Slips and packing elements are devices commonly used in packer systems for downhole wellbore applications. Slips attach a tool string, or other tubular members, to a casing, a liner, an open hole or other structure of the wellbore so that the weight of the tubular member being anchored is not supported from the surface. Additionally, slips, by tying tubular members to downhole structures, allow other downhole tools in a tool string to be actuated in response to surface actions on the tool string such as pickup and setdown, for example. A tool that is commonly actuated after slips are set is a packing element.
Packing elements provide an annular seal between a tubular member and a structure of a wellbore, such as a casing, a liner, or an open hole of the wellbore, for example. Packing elements may be used to seal off a section of a well that is no longer productive, or a section of well that could flow unwanted fluids, such as water, into the production stream, for example. As such, the seal integrity of a packing element can have a significant affect on a well's viability. A leaking packing element can be costly for an operator in a number of ways. The leak itself is costly as it adversely affects production or affects the quality of the produced fluid(s). Moreover, since operators have an obligation to reduce money-wasting conditions when they are discovered a repair would be desirable. Repair generally requires that the packing element (and any associated components) be pulled from the well. Retrieval of the packing element to the surface for repair or replacement requires rig time, which is always costly. Add to the foregoing that the cost of repair or replacement of a packing element is generally not planned for as once a packing element is sealed in a wellbore it is intended to remain in place for a long time, possibly a number of years, and it becomes evident that packing element malfunction is clearly undesirable.
Unfortunately, the extreme environmental conditions that exist downhole can, over time, degrade packing elements resulting in the need to replace the packer. Because replacement of the packer requires significant rig time, it is expensive and therefore undesirable.
Disclosed herein is a packer system. The packer system includes, a first packing element settable to create a seal against a downhole structure, and a contingency packing element in operable communication with the first packing element, maintainable in reserve and settable at a time after which the first packing element is set.
Further disclosed herein is a method for packing a borehole. The method includes, setting a slip assembly, setting a first packing element, and maintaining a contingency packing element in reserve.
The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
A detailed description of several embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
Referring to
The slip assembly 22 illustrated in an embodiment in
The primary packing element 26 is in operable communication with the slip assembly 22 such that, after the slip assembly 22 is engaged with the liner 14 actuation of the primary packing element 26 can be initiated. The primary packing element 26, illustrated in an actuated configuration in
Actuation of the primary packing element 26 is effected by movement of the rings 70 and 74 towards one another. A variety of actuation mechanisms are known and can be controlled in a variety of ways to cause the movement of the rings 70 and 74 towards one another. For example, surface actions on the tool string such as, pickup and setdown. Such actuation methods are possible and cost effective while the tool string is still connected to surface prior to completion. Other mechanisms such as a hydraulic piston arrangements or an electric motor actuator, for example, can also be employed to actuate the tubular member 54 to initiate the actuation of the slip assembly 22. Examples of communication methods from surface to initiate actuation without a rig being in place will be described with reference to
Failure of a primary packing element 26, resulting in leakage, within a well bore is not uncommon. Downhole conditions of high temperature and high pressure combined with the caustic nature of some downhole fluids can cause sealing materials to deteriorate over time and develop leaks. Elastomeric materials in particular, though excellent for initial sealability especially with imperfect surfaces, tend to degrade in the harsh environment and to develop leaks. After a leak develops removal from the wellbore to repair or replace the leaking packing element 26 can be time consuming and costly. As such, providing the contingency packing element 30 in a tool string for selective actuation, at a later time, should the need arise, may be economically advantageous for a well operator.
Additionally, placing one or more contingency packing elements 30 along a tool string may be desirable for reasons other than damage of the primary packing element 26. For example, it may become desirable to change the performance of a well by using the contingency packing element 30 to shut off a section of the well that has begun producing water. Alternately, the contingency packing element 30 or a plurality of the contingency packing elements 30 could be employed to convert a producing well into an injection well.
