Packet data network voice call quality monitoring

Abstract
The quality of service existing in a data packet network during the course of communication of a voice call through a data network, such as the Internet, is monitored. A minimum acceptable level of service may be predefined with a threshold quality level stored in the user's Call Processing Record (CPR) in the AIN Integrated Services Control Point (ISCP). If the monitored quality is maintained in excess of the stored threshold, communication of the call continues through the established course of transmission. If the measured quality of service on the data network is not satisfactory, the routing of the call is changed to communication solely through a voice telephone network connection, which may include an Interexchange Carrier link, without terminating the call. The packet data network is thereby bypassed to obtain voice grade quality while maintaining the call.
Description
TECHNICAL FIELD

The present invention relates to telecommunications networks and more particularly to monitoring the quality of performance of voice calls routed through a data packet network. If quality conditions are determined to be unacceptable, call routing is transferred through a voice telephone network without requiring termination of the call.


BACKGROUND OF THE INVENTION

Implementation of voice telephone service over a worldwide data network, such as the Internet, offers advantages that are now being explored. The Internet had its genesis in U.S. Government (called ARPA—Advanced Research Projects Agency) funded research which made possible national internetworked communication systems. This work resulted in the development of network standards as well as a set of conventions and protocols for interconnecting networks and routing information. These protocols, commonly referred to as TCP/IP—Transport Control Protocol/Internet Protocol—have subsequently become widely used in the industry. TCP/IP is flexible and robust. In effect, TCP takes care of the integrity and IP moves the data. Internet provides two broad types of services: connectionless packet delivery service and reliable stream transport service. The Internet basically comprises several large computer networks joined together over high-speed data links ranging from ISDN to T1, T3, FDDI, SONET, SMDS, TO1, etc. The most prominent of these national nets are MILNET (Military Network), NSFNET (National Science Foundation NETwork), and CREN (Corporation for Research and Educational Networking). In 1995, the Government Accounting Office (GAO) reported that the Internet linked 59,000 networks, 2.2 million computers and 15 million users in 92 countries.


A simplified diagram of the Internet is depicted in FIG. 1. The Internet 50 comprises Autonomous Systems (AS) which may be owned and operated by Internet Service Providers (ISPs) such as PSI, UUNET, MCI, SPRINT, etc. Three such AS/ISPs are shown in FIG. 1 at 52, 54 and 56. The Autonomous Systems (ASs) are linked by Inter-AS Connections 58, 60 and 62. Information Providers (IPs) 64 and 66, such as America Online (AOL) and Compuserve, are connected to the Internet via high speed lines 68 and 70, such as T1/T3 and the like. Information Providers generally do not have their own Internet based Autonomous Systems but have or use Dial-Up Networks such as SprintNet (X.25), DATAPAC and TYMNET.


By way of current illustration, MCI is both an ISP and an IP, Sprint is an ISP, and MicroSoft (MSN) is an IP using UUNET as an ISP. Other information providers, such as universities, are indicated in exemplary fashion at 72 and are connected to the AS/ISPs via the same type connections, here illustrated as T1 lines 74. Corporate Local Area Networks (LANs), such as those illustrated at 76 and 78, are connected through routers 80 and 82 and links shown as T1 lines 84 and 86. Laptop or PC computers 88 and 90 are representative of computers connected to the Internet via the public switched telephone network (PSTN), shown connected to the AS/ISPs via dial up links 92 and 96.


The Information Providers (IPs) are end systems that collect and market the information through their own servers. Access providers are companies such as UUNET, PSI, MCI and SPRINT which transport the information. Such companies market the usage of their networks.


In simplified fashion the Internet may be viewed as a series of gateway routers connected together with computers connected to the routers. In the addressing scheme of the Internet an address comprises four numbers separated by dots. An example would be 164.109.211.237. Each machine on the Internet has a unique number that includes one of these four numbers. In the address, the leftmost number is the highest number. By analogy this would correspond to the ZIP code in a mailing address. The first two numbers that constitute this portion of the address may indicate a network or a locale. That network is connected to the last router in the transport path. In differentiating between two computers in the same destination network only the last number field changes. In such an example the next number field 211 identifies the destination router. When the packet bearing the destination address leaves the source router it examines the first two numbers in a matrix table to determine how many hops are the minimum to get to the destination. It then sends the packet to the next router as determined from that table and the procedure is repeated. Each router has a database table that finds the information automatically. This process continues until the packet arrives at the destination computer. The separate packets that constitute a message may not travel the same path, depending on traffic load. However, they all reach the same destination and are assembled in their original sequence order in a connectionless fashion. This is in contrast to connection oriented modes such as frame relay and ATM or voice.


Software has recently been developed for use on personal computers to permit two-way transfer of real-time voice information via an Internet data link between two personal computers. In one of the directions, the sending computer converts voice signals from analog to digital format. The software facilitates data compression down to a rate compatible with modem communication via a POTS telephone line. The software also facilitates encapsulation of the digitized and compressed voice data into the TCP/IP protocol, with appropriate addressing to permit communication via the Internet. At the receiving end, the computer and software reverse the process to recover the analog voice information for presentation to the other party. Such programs permit telephone-like communication between Internet users registered with Internet Phone Servers. The book “Mastering the Internet”, Glee Cady and Pat McGregor, SYBEX Inc., Alameda, Calif., 1994, ISBN 94-69309, very briefly describes three proprietary programs said to provide real-time video and voice communications via the Internet.


Palmer et al., U.S. Pat. No. 5,375,068, issued Dec. 20, 1994 for Video Teleconferencing for Networked Workstations discloses a video teleconferencing system for networked workstations. A master process executing on a local processor formats and transmits digital packetized voice and video data, over a digital network using TCP/IP protocol, to remote terminals.


Lewen et al., U.S. Pat. No. 5,341,374, issued Aug. 23, 1994 for Communication Network Integrating Voice Data and Video with Distributed Call Processing, discloses a local area network with distributed call processing for voice, data and video. Real-time voice packets are transmitted over the network, for example to and from a PBX or central office.


Hemmady et al., U.S. Pat. No. 4,958,341, issued Sep. 18, 1990 for Integrated Packetized Voice and Data Switching System, discloses an integrated packetized voice and data switching system for a metropolitan area network (MAN). Voice signals are converted into packets and transmitted on the network.


Tung et al., U.S. Pat. Nos. 5,434,913, issued Jul. 18, 1995, and 5,490,247, issued Feb. 6, 1996, for Video Subsystem for Computer Based Conferencing System, disclose an audio subsystem for computer-based conferencing. The system involves local audio compression and transmission of information over an ISDN network.


Hemmady et al., U.S. Pat. No. 4,872,160, issued Oct. 3, 1989, for Integrated Packetized Voice and Data Switching System, discloses an integrated packetized voice and data switching system for metropolitan area networks.


Sampat et al., U.S. Pat. No. 5,493,568, issued Feb. 20, 1996, for Media Dependent Module Interface for Computer Based Conferencing System, discloses a media dependent module interface for computer based conferencing system. An interface connects the upper-level data link manager with the communications driver.


Koltzbach et al., U.S. Pat. No. 5,410,754, issued Apr. 25, 1995, for Bi-Directional Wire Line to Local Area Network Interface and Method, discloses a bi-directional wire-line to local area network interface. The system incorporates means for packet switching and for using the internet protocol (IP).


The commonly assigned applications, Ser. Nos. 08/634,543 and 08/670,908, identified more particularly above, are concerned with providing telephone service via the Internet to users of the public telecommunications network who may not have access to a computer or separate telephone access-to the Internet. Such service would be economical, especially for long distance calls, compared with the toll rates charged by long distance interexchange carriers.


With increasing volume of use on the Internet and the bursty nature of data transmission, traffic patterns have become unstable and unpredictable. The minimum quality of service acceptable for voice communication is much higher than the level for data transport as transmission delays noticeably degrade conversation. With the Internet or other high volume data network, acceptable voice communication may be available between two end points at a given time, but often not at other times. A surge in data traffic may make the network unsuitable for voice communication for as much as twenty or thirty minutes. Bottlenecks may occur at different points in the network at different times. The locations of the participants of a voice call are factors in determining suitability of the data network. The degree to which degradation of a voice call remains acceptable is subjective with the user and can be a tradeoff between quality of service and reduction of cost.


A deficiency in earlier proposed voice Internet service systems is the inability to ensure an acceptable level of service quality. Voice communication by nature should be perceived as real time interaction in order to be acceptable to the parties of the call. The packet data network traffic in the connection paths of a voice call may render intolerable transmission delays. Current systems do not measure delays against user acceptable standards. A high level of congestion and delay in a data network often leads to lost or dropped data packets that would noticeably degrade reconstructed voice audio. The voice call user must either endure such deficiencies or terminate the call in favor of originating a new call through an alternative system.


The aforementioned commonly assigned application Ser. No. 08/821,097 filed Mar. 19, 1997 and entitled Voice Call Alternative Routing Through PSTN And Internet Networks, is concerned with determining routing of voice calls alternatively between the public switched telephone network (PSTN) and a data packet network, such as the Internet, in accordance with the quality of service existing in the data packet network at the times of call origination. Through use of the PSTN Advanced Intelligent Network (AIN), a caller may predefine an acceptable level of service, for example 2.4 or 4.8 kbs to be stored in the user's Call Processing Record (CPR) in the AIN Integrated Services Control Point (ISCP). On a per call basis, the caller linked to a first public switched network may indicate a preference to route through the Internet. This indication would be recognized by the AIN system, in response to which the quality of service currently present on the Internet for completion of the call is measured. If the result exceeds the stored threshold, the call is set up and routed through the Internet to the switched network link to the destination party. If the quality of service on the Internet is not satisfactory, the call would be alternatively routed through the PSTN, which may include an Interexchange Carrier link.


The last described arrangement is an improvement over prior voice data network schemes in the respect that determination of data network performance quality avoids set up of a call that would be known at the outset to be inadequate for voice communication. However, with relatively unstable and unpredictable traffic patterns in data networks such as the Internet, the alternative set up arrangement does not accommodate a change to poor data network performance conditions after a call has been placed and routed through the data network. Thus, parties to such a call still must either suffer the deficiencies in voice quality, perhaps in the hope that data traffic conditions improve, or terminate the call in favor of a new call manually placed through the switched telephone network.


BRIEF SUMMARY OF THE INVENTION

The present invention overcomes the above noted drawbacks of earlier proposed systems and provides additional advantages in part by monitoring the quality of service existing in a data packet network during the course of communication of a voice call through the data network. The user's acceptable level of service may be predefined with a threshold quality level stored in the user's Call Processing Record (CPR) in the AIN Integrated Services Control Point (ISCP) If the monitored quality is maintained in excess of the stored threshold, communication of the call continues through the established course of transmission. If the measured quality of service on the data network is not satisfactory, the routing of the call is changed to communication solely through a voice telephone network connection, which may include an Interexchange Carrier link, without terminating the call. Thus, the packet data network is bypassed to obtain voice grade quality while maintaining the call.


Monitoring of the data network, which may be the Internet, may be under control of a module that interfaces between the data network and the public switched telephone network. The caller's predefined acceptable level of quality, stored in the AIN ISCP may be obtained by the module for comparison with monitored levels. Upon failure of the comparison, the module can issue a signal to the calling station switch to automatically establish a connection for the call from the calling station switch through the PSTN to a second switch coupled to the called station. Such signal also can be generated by the module in response to a DTMF input by either user. Such input reflects the user's perceived dissatisfaction with quality of the call and acts as a command to automatically reroute the call to bypass the data network. Upon connection of the two switches through the voice telephone network, the voice call is bridged at each of the switches to the established connection. Communication of the call through the packet data network path is thereafter terminated.


Additional advantages of the present invention will become readily apparent to those skilled in this art from the following detailed description, wherein only the preferred embodiment of the invention is shown and described, simply by way of illustration of the test mode contemplated for carrying out the invention. As will be realized, the invention is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the invention. Accordingly, the drawings, throughout the various figures of which like elements are depicted by the same reference numerals, and description are to be regarded as illustrative in nature, and not as restrictive.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a simplified diagram of the Internet.



FIG. 2 is a simplified block diagram of a Public Switched Telephone Network (PSTN) that comprises a Common Channel Interoffice Signaling (CCIS) system and voice communication network that perform as an Advanced Intelligent Network (AIN) system.



FIG. 3 is a simplified block diagram of an AIN controlled PSTN, such as the type shown in FIG. 2, which includes architecture for implementing Internet routing in accordance with one preferred embodiment of the invention.



FIG. 4 is a diagram of the functional architecture of one embodiment of an Internet Module for use in the system and method of the invention.



FIG. 5 is a block diagram that represents the functionality of the processor interface 112 and the router 110 shown in FIG. 4.



FIGS. 6A and 6B taken together form a simplified flow chart that illustrates operation of preferred embodiments of the invention.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 2 is a depiction of the AIN architectural environment that is considerably simplified for explanation purposes. The full network and operating environment for the invention may comprise multiple central offices, diverse interconnections, and provisions for reliability through redundancy, all of which need not be shown for developing an understanding of the invention. Service Switching Points (SSPs) 11, 13, 15, 17 represent central office (CO) switching systems that are appropriately equipped programmable switches present in the telephone network. Subscriber lines individually connect SSPs to subscriber premises at which locations telephones 12 or other communication devices are connected. As well known, the SSPs recognize AIN type calls, launch queries to the ISCP and receive commands and data from the ISCP to further process the AIN calls. In the illustrated embodiment, the CO-SSPs are end offices.


SSP capable central office switching systems typically contain a programmable digital switch with CCIS communications capabilities. One example of an SSP capable CO switch is a SESS type switch manufactured by AT&T. Other vendors, such as Northern Telecom and Seimens, manufacture comparable digital switches that may serve as the SSPs. A more detailed description of an exemplary SSP type CO is presented in the commonly assigned copending application, Ser. No. 08/248,980, filed May 25, 1994, hereby incorporated by reference herein.


The SSP type COs 11 and 13 are shown connected to a first local area STP 23, SSP-COs 15 and 17 being connected to a second local area STP 25. The connections to the STPs are for signaling purposes. The control part of SS7 protocol is known as Integrated Services Digital Network User Part (ISUP). ISUP determines the procedures for setting up, coordinating, and taking down trunk calls on the SS7 network.


Signaling between switching offices is required for transmitting routing and destination information, for transmitting alerting messages such as to indicate the arrival of an incoming call, and for transmitting supervisor information, e.g. relating to line status. Signaling between offices can use ‘in-band’ transport or ‘out-of-band’ transport.


In-band signaling utilizes the same channel that carries the communications of the parties. In a voice telephone system, for example, one of the common forms of in-band signaling between offices utilizes multi-frequency signaling over voice trunk circuits. The same voice trunk circuits also carry the actual voice traffic between switching offices. In-band signaling, however, tends to be relatively slow and ties up full voice channels during the signaling operations. In telephone call processing, a substantial percentage of all calls go unanswered because the destination station is busy. For in-band signaling, the trunk to the end office switching system serving the destination is set-up and maintained for the duration of signaling until that office informs the originating office of the busy line condition. Thus, in-band signaling greatly increases congestion on the voice traffic channels. In-band signaling also is highly susceptible to fraud by hackers who have developed devices that mimic in-band signaling.


Out-of-band signaling has evolved to mitigate the above-described problems. Out-of-band signaling utilizes separate channels, and in many cases separate switching elements. Congestion on the channels carrying the actual communication traffic is thereby considerably reduced. Unauthorized simulation of signaling messages which ride on an out-of-band channel or network is virtually impossible. As out-of-band signaling utilizes its own signal formats and protocols, unconstrained by protocols and formats used for the actual communication, out-of-band signaling typically is considerably faster than in-band signaling.


Out of-band-signaling networks typically include data links and one or more packet switching systems. Out-of-band signaling for telephone networks is often referred to as Common-Channel Signaling (CCS) or Common Channel Interoffice Signaling (CCIS). Most such signaling communications for telephone networks utilize signaling system 7 (SS7) protocol. An SS7 compliant CCIS network, such as illustrated in FIG. 2, comprises data Signal Transfer Points (STPs) and data links between the STPs and various telephone switching offices of the network. The STPs are program controlled packet data switching systems. In normal call processing operation, an STP will receive a packet data message from another node of the network, for example from an end office switching system. The STP analyzes point code information in the packet and routes the packet according to a translation table stored within the STP. This translation table is static. Any packet having a particular point code is output on a port going to the next CCIS signaling node specified by translation of that point code.


Each local area STP can connect to a large number of the SSP-COs, as indicated for ease of illustration merely by the circles below STPs 23 and 25. The central office SSPs are interconnected to each other by trunk circuits for carrying telephone services. The overall network may contain end offices without SSP functionality. Such end offices will forward calls to one of the SSPs if such treatment is required. Also, certain switching offices within the network, whether SSPs or not, may function primarily as tandem type offices providing connections between trunk circuits only.


The local area STPs 23 and 25, and any number of other such local area STPs (not shown) communicate with a state or regional STP 31. The state or regional STP 31 in turn provides communications with the ISCP 40. The STP hierarchy can be expanded or contracted to as many levels as needed to serve any size area covered by the Advanced Intelligent Network (AIN) and to service any number of stations and central office switches. Also, certain switching offices within the network, whether SSPs or not, may function primarily as tandem type offices providing connections between trunk circuits only.


The links between the central office switching systems-and the local area STPs 23 and 25 are typically SS#7 type CCIS interoffice data communication channels. The local area STPs are in turn connected to each other and to the regional STP 31 via a packet switched network. The regional STP 31 also communicates with the ISCP 40 via a packet switched network.


Messages transmitted between the SSPs and the ISCP are formatted in accord with the Transaction Capabilities Applications Protocol (TCAP). The TCAP protocol provides standardized formats for various query and response messages. Each query and response includes data fields, for a variety of different pieces of information relating to the current call. For example, an initial TCAP query from the SSP includes, among other data, a “Service Key” which is the calling party's address. TCAP also specifies a standard message response format including routing information, such as primary carrier ID, alternate carrier ID and second alternate carrier ID and a routing number and a destination number The TCAP specifies a number of additional message formats, for example a format for a subsequent query from the SSP, and formats for “INVOKE” messages for instructing the SSP to play an announcement or to play an announcement and collect digits and a “SEND TO RESOURCES” message to instruct the SSP to route to another network node. Reference is made to the aforementioned copending application, Ser. No. 08/248,980, filed May 25, 1994, for a more detailed description of the AIN network.


The ISCP 40 is an integrated system that contains a data base. In the AIN network system, certain calls receive specialized AIN type processing under control of data files stored in the ISCP data base. Such files contain call processing-records (CPRs) associated with respective AIN subscribers. Information-contained in the CPRs relate to the AIN service or services to which the customer subscribes. The SSP type local offices of the public telephone network include appropriate data in their translation tables for customers subscribing to AIN services to define certain call processing events identified as AIN “triggers”. The SSP uses the translation table data to detect a triggering event during processing of calls to or from such AIN service subscribers. Upon detection of such event, the SSP suspends processing of a call and activates a query and response type AIN interaction with the ISCP. Completion of call processing ensues after sufficient information is exchanged between the SSP and the ISCP. For ordinary telephone service calls that are not subject to enhanced treatment, there would be no event to trigger AIN messaging. The local and toll office switches would function normally and process such calls without referring to the ISCP data base for instructions.



FIG. 3 is a simplified block diagram of an AIN controlled PSTN, such as the type shown in FIG. 2, which includes architecture for implementing Internet routing in accordance with one preferred embodiment of the invention. It is to be understood that the Internet representation in this figure, as well as throughout this disclosure, is illustrative of any packet network of routers that allows voice traffic to be packetized and sent over a shared network. The use of the phrases “Internet” and “data packet network” or the like are used interchangeably throughout this description. SSP capable central offices 13 and 17, which may be located in the same or different states and regions, are connected by trunks 14 and 16 respectively to the PSTN indicated by a cloud 10. Each central office is connected by local loops to subscribers customer premises equipment (CPE) such as telephone terminals 12 and PC 90. The telephone 12 may be a standard telephone used for Plain Old Telephone Service (POTS), with conversion of analog voice to digital signals performed at a central office, or a so-called “Internet Phone” that outputs digital voice signals. The SSPs 13 and 17 are connected by CCIS links to STP 31 which in turn may be connected to ISCP 40. While the STP functionality is here shown as constituting a single STP it will be appreciated that this is for the purpose of simplicity only and that a hierarchy of STPs may be involved.


Each of the central office SSPs 13 and 17 is connected to Internet Module 92 and 94, respectively, by T1 trunks 96 and 98. Alternatively, the Internet Module hardware may be situated at the central office and associated with the switching system. The Internet Module will be described in further detail with respect to FIG. 4. The Internet Modules may be provided with SSP capabilities and connected into the CCIS network directly to an STP or, as illustrated by the links 102 and 104, to the SSPs 13 and 17. The Internet Modules may be linked together for signaling purposes by conventional F links. The Internet Modules are connected to the Internet cloud by T1/T3 trunks 111 and 112.


The functional architecture of one embodiment of an Internet Module for use in the invention is shown diagrammatically in FIG. 4. The Internet Module includes a gateway router 110 of the type now generally used in Internet practice, such as shown in FIG. 1 and described in related application Ser. No. 08/634,544, referenced above. An interface with processing capability is illustratively shown at 112. Connected to the router are a Domain Name Service (DNS) server 114 and a Dynamic Host Configuration Protocol (DHCP) server 116 of the type conventionally used by Internet Service Providers in existing Internet Service. The router interface is connected to the central office and to the CCIS network while the router is connected to the Internet.



FIG. 5 is a block diagram that represents the functionality of the processor interface 112 and the router 110. The processor contains a common Generic Data Interface (GDI) 120 for communicating signaling messages with the ISCP over the common channel signaling network. Data communication by the gateway router of both signaling and information content through the Internet (or other equivalent packet network) occurs through TCP/IP protocol 124, packets being transmitted and received through physical transport layer 126. The physical transport layer may comprise Asynchronous Transfer Mode (ATM), frame relay or some other type of data communication mode.


While message and signaling communication with the common channel signaling network occurs through the GDI, communication of voice data is made through the Channel Serving Unit, Digital Serving Unit (CSU/DSU) 128. This unit, which may physically comprise a digital line card in the processor with standard 24 digital voice line inputs, packetizes voice data received from the telephone central office. The CSU/DSU coordinates with route determination unit 130 to identify packets, termination phone numbers and routes to the network termination gateway router. The route determination information is included in each packet for the data received from the originating central office SSP. The packetized data is compressed in accordance with stored algorithm 132, before being sent to the TCP/IP stack and physical transport layer for transmission to the far end gateway router. To complete transmission to the destination telephone, the termination router decompresses the received packets, depacketizes back to voice data which is then routed to the destination PSTN. Two way capability for each of the functions is provided for communication in both directions. While shown for illustrative purposes as separate blocks, the route determination and compression/decompression functions, as well as the quality test application, may be run, for example, by a UNIX-based computer.



FIGS. 6A and 6B taken together form a simplified flow chart that illustrates operation of preferred embodiments of the invention. At step 200, a voice call is placed, for example, by calling telephone station 11, connected to central office SSP switch 13, to telephone station 15, connected to central office SSP switch 17. The dialing information indicates that the call is to be routed through the Internet. The specific manner in which dialed input is used to designate such routing may be in any of several alternatives, as more fully described in the aforementioned applications, Ser. Nos. 08/634,543 and 08/670,908. For example, a data network routing designation for a call may be made on a per call basis, by using a unique entry code, such as *82, or the caller may dial a virtual number, thereafter entering the destination telephone number. Alternatively, the caller's CPR may store criteria for routing all calls dialed to specifically identified destination numbers or area codes through a data network such as Internet. Preselected conditions can include any combination of time of day, day of week, destination areas, or specific destination telephone numbers. Of course, the CPR may be set to attempt Internet routing for all interlata calls if so desired. Calls that are not designated Internet type calls are processed in routine fashion through the PSTN network.


At step 202, call processing for an Internet type call is temporarily suspended by SSP 13, which then transmits a TCAP query message to the ISCP through the STP 31. The ISCP will access the caller's CPR for information as to how to handle the call, including information as to alternate network routing and predefined acceptable data network performance level.


Before continuing routing of the call from the SSP 13, it is determined at step 204 whether the current performance quality through the Internet network is to be compared with the prestored threshold level of acceptability. Checking of these conditions for the purpose of initially routing the call between central office SSPs 13 and 17 alternatively through the Internet or the PSTN network is the subject of disclosure of the aforementioned application Ser. No. 08/821,027 filed Mar. 19, 1997 and entitled Voice Call Alternative Routing Through PSTN And Internet Networks, incorporated herein by reference. As more fully described therein, if an initial quality check is to be performed, the Internet module 92 will receive a prompt message from the ISCP, through the GDI, with the appropriate information. A quality test application in the processor is then initiated for determining whether a call is to be routed through the Internet, at step 206. Performance level monitoring may be performed in a variety of ways. For example, a service test may comprise the sending of a rudimentary signal, known in the art as a “ping” signal, from the local router to the destination router and measuring the response time. The test signal generated by the quality test application is formatted for transport through physical layer 126 and the Internet to the destination end gateway router. If the monitored performance level is found to be unsatisfactory in step 208, the Internet module will issue a signal to the SSP 13 to route the call in routine fashion through the PSTN at step 210.


If it is determined at step 204 that no initial quality check is to be made, or if successful performance quality has been determined at step 208, then routing of the call through the Internet is set up at step 212. The call processing set up continues at SSP 13, which may first determine, either through the SS7 network or through the Internet, whether the call destination station is busy. If the destination station is available, router 110 in Internet module 92 will transmit a message to the destination router in Internet module 94 to initiate a call through SSP 17 in the destination PSTN to the destination station. The path for transmission of the voice data through the data network will have been determined by the CSU/DSU unit 128, in conjunction with route destination unit 130. The call is connected to appropriate CSU/DSU ports in the routers of each of the Internet modules. Quality level criteria, obtained by access of the caller's CPR in the ISCP, will have been downloaded to the GDI at Internet module 92 for use with the quality test application functionality.


While the call is in progress performance quality of the data network is continually monitored under control of the quality test application in Internet module 92. Monitoring of data network performance may be undertaken in step 214 in several alternative ways. During silent intervals in transmission of a call, ping request packets may be transmitted from Internet module 92 and the round trip time duration for receiving response packets measured. The number of voice data packet pulses received per unit time period from the Internet by module 92 is a measure of data flow rate. The time variance between voice data packets received from the Internet at the module 92 is a further indication of performance. The sequence of voice data packets received at module 92 can be checked, the frequency of missed or dropped packets determined. All of these monitored variables can be correlated to a corresponding data rate that can be compared with the predefined acceptable rate for the call received by the module 92 from the ISCP CPR of the calling subscriber. All of these measurements are within the inherent capability of a gateway router, many of which are performed during normal data transmission for other purposes. The quality test application thus can apply a plurality of repetitive test criteria to determine acceptable quality during the course of the call.


As long as the data network performance quality remains acceptable, as monitored repetitively at step 214, transmission will continue through the Internet. If the performance level is found to be unsatisfactory at step 214, the module 92 transmits a control signal to SSP 13 at step 216. At step 218 a connection for the call is established through the PSTN network between SSP 13 and SSP 17. The physical connection to the SSPs may be 3-way or so-called “no-trunk” paths, that are commonly used for conference calls or testing. Set up of this connection preferably is made through the SS7 network if such functionality is available. Alternatively, in-band signaling, either through PSTN or through the Internet from SSP 13 to SSP 17 may take place. Effectively, the call is regenerated between the SSPs 13 and 17, while transmission concurrently takes place through the established Internet route.


At step 220, the lines from stations 11 and 15 are bridged to the respective SSPs 13 and 17 in a seamless manner, without application of audible ringing or ringback signals. Transmission through the Internet is then terminated and communication of the call continues through the established PSTN connection.


As a result of the operation of this invention, quality of communication can be assured during the course of a phone call, while the need to terminate an existing call and thereafter redial a new call through an alternative rout, with the accompanying annoyance, are avoided. It can be appreciated that this invention will ensure quality of voice communication while taking advantage of available network economies. Only the preferred embodiments of the invention and but a few examples of its versatility are shown and described in the present disclosure. It is to be understood that the invention is capable of use in various other combinations and environments and is capable of changes or modifications within the scope of the inventive concept as expressed herein. For example, while rerouting of a call has been disclosed to be a dynamic process automatically responsive to monitored conditions, the AIN network of the invention can be implemented to be responsive to user input, for example DTMF, during the call. A caller at telephone 11, if desirous of improving the perceived communication quality, can depress the “*” or the like to effect rerouting through the PSTN network. The DTMF input would be recognized by the module 92, which would then generate a signal to the SSP 13 in the same manner as if quality were to be found deficient in step 214. Module 92 can also be made responsive to such DTMF input from station 15, thereby permitting either party to upgrade the call quality. As a further modification, several data rates may be stored in a subscriber's CPR, for example 2.4 kps., 4.8 kps., and 9.6 kps., with one of the rates as a default. Various DTMF signals can be allocated respectively to each of the stored rates. Input of one of the DTMF choices during a call can effect a change in the level with which the performance monitored level is compared. Internet module 92 may obtain the necessary correlating information between DTMF signal and performance level for the quality test application from the ISCP either during the initial access in step 202, or can access the ISCP in response to recognition of receipt of the DTMF input.

Claims
  • 1. A method of controlling voice communication between calling and called telephone stations each connected through a respective switch to a public switched telephone network (PSTN) region and remotely located from each other, comprising the steps of: routing a voice call carrying two-way voice communication between said calling and called stations in digital packet format through a path of the Internet;changing the routing of said call between said calling and called stations from the Internet path to a circuit switched network path without terminating the call, thereby bypassing said packet data network while maintaining the voice communication call; andwherein said changing step is responsive to a signal input by one of said stations.
  • 2. A method as recited in claim 1, wherein said signal is input by a user.
  • 3. A method as recited in claim 2, wherein said signal is a DTMF signal.
  • 4. A method as recited in claim 1, wherein said signal is activated when a response time between said calling and called stations is greater than a predetermined threshold.
  • 5. A method as recited in claim 4, wherein said response time is determined by a traversal time of a test signal sent between said calling and called stations.
  • 6. A communications system comprising: a public switched telecommunications network (PSTN) having a plurality of interconnected central office switching systems each connected to at least one subscriber line;a public data network separate from said switched telecommunications network comprising multiple remotely spaced routers for linking together paths of said public data network using transmission control protocols to provide connectionless packet service between remote locations of said public data network;at least two of said central office switching systems connected to a respective interface to said public data network, said central office switching systems providing selective connection between said interfaces and the subscriber lines connected to each of said central office switching systems;means for rerouting a voice call between subscriber lines of said two central office switching systems that traverse said public data network to a circuit switched network path in said PSTN in response to a predetermined condition, without terminating the existing voice call; andwherein said predetermined condition is receipt of a signal input from one of said subscriber lines.
  • 7. A system as recited in claim 6, wherein said signal is input by a user.
  • 8. A system as recited in claim 7, wherein said signal is a DTMF signal.
  • 9. A system as recited in claim 6, wherein said signal is activated when a response time between said central office switching systems is greater than a predetermined threshold.
  • 10. A system as recited in claim 9, wherein said response time is determined by a traversal time of a test signal sent between said central office switching systems.
  • 11. A communications system comprising: a public switched telecommunications network (PSTN) having a plurality of interconnected central office switching systems each connected to at least one subscriber line;a public data network separate from said switched telecommunications network comprising multiple remotely spaced routers for linking together paths of said public data network using transmission control protocols to provide connectionless packet service between remote locations of said public data network;at least two of said central office switching systems connected to a respective interface to said public data network, said central office switching systems providing selective connection between said interfaces and the subscriber lines connected to each of said central office switching systems; andmeans for automatically rerouting a voice call between subscriber lines of said two central office switching systems that traverse said public data network to a non-packet data format voice path in said PSTN in response to a predetermined condition, without terminating the existing voice call;wherein said predetermined condition is the occurrence of an unacceptable level of quality of performance of said public data network, and each said interface comprises means for monitoring said data network during the course of transmission of said voice call through said public data network.
  • 12. A communications network comprising: a switched telecommunications network having interconnected central office switching systems and having subscriber lines connected to said central office switching systems providing connection between terminals connected to said subscriber lines, each of said central office switching systems responding to a service request on a subscriber line connected thereto to selectively provide a communication connection between the requesting line and another selected subscriber line through the switched telecommunications network;a separate control network for said switched telecommunications network comprising a common channel interoffice signaling network including signal transfer points connected to said central office switching systems through signal switching points via links between said signal switching points and signal transfer points;a public data network separate from said switched telecommunications network comprising multiple remotely spaced routers for linking together paths of said public data network using transmission control protocols to provide connectionless packet service between remote locations of said public data network;at least two of said central office switching systems having connected thereto an interface to said public data network, said central office switching systems providing selective connection between said interfaces and the subscriber lines connected to each of said central office switching systems;each said interface comprising means for monitoring said public data network during the course of two-way voice communication of a voice call between a first and a second of said subscriber lines through said public data network to determine a quality of performance level in said public data network, and means for providing a signal to said control network indicating that said performance level is unacceptable; andwherein said public data network is the Internet and said control network is responsive to said signal to reroute said voice call through said switched telecommunications network to bypass the Internet while maintaining the two-way voice communication call.
  • 13. A communication network as recited in claim 12, wherein said central office switching systems comprise means responsive to said control network for bridging said first and second subscriber lines to the rerouted switched telecommunications path.
  • 14. A method of controlling voice communication between calling and called telephone stations each connected through a respective switch to a public switched telephone network (PSTN) region and remotely located from each other, comprising the steps of: routing a voice call carrying two-way voice communication between said calling and called stations in digital packet format through a path of the Internet; andchanging the routing of said call between said calling and called stations from the Internet path to a non-packet data format voice telephone network voice path without terminating the call, thereby bypassing said packet data network while maintaining the voice communication call;wherein said changing step comprises: monitoring said packet data network during the course of transmission of said voice call through said packet data network path to determine a quality of performance level;comparing the performance level determined in said monitoring step with a predetermined threshold level; andrerouting the call to said voice telephone network voice path if the performance level of said packet data network as monitored in said monitoring step is below said predetermined threshold.
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 08/815,361 filed on Mar. 11, 1997 now U.S. Pat. No. 6,574,216. This application is related to application Ser. No. 08/821,027, filed Mar. 19, 1997 and entitled Voice Call Alternative Routing Through PSTN And Internet Networks, application Ser. No. 08/634,544, entitled Universal Access Multimedia Network, filed Apr. 18, 1996, application Ser. No. 08/634,543, entitled Internet Telephone Service, filed Apr. 18, 1996 and application Ser. No. 08/670,908, entitled Internet Telephone System, filed Jun. 28, 1996. The specifications of those applications are incorporated herein by reference in their entirety.

US Referenced Citations (830)
Number Name Date Kind
4054756 Comella et al. Oct 1977 A
4100377 Flanagan Jul 1978 A
4191860 Weber Mar 1980 A
4201891 Lawrence et al. May 1980 A
4313036 Jabara et al. Jan 1982 A
4375097 Ulug Feb 1983 A
4630262 Callens Dec 1986 A
4652700 Matthews et al. Mar 1987 A
4653045 Stanley et al. Mar 1987 A
4679190 Dias et al. Jul 1987 A
4685125 Zave Aug 1987 A
4713806 Oberlander et al. Dec 1987 A
4718005 Feigenbaum et al. Jan 1988 A
4730071 Schoenthal Mar 1988 A
4741820 Coughlin May 1988 A
4747130 Ho May 1988 A
4765924 Inoue Aug 1988 A
4782485 Gollub Nov 1988 A
4821034 Anderson et al. Apr 1989 A
4827500 Binkerd et al. May 1989 A
4865763 Inoue Sep 1989 A
4866763 Cooper et al. Sep 1989 A
4872157 Hemmady Oct 1989 A
4872159 Hemmady Oct 1989 A
4872160 Hemmady et al. Oct 1989 A
4875206 Nichols Oct 1989 A
4877949 Danielson Oct 1989 A
4882476 White Nov 1989 A
4893302 Hemmady et al. Jan 1990 A
4894824 Hemmady Jan 1990 A
4899333 Roediger Feb 1990 A
4910794 Mahany Mar 1990 A
4922486 Lidinsky May 1990 A
4933931 Kokubo Jun 1990 A
4942574 Zelle Jul 1990 A
4958341 Hemmady et al. Sep 1990 A
4979206 Padden et al. Dec 1990 A
4996707 O'Malley et al. Feb 1991 A
D315573 Schultz Mar 1991 S
5008926 Misholi Apr 1991 A
5009337 Bimbi Apr 1991 A
5012511 Hanle et al. Apr 1991 A
5019699 Koenck May 1991 A
5023868 Davidson Jun 1991 A
5025254 Hess Jun 1991 A
5029196 Morganstein Jul 1991 A
5029199 Jones et al. Jul 1991 A
5031098 Miller Jul 1991 A
5052020 Koenck Sep 1991 A
5052943 Davis Oct 1991 A
5065393 Sibbitt et al. Nov 1991 A
5068888 Scherk et al. Nov 1991 A
5070536 Mahany Dec 1991 A
5098877 Coughlin Mar 1992 A
5107492 Roux et al. Apr 1992 A
5113499 Ankney et al. May 1992 A
5115431 Williams May 1992 A
5115495 Tsuchiya et al. May 1992 A
5123064 Hacker Jun 1992 A
5144282 Sutterlin Sep 1992 A
5146488 Okada et al. Sep 1992 A
5157390 Yoshie et al. Oct 1992 A
5157662 Tadamura et al. Oct 1992 A
5159592 Perkins Oct 1992 A
5159624 Makita Oct 1992 A
5164938 Jurkevich et al. Nov 1992 A
5180232 Chadima Jan 1993 A
5193110 Jones et al. Mar 1993 A
5195085 Bertsch et al. Mar 1993 A
5195086 Baumgartner et al. Mar 1993 A
5195128 Knitl Mar 1993 A
5195183 Miller Mar 1993 A
5199062 Von Meister et al. Mar 1993 A
5200993 Wheeler et al. Apr 1993 A
5202817 Koenck Apr 1993 A
5202825 Miller Apr 1993 A
5204894 Darden Apr 1993 A
5206901 Harlow et al. Apr 1993 A
5208848 Pula May 1993 A
5215011 Monney Jun 1993 A
5216233 Main Jun 1993 A
5218187 Koenck Jun 1993 A
5218188 Hanson Jun 1993 A
5223699 Flynn et al. Jun 1993 A
5223820 Sutterlin Jun 1993 A
5225071 Coughlin Jul 1993 A
5226075 Funk et al. Jul 1993 A
5227614 Danielson Jul 1993 A
5231492 Dangi et al. Jul 1993 A
5235317 Sutterlin Aug 1993 A
5237604 Ryan Aug 1993 A
5241588 Babso et al. Aug 1993 A
5243645 Bissell et al. Sep 1993 A
5243654 Hunter Sep 1993 A
5247571 Key et al. Sep 1993 A
5254971 Sutterlin Oct 1993 A
5260986 Pershan Nov 1993 A
5263080 Jones et al. Nov 1993 A
5265155 Castro Nov 1993 A
5272749 Masek Dec 1993 A
5274696 Perelman Dec 1993 A
5280159 Schultz Jan 1994 A
5287199 Zoccolillo Feb 1994 A
5289378 Miller Feb 1994 A
5289468 Yoshida Feb 1994 A
5295154 Meier Mar 1994 A
5303297 Durrell et al. Apr 1994 A
5305181 Schultz Apr 1994 A
5308966 Danielson May 1994 A
5309437 Perlman et al. May 1994 A
5311583 Friedes et al. May 1994 A
5313053 Koenck May 1994 A
5317566 Joshi May 1994 A
5317691 Traeger May 1994 A
5318719 Hughes Jun 1994 A
5322991 Hanson Jun 1994 A
5325421 Hou et al. Jun 1994 A
5327421 Hiller et al. Jul 1994 A
5327486 Wolff et al. Jul 1994 A
5329520 Richardson Jul 1994 A
5329578 Brennan et al. Jul 1994 A
5331580 Miller Jul 1994 A
5333266 Boaz Jul 1994 A
5341374 Lewen et al. Aug 1994 A
5345446 Hiller et al. Sep 1994 A
5346611 Coughlin Sep 1994 A
5347633 Ashfield et al. Sep 1994 A
5349497 Hanson Sep 1994 A
5349678 Morris Sep 1994 A
5351286 Nici Sep 1994 A
5353331 Emery et al. Oct 1994 A
5359185 Hanson Oct 1994 A
5361256 Doeringer et al. Nov 1994 A
5365524 Hiller et al. Nov 1994 A
5365546 Koenck Nov 1994 A
5367566 Moe et al. Nov 1994 A
5371858 Miller Dec 1994 A
5375068 Palmer et al. Dec 1994 A
5375159 Williams Dec 1994 A
5377186 Wegner et al. Dec 1994 A
5381465 Carter et al. Jan 1995 A
5384831 Creswell et al. Jan 1995 A
5384840 Blatchford et al. Jan 1995 A
5386467 Ahmad Jan 1995 A
5390175 Hiller et al. Feb 1995 A
5390335 Stephan et al. Feb 1995 A
5392344 Ash et al. Feb 1995 A
5392402 Robrock Feb 1995 A
5394436 Meier Feb 1995 A
5396542 Alger et al. Mar 1995 A
5400393 Knuth Mar 1995 A
5402478 Hluchyj et al. Mar 1995 A
5406557 Baudoin Apr 1995 A
5408237 Patterson Apr 1995 A
5408382 Schultz Apr 1995 A
5410141 Koenck Apr 1995 A
5410754 Klotzbach et al. Apr 1995 A
5416842 Aziz May 1995 A
5418844 Morrisey et al. May 1995 A
5420211 Hughes May 1995 A
5420916 Sekiguchi May 1995 A
5422882 Hiller et al. Jun 1995 A
5422940 Endo et al. Jun 1995 A
5422941 Hasenauer et al. Jun 1995 A
5425028 Britton et al. Jun 1995 A
5425051 Mahany Jun 1995 A
5425085 Weinberger et al. Jun 1995 A
5425090 Orriss Jun 1995 A
5425091 Josephs Jun 1995 A
5425780 Flatt et al. Jun 1995 A
5426636 Hiller et al. Jun 1995 A
5428608 Freeman et al. Jun 1995 A
5428636 Meier Jun 1995 A
5430719 Weisser et al. Jul 1995 A
5430727 Callon Jul 1995 A
5434852 La Porta et al. Jul 1995 A
5434913 Tung et al. Jul 1995 A
5436957 McConnell Jul 1995 A
5436963 Fitzpatrick et al. Jul 1995 A
5440563 Isidoro et al. Aug 1995 A
5440620 Slusky Aug 1995 A
5440621 Castro Aug 1995 A
5442690 Nazif et al. Aug 1995 A
5444709 Riddle Aug 1995 A
5448633 Jamaleddin et al. Sep 1995 A
5450411 Heil Sep 1995 A
5452289 Sharma et al. Sep 1995 A
5452297 Hiller et al. Sep 1995 A
5452350 Reynolds et al. Sep 1995 A
5455821 Schaeffer et al. Oct 1995 A
5457629 Miller Oct 1995 A
5459775 Isono et al. Oct 1995 A
5461611 Drak et al. Oct 1995 A
5463677 Bash et al. Oct 1995 A
5465207 Boatwright Nov 1995 A
5466170 Pavek Nov 1995 A
5468947 Danielson Nov 1995 A
5468950 Hanson Nov 1995 A
5469496 Emery et al. Nov 1995 A
5469497 Pierce et al. Nov 1995 A
5469500 Satter et al. Nov 1995 A
5473608 Gagne et al. Dec 1995 A
5473677 D'Amato et al. Dec 1995 A
5475732 Pester, III Dec 1995 A
5475737 Gamer et al. Dec 1995 A
5475748 Jones Dec 1995 A
5475817 Waldo et al. Dec 1995 A
5477531 McKee et al. Dec 1995 A
5479494 Clitherow Dec 1995 A
5481603 Gutierrez et al. Jan 1996 A
5483527 Doshi et al. Jan 1996 A
5483549 Weinberg et al. Jan 1996 A
5483586 Sussman Jan 1996 A
5483587 Hogan et al. Jan 1996 A
5483676 Mahany Jan 1996 A
5487111 Slusky Jan 1996 A
5488575 Danielson Jan 1996 A
5490247 Tung et al. Feb 1996 A
5493568 Sampat et al. Feb 1996 A
5493573 Kobayashi et al. Feb 1996 A
5495521 Rangachar Feb 1996 A
5500859 Sharma et al. Mar 1996 A
5500889 Baker et al. Mar 1996 A
5504746 Meier Apr 1996 A
5506887 Emery et al. Apr 1996 A
5506893 Buscher et al. Apr 1996 A
5511111 Serbetcioglu et al. Apr 1996 A
5513127 Gard et al. Apr 1996 A
5515303 Cargin, Jr. May 1996 A
5517434 Hanson May 1996 A
5517560 Greenspan May 1996 A
5520796 Chen et al. May 1996 A
5521370 Hanson May 1996 A
5521719 Yamada May 1996 A
5521924 Kakuma et al. May 1996 A
5524137 Rhee Jun 1996 A
5524145 Parker Jun 1996 A
5526353 Henley et al. Jun 1996 A
5526416 Dezonno et al. Jun 1996 A
5526489 Nilakantan et al. Jun 1996 A
5528539 Ong Jun 1996 A
5530744 Charalambous et al. Jun 1996 A
5530852 Mesk et al. Jun 1996 A
5537470 Lee Jul 1996 A
5539193 Gibbs Jul 1996 A
5539194 Miller Jul 1996 A
5539884 Robrock, II Jul 1996 A
5539886 Aldred et al. Jul 1996 A
5541398 Hanson Jul 1996 A
5541917 Farris Jul 1996 A
5541927 Kristol et al. Jul 1996 A
5541930 Klingman Jul 1996 A
5544010 Schultz Aug 1996 A
5551025 O'Reilly et al. Aug 1996 A
5551035 Arnold et al. Aug 1996 A
5555276 Koenck Sep 1996 A
5559068 Chen Sep 1996 A
5559721 Ishii Sep 1996 A
5559871 Smith Sep 1996 A
5561670 Hoffert et al. Oct 1996 A
5563882 Bruno et al. Oct 1996 A
5568645 Morris Oct 1996 A
5572583 Wheeler, Jr. et al. Nov 1996 A
5575961 Smyk Nov 1996 A
5576529 Koenck Nov 1996 A
5579472 Keyworth et al. Nov 1996 A
5583564 Rao Dec 1996 A
5583920 Wheeler, Jr. Dec 1996 A
5583926 Venier et al. Dec 1996 A
5583929 Ardon Dec 1996 A
5586175 Hogan Dec 1996 A
5586177 Farris et al. Dec 1996 A
5587577 Schultz Dec 1996 A
5590127 Bales et al. Dec 1996 A
5590133 Billstrom et al. Dec 1996 A
5590181 Hogan Dec 1996 A
5590346 West Dec 1996 A
5594717 Watanabe et al. Jan 1997 A
5594769 Pellegrino et al. Jan 1997 A
5594784 Velius Jan 1997 A
5594789 Seazholtz et al. Jan 1997 A
5598464 Hess et al. Jan 1997 A
5598487 Hacker Jan 1997 A
5602456 Cargin Feb 1997 A
5602854 Luse Feb 1997 A
5603085 Shedlo Feb 1997 A
5604682 McLaughlin et al. Feb 1997 A
5604737 Iwami et al. Feb 1997 A
5608446 Carr et al. Mar 1997 A
5608447 Farry et al. Mar 1997 A
5608706 Gordon Mar 1997 A
5608786 Gordon Mar 1997 A
5610910 Focsaneanu et al. Mar 1997 A
5610972 Emery et al. Mar 1997 A
5610976 Uota et al. Mar 1997 A
5610977 Williams et al. Mar 1997 A
5615251 Hogan Mar 1997 A
5617343 Danielson Apr 1997 A
5617422 Litzenberger et al. Apr 1997 A
5617540 Civanlar et al. Apr 1997 A
5619555 Fenton et al. Apr 1997 A
5619557 Van Berkum Apr 1997 A
5619562 Maurer et al. Apr 1997 A
5621787 McKoy et al. Apr 1997 A
5623601 Vu Apr 1997 A
5625180 Hanson Apr 1997 A
5625404 Grady et al. Apr 1997 A
5625407 Biggs et al. Apr 1997 A
5625555 Davis Apr 1997 A
5625675 Katsumaru et al. Apr 1997 A
5625677 Feiertag et al. Apr 1997 A
5625681 Butler, II Apr 1997 A
5625682 Gray et al. Apr 1997 A
5626682 Kobari et al. May 1997 A
5627886 Bowman May 1997 A
5633916 Goldhagen et al. May 1997 A
5633919 Hogan May 1997 A
5636216 Fox et al. Jun 1997 A
5638430 Hogan Jun 1997 A
5640001 Danielson Jun 1997 A
5644471 Schultz Jul 1997 A
5646982 Hogan et al. Jul 1997 A
5651006 Fujino et al. Jul 1997 A
5652787 O'Kelly Jul 1997 A
5654957 Koyama Aug 1997 A
5657250 Park et al. Aug 1997 A
5657317 Mahany Aug 1997 A
5661197 Villiger et al. Aug 1997 A
5661782 Bartholomew et al. Aug 1997 A
5661790 Hsu Aug 1997 A
5661792 Akinpelu et al. Aug 1997 A
5663208 Martin Sep 1997 A
5664005 Emery et al. Sep 1997 A
5664102 Faynberg Sep 1997 A
5668857 McHale Sep 1997 A
5669062 Olds et al. Sep 1997 A
5671436 Morrison Sep 1997 A
5672860 Miller Sep 1997 A
5673031 Meier Sep 1997 A
5673263 Basso et al. Sep 1997 A
5675507 Bobo, II Oct 1997 A
5675741 Aggarwal et al. Oct 1997 A
5679943 Schultz et al. Oct 1997 A
5680392 Semaan Oct 1997 A
5680442 Bartholomew et al. Oct 1997 A
5680446 Fleischer et al. Oct 1997 A
5680633 Koenck Oct 1997 A
5682379 Mahany Oct 1997 A
5687167 Bertin et al. Nov 1997 A
5689550 Garson et al. Nov 1997 A
5689553 Ahuja et al. Nov 1997 A
5692039 Brankley et al. Nov 1997 A
5694318 Miller Dec 1997 A
5694463 Christie et al. Dec 1997 A
5696903 Mahany Dec 1997 A
5699089 Murray Dec 1997 A
5699352 Kriete et al. Dec 1997 A
5699528 Hogan Dec 1997 A
5701295 Bales et al. Dec 1997 A
5701465 Baugher et al. Dec 1997 A
5703935 Raissyan et al. Dec 1997 A
5703942 Pinard et al. Dec 1997 A
5706286 Reiman et al. Jan 1998 A
5708680 Gollnick Jan 1998 A
5708833 Kinney Jan 1998 A
5710728 Danielson Jan 1998 A
5710884 Dedrick Jan 1998 A
5712903 Bartholomew et al. Jan 1998 A
5712906 Grady et al. Jan 1998 A
5712907 Wegner et al. Jan 1998 A
5712908 Brinkman et al. Jan 1998 A
5719854 Choudhury et al. Feb 1998 A
5722067 Fougnies Feb 1998 A
5724355 Bruno et al. Mar 1998 A
5724406 Juster Mar 1998 A
5724412 Srinivasan Mar 1998 A
5726984 Kubler et al. Mar 1998 A
5727002 Miller et al. Mar 1998 A
5727129 Barrett et al. Mar 1998 A
5729544 Lev et al. Mar 1998 A
5729599 Plomondon et al. Mar 1998 A
5732078 Arango Mar 1998 A
5732213 Gessel et al. Mar 1998 A
5737333 Civanlar et al. Apr 1998 A
5737395 Irribarren Apr 1998 A
5737404 Segal Apr 1998 A
5737414 Walker et al. Apr 1998 A
5740164 Liron Apr 1998 A
5740366 Mahany Apr 1998 A
5742596 Baratz et al. Apr 1998 A
5742668 Pepe et al. Apr 1998 A
5742670 Bennett Apr 1998 A
5742675 Kilander et al. Apr 1998 A
5742905 Pepe et al. Apr 1998 A
5744533 Iwamoto et al. Apr 1998 A
5747785 Miller May 1998 A
5747786 Cargin, Jr. May 1998 A
5748468 Notenboom et al. May 1998 A
5748619 Meier May 1998 A
5751706 Land et al. May 1998 A
5751707 Voit et al. May 1998 A
5751961 Smyk May 1998 A
5754639 Flockhart et al. May 1998 A
5754641 Voit et al. May 1998 A
5757784 Liebowitz et al. May 1998 A
5758281 Emery et al. May 1998 A
5761294 Shaffer et al. Jun 1998 A
5763867 Main Jun 1998 A
5764741 Barak Jun 1998 A
5768513 Kuthyar et al. Jun 1998 A
5774530 Montgomery et al. Jun 1998 A
5774533 Patel Jun 1998 A
5774535 Castro Jun 1998 A
5774660 Brendel et al. Jun 1998 A
5774695 Autrey et al. Jun 1998 A
5778313 Fougnies Jul 1998 A
5781550 Templin et al. Jul 1998 A
5781620 Montgomery et al. Jul 1998 A
5781624 Mitra et al. Jul 1998 A
5784617 Greenstein et al. Jul 1998 A
5787160 Chaney et al. Jul 1998 A
5790172 Imanaka Aug 1998 A
5790536 Mahany Aug 1998 A
5790548 Sistani zadeh et al. Aug 1998 A
5790806 Koperda Aug 1998 A
5793762 Penners et al. Aug 1998 A
5793763 Mayes et al. Aug 1998 A
5793771 Darland et al. Aug 1998 A
5794043 Kolb Aug 1998 A
5796790 Brunner Aug 1998 A
5799072 Vulcan et al. Aug 1998 A
5799156 Hogan Aug 1998 A
5802502 Gell et al. Sep 1998 A
5802510 Jones Sep 1998 A
5802513 Bowie, III Sep 1998 A
5804805 Koenck Sep 1998 A
5805474 Danielson Sep 1998 A
5805587 Norris Sep 1998 A
5805682 Voit et al. Sep 1998 A
5805807 Hanson Sep 1998 A
5809128 McMullin Sep 1998 A
5812534 Davis et al. Sep 1998 A
5812639 Bartholomew et al. Sep 1998 A
5812795 Horovitz et al. Sep 1998 A
5812834 Suzuki Sep 1998 A
5812865 Theimer et al. Sep 1998 A
5818836 DuVal Oct 1998 A
5818921 Vander Meiden et al. Oct 1998 A
5825780 Christie Oct 1998 A
5825862 Voit et al. Oct 1998 A
5825863 Walker Oct 1998 A
5825869 Brooks et al. Oct 1998 A
5826268 Schaefer et al. Oct 1998 A
5828737 Sawyer Oct 1998 A
5828740 Khuc et al. Oct 1998 A
5828844 Civanlar et al. Oct 1998 A
5832197 Houji Nov 1998 A
5834753 Danielson Nov 1998 A
5835723 Andrews et al. Nov 1998 A
5838665 Kahn et al. Nov 1998 A
5838682 Dekelbaum et al. Nov 1998 A
5838686 Ozkan Nov 1998 A
5838970 Thomas Nov 1998 A
5841764 Roderique et al. Nov 1998 A
5844893 Gollnick Dec 1998 A
5844896 Marks et al. Dec 1998 A
5845267 Ronen Dec 1998 A
5848143 Andrews et al. Dec 1998 A
5850358 Danielson Dec 1998 A
5850433 Rondeau Dec 1998 A
5854833 Hogan Dec 1998 A
5854975 Fougnies Dec 1998 A
5856364 Martin Jan 1999 A
5862171 Mahany Jan 1999 A
5864604 Moen et al. Jan 1999 A
5864610 Ronen Jan 1999 A
5867495 Elliot et al. Feb 1999 A
5867562 Scherer Feb 1999 A
5867566 Hogan Feb 1999 A
5870565 Glitho Feb 1999 A
5873099 Hogan Feb 1999 A
5878126 Velamuri et al. Mar 1999 A
5878130 Andrews et al. Mar 1999 A
5878212 Civanlar et al. Mar 1999 A
5881134 Foster et al. Mar 1999 A
5883891 Williams et al. Mar 1999 A
5884032 Bateman et al. Mar 1999 A
5888087 Hanson Mar 1999 A
5889774 Mirashrafi et al. Mar 1999 A
5892754 Kompella et al. Apr 1999 A
5892822 Gottlieb et al. Apr 1999 A
5892971 Danielson Apr 1999 A
5895431 Miller Apr 1999 A
5895906 Danielson Apr 1999 A
5898668 Shaffer Apr 1999 A
5898673 Riggan et al. Apr 1999 A
5901140 Van As et al. May 1999 A
5903558 Jones et al. May 1999 A
5905736 Ronen et al. May 1999 A
5907547 Foladare et al. May 1999 A
5910946 Csapo Jun 1999 A
5912887 Sehgal Jun 1999 A
5914481 Danielson Jun 1999 A
5915001 Uppaluru Jun 1999 A
5915005 He Jun 1999 A
5915008 Dulman Jun 1999 A
5915012 Miloslavsky Jun 1999 A
5917175 Miller Jun 1999 A
5917424 Goldman et al. Jun 1999 A
5918179 Foladare et al. Jun 1999 A
5923659 Curry et al. Jul 1999 A
5926482 Christie Jul 1999 A
5928292 Miller Jul 1999 A
5930343 Vasquez Jul 1999 A
5930700 Pepper Jul 1999 A
5933425 Iwata Aug 1999 A
5936958 Soumiya et al. Aug 1999 A
5937045 Yaoya et al. Aug 1999 A
5940479 Guy et al. Aug 1999 A
5940598 Strauss et al. Aug 1999 A
5940616 Wang Aug 1999 A
5940771 Gollnick Aug 1999 A
5944795 Civanlar Aug 1999 A
5946299 Blonder Aug 1999 A
5946386 Rogers et al. Aug 1999 A
5949056 White Sep 1999 A
5949776 Mahany Sep 1999 A
5949869 Sink Sep 1999 A
5953322 Kimball Sep 1999 A
5953338 Ma et al. Sep 1999 A
5953504 Sokal et al. Sep 1999 A
5953651 Lu et al. Sep 1999 A
5956391 Melen et al. Sep 1999 A
5956482 Agraharam et al. Sep 1999 A
5956697 Usui Sep 1999 A
5958016 Chang et al. Sep 1999 A
5958052 Bellovin et al. Sep 1999 A
5959998 Takahashi et al. Sep 1999 A
5962837 Main et al. Oct 1999 A
5966431 Reiman et al. Oct 1999 A
5966434 Schafer et al. Oct 1999 A
5969321 Danielson Oct 1999 A
5970065 Miloslavsky Oct 1999 A
5970477 Roden Oct 1999 A
5974043 Solomon Oct 1999 A
5974052 Johnson et al. Oct 1999 A
5978569 Traeger Nov 1999 A
5978840 Nguyen et al. Nov 1999 A
5979768 Koenck Nov 1999 A
5982774 Foladare et al. Nov 1999 A
5987108 Jagadish et al. Nov 1999 A
5987499 Morris Nov 1999 A
5991291 Asai et al. Nov 1999 A
5991292 Focsaneanu et al. Nov 1999 A
5991301 Christie Nov 1999 A
5991308 Fuhrmann et al. Nov 1999 A
5991864 Kinney Nov 1999 A
5995503 Crawley et al. Nov 1999 A
5995606 Civanlar et al. Nov 1999 A
5995608 Civanlar et al. Nov 1999 A
5999524 Corbalis et al. Dec 1999 A
5999525 Krishnaswamy Dec 1999 A
6005926 Mashinsky Dec 1999 A
6006100 Koenck Dec 1999 A
6006253 Kumar et al. Dec 1999 A
6011975 Emery et al. Jan 2000 A
6012088 Li et al. Jan 2000 A
6014379 White et al. Jan 2000 A
6014687 Watanabe et al. Jan 2000 A
6016307 Kaplan et al. Jan 2000 A
6016343 Hogan Jan 2000 A
6018360 Stewart et al. Jan 2000 A
6018567 Dulman Jan 2000 A
6021126 White et al. Feb 2000 A
6021263 Kujoory et al. Feb 2000 A
6023147 Cargin Feb 2000 A
6023474 Christie Feb 2000 A
6026087 Mirashrafi et al. Feb 2000 A
6026091 Christie Feb 2000 A
6028858 Rivers et al. Feb 2000 A
6029062 Hanson Feb 2000 A
6029261 Christie Feb 2000 A
6031840 Christie Feb 2000 A
6035028 Ward et al. Mar 2000 A
6036093 Schultz Mar 2000 A
6041109 Cardy et al. Mar 2000 A
6041117 Androski et al. Mar 2000 A
6044081 Bell et al. Mar 2000 A
6046992 Meier Apr 2000 A
6047051 Ginzboorg et al. Apr 2000 A
6049545 Stephenson et al. Apr 2000 A
6049813 Danielson Apr 2000 A
6052450 Allison et al. Apr 2000 A
6058000 Koenck May 2000 A
6064653 Farris May 2000 A
6081525 Christie Jun 2000 A
6084867 Meier Jul 2000 A
6084953 Bardenheuer et al. Jul 2000 A
6097804 Gilbert et al. Aug 2000 A
6098094 Barnhouse et al. Aug 2000 A
6101182 Sistanizadeh et al. Aug 2000 A
6104645 Ong Aug 2000 A
6104711 Voit Aug 2000 A
6108341 Christie Aug 2000 A
6108704 Hutton Aug 2000 A
6112206 Morris Aug 2000 A
6115458 Tasket Sep 2000 A
6118936 Lauer et al. Sep 2000 A
6125126 Hallenstal Sep 2000 A
6128304 Gardell et al. Oct 2000 A
6131121 Mattaway Oct 2000 A
6134235 Goldman et al. Oct 2000 A
6134433 Joong et al. Oct 2000 A
6137792 Jonas et al. Oct 2000 A
6137869 Voit et al. Oct 2000 A
6144647 Lopez-Torres Nov 2000 A
6144661 Katsube et al. Nov 2000 A
6144667 Doshi et al. Nov 2000 A
6144976 Silva Nov 2000 A
6149062 Danielson Nov 2000 A
6154445 Farris et al. Nov 2000 A
6154777 Ebrahim Nov 2000 A
6157621 Brown et al. Dec 2000 A
6157823 Fougnies Dec 2000 A
6169735 Alle et al. Jan 2001 B1
6175618 Shah et al. Jan 2001 B1
6181690 Civanlar Jan 2001 B1
6181703 Christie Jan 2001 B1
6185184 Mattaway Feb 2001 B1
6185198 LaDue Feb 2001 B1
6188677 Oyama et al. Feb 2001 B1
6192050 Stovall Feb 2001 B1
6192400 Hanson Feb 2001 B1
6198738 Chang et al. Mar 2001 B1
6201812 Christie Mar 2001 B1
6212162 Horlin Apr 2001 B1
6212193 Christie Apr 2001 B1
6222919 Hollatz et al. Apr 2001 B1
6226287 Farris et al. May 2001 B1
6226678 Mattaway May 2001 B1
6230203 Koperda et al. May 2001 B1
6233318 Picard et al. May 2001 B1
6233604 Van Horne et al. May 2001 B1
6236851 Fougnies May 2001 B1
6240091 Ginzboorg et al. May 2001 B1
6252869 Silverman Jun 2001 B1
6260067 Barnhouse et al. Jul 2001 B1
6263372 Hogan Jul 2001 B1
6266685 Danielson Jul 2001 B1
6278693 Aldred et al. Aug 2001 B1
6278704 Creamer et al. Aug 2001 B1
6279038 Hogan Aug 2001 B1
6282192 Murphy et al. Aug 2001 B1
6282281 Low Aug 2001 B1
6282284 Dezonno et al. Aug 2001 B1
6282574 Voit et al. Aug 2001 B1
6285745 Bartholomew et al. Sep 2001 B1
6289010 Voit et al. Sep 2001 B1
6298057 Guy Oct 2001 B1
6298062 Gardell et al. Oct 2001 B1
6298064 Christie Oct 2001 B1
6298120 Civanlar et al. Oct 2001 B1
6301609 Aravamudan et al. Oct 2001 B1
6304567 Rosenberg Oct 2001 B1
6310873 Rainis et al. Oct 2001 B1
6310941 Crutcher et al. Oct 2001 B1
6314103 Christie Nov 2001 B1
6324264 Wiener et al. Nov 2001 B1
6332023 Porter et al. Dec 2001 B1
6343115 Foladare et al. Jan 2002 B1
6347084 Kelly Feb 2002 B1
6347085 Kelly Feb 2002 B2
6359880 Curry Mar 2002 B1
6363065 Thornton et al. Mar 2002 B1
6373929 Johnson et al. Apr 2002 B1
6374302 Galasso et al. Apr 2002 B1
6375344 Hanson Apr 2002 B1
6381321 Brown et al. Apr 2002 B1
6385191 Coffman et al. May 2002 B1
6385193 Civanlar et al. May 2002 B1
6400702 Meier Jun 2002 B1
6407991 Meier Jun 2002 B1
6430195 Christie Aug 2002 B1
6449259 Allain et al. Sep 2002 B1
6449356 Dezonno Sep 2002 B1
6456617 Oda et al. Sep 2002 B1
6480588 Donovan Nov 2002 B1
6493353 Kelly et al. Dec 2002 B2
6498788 Emilsson et al. Dec 2002 B1
6513066 Hutton Jan 2003 B1
6529516 Parzych Mar 2003 B1
6539015 Voit Mar 2003 B2
6539077 Ranalli et al. Mar 2003 B1
6542497 Curry Apr 2003 B1
6546003 Farris Apr 2003 B1
6574216 Farris et al. Jun 2003 B1
6574681 White Jun 2003 B1
6584093 Salama et al. Jun 2003 B1
6594254 Kelly Jul 2003 B1
6600733 Deng Jul 2003 B2
6600735 Iwama et al. Jul 2003 B1
6614768 Mahany Sep 2003 B1
6614781 Elliott Sep 2003 B1
6621942 Hacker Sep 2003 B1
6625170 Curry et al. Sep 2003 B1
6633846 Bennett et al. Oct 2003 B1
6643362 Hogan Nov 2003 B2
6654357 Wiedeman Nov 2003 B1
6671285 Kirkby et al. Dec 2003 B1
6678718 Khouri et al. Jan 2004 B1
6681994 Koenck Jan 2004 B1
6687738 Hutton Feb 2004 B1
6688523 Koenck Feb 2004 B1
6690788 Bauer et al. Feb 2004 B1
6694359 Morris Feb 2004 B1
6701365 Hutton Mar 2004 B1
6704287 Moharram Mar 2004 B1
6711241 White et al. Mar 2004 B1
6714559 Meier Mar 2004 B1
6714983 Koenck Mar 2004 B1
6754181 Elliott et al. Jun 2004 B1
6760429 Hung et al. Jul 2004 B1
6775519 Wiedeman et al. Aug 2004 B1
6792256 Kinney Sep 2004 B1
6810033 Derks Oct 2004 B2
6823384 Wilson et al. Nov 2004 B1
6826165 Meier Nov 2004 B1
6829645 Hutton Dec 2004 B1
6839340 Voit et al. Jan 2005 B1
6870827 Voit et al. Mar 2005 B1
6885678 Curry et al. Apr 2005 B2
6895419 Cargin May 2005 B1
6910632 Koerck Jun 2005 B2
6925054 Atterton et al. Aug 2005 B1
6990090 Meier Jan 2006 B2
7012898 Farris et al. Mar 2006 B1
7013001 Felger et al. Mar 2006 B1
7079534 Medhat Jul 2006 B1
7085362 Christie Aug 2006 B1
7088705 Curry Aug 2006 B2
7092379 Singh et al. Aug 2006 B1
7120319 Danielson Oct 2006 B2
7149208 Mattaway Dec 2006 B2
7170887 Rosenberg Jan 2007 B2
7206592 Gollnick Apr 2007 B1
7236575 Kim et al. Jun 2007 B2
7274662 Kalmanek et al. Sep 2007 B1
7286562 Vargo et al. Oct 2007 B1
7295830 Gilbert et al. Nov 2007 B2
7359972 Jorgensen Apr 2008 B2
7492886 Kalmanek Feb 2009 B1
7502339 Pirkola et al. Mar 2009 B1
20020064149 Elliott May 2002 A1
20020067739 Wilkes et al. Jun 2002 A1
20020083166 Dugan et al. Jun 2002 A1
20020114324 Low et al. Aug 2002 A1
20020159461 Hamamoto et al. Oct 2002 A1
20030078006 Mahany Apr 2003 A1
20030169767 Christie May 2003 A1
20030112767 Meier Jun 2003 A1
20030189941 Christie Oct 2003 A1
20030193933 Jones Oct 2003 A1
20030198218 Farris Oct 2003 A1
20030198335 Porter et al. Oct 2003 A1
20040005046 Deo et al. Jan 2004 A1
20040018851 Koenck Jan 2004 A1
20040023651 Gollnick Feb 2004 A1
20040038717 Mahany Feb 2004 A1
20040039846 Goss et al. Feb 2004 A1
20040044667 Mahany Mar 2004 A1
20040073933 Gollnick Apr 2004 A1
20040090952 Kubler May 2004 A1
20040093363 Cargin May 2004 A1
20040114567 Kubler Jun 2004 A1
20040125753 Mahany Jul 2004 A1
20040131018 Johnson et al. Jul 2004 A1
20040145775 Kubler Jul 2004 A1
20040146020 Kubler Jul 2004 A1
20040146037 Kubler Jul 2004 A1
20040151150 Kubler Aug 2004 A1
20040151151 Kubler Aug 2004 A1
20040151164 Kubler Aug 2004 A1
20040160912 Kubler Aug 2004 A1
20040160913 Kubler Aug 2004 A1
20040162889 Morris Aug 2004 A1
20040165573 Kubler Aug 2004 A1
20040165793 Hacker Aug 2004 A1
20040166895 Koenck Aug 2004 A1
20040169583 Meier Sep 2004 A1
20040174841 Kubler Sep 2004 A1
20040174842 Kubler Sep 2004 A1
20040174843 Kubler Sep 2004 A1
20040203834 Mahany Oct 2004 A1
20040246940 Kubler Dec 2004 A1
20040264442 Kubler Dec 2004 A1
20050008002 Kubler Jan 2005 A1
20050013266 Kubler Jan 2005 A1
20050021713 Dugan et al. Jan 2005 A1
20050036467 Kubler Feb 2005 A1
20050078647 Meier Apr 2005 A1
20050083872 Kubler Apr 2005 A1
20050087603 Koenck Apr 2005 A1
20050191989 Plush et al. Sep 2005 A1
20050195859 Mahany Sep 2005 A1
20050232213 Meier Oct 2005 A1
20050242192 Koenck Nov 2005 A1
20050254475 Kubler Nov 2005 A1
20060007951 Meier Jan 2006 A1
20060062240 Meier Mar 2006 A1
20060131420 Koenck Jun 2006 A1
20060233161 Koenