---|---|---|
2 422 771 | Mar 2006 | CA |
0094170 | Nov 1983 | EP |
0236934 | May 2002 | WO |
2003008756 | Jan 2003 | WO |
2005012686 | Feb 2005 | WO |
2008154392 | Dec 2008 | WO |
2008154392 | Dec 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20100243235 A1 | Sep 2010 | US |