The contingency packing element 30, illustrated in
The three lines of weakness 88, 92 and 100 each encourage local deformation of the tubular member 80 in a radial direction that tends to cause the groove to close. It will be appreciated that in embodiments where the line of weakness is defined by other than a groove, the radial direction of movement will be the same but since there is no groove, there is no “close of the groove”. Rather, in such an embodiment, the material that defines a line of weakness will flow or otherwise allow radial movement in the direction indicated. The three lines of weakness 88, 92, 100 together encourage deformation of the tubular member 80 in a manner that creates a feature such as the contingency packing element 30. The feature is created, then, upon the application of an axially directed mechanical compression of the tubular member 80 such that the contingency packing element 30 is formed as the tubular member 80 is compressed to a shorter overall length. It should be appreciated, that alternate embodiments could locate differing numbers of lines of weakness on differing surfaces than those disclosed in embodiments herein while still achieving the deformation necessary to create a sealable contingency packing element 30. Although in the foregoing embodiment the contingency packing element 30 is made of metal it should be understood that alternate embodiments could have a contingency packing element with an elastomeric seal element.
A variety of actuation mechanisms to actuate the contingency packing element 30 can be controlled in a variety of ways. Unlike the primary packer 20, however, it may be advantages to initiate and actuate the contingency packing element 30 without the use of a rig at surface since the cost and lost production time required to set up a rig and run a line downhole would be very costly. The following embodiments are therefore available that do not require resetting of a rig and running of a new line downhole. Pressure pulse telemetry, in which pressure pulses are transmitted down a fluid column in a tubing or annulus from a surface unit can be received by an electronics module on the packer system 10 or other portion of a downhole tool string. The electronics module detects the pressure pulses and when a pre-programmed pattern of pulses is detected, triggers a setting tool, such as a hydrostatic setting tool, for example, that actuates the contingency packing element 30. A similar system could have an electronics module detect a chemical that is pumped downhole and initiate setting of the contingency packing element 30 upon receipt of the chemical pumped. Another actuation mechanism that can be employed uses an increase in pressure through a dedicated hydraulic line to rupture a rupture disc. Once ruptured a pressure differential between wellbore pressure and atmospheric pressure in a chamber can provide a driving force capable of setting the contingency pacing element 30. Other actuation mechanism embodiments can include a dedicated electrical control line, for example, that communicates to an electric motor driven actuation device. Regardless of the actuation mechanism used to actuate the contingency packing element 30 it may be desirable to have the contingency packing element 30 in operable communication with the primary slip assembly 22 such that the slip assembly 22 maintains the position of the packer system 10 within the wellbore during actuation of the contingency packing element 30. Having the contingency packing element 30 exposed to the downhole environmental conditions can detrimentally affect the contingency packing element 30 and, therefore, sealably protecting the contingency packing element 30 prior to its actuation may be desirable.
Optionally, an annular sleeve 112 such as that shown in
While the invention has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
4044826 | Crowe | Aug 1977 | A |
4176715 | Bigelow et al. | Dec 1979 | A |
4311195 | Mullins, II | Jan 1982 | A |
4519456 | Cochran | May 1985 | A |
4572289 | Rosenthal | Feb 1986 | A |
4903777 | Jordan, Jr. et al. | Feb 1990 | A |
4930573 | Lane et al. | Jun 1990 | A |
4949793 | Rubbo et al. | Aug 1990 | A |
5044444 | Coronado | Sep 1991 | A |
5058673 | Muller et al. | Oct 1991 | A |
5810082 | Jordan, Jr. | Sep 1998 | A |
6896049 | Moyes | May 2005 | B2 |
20020121380 | Doane et al. | Sep 2002 | A1 |
Number | Date | Country |
---|---|---|
2 164 375 | Mar 1986 | GB |
2 381 546 | May 2003 | GB |
Number | Date | Country | |
---|---|---|---|
20080223571 A1 | Sep 2008 | US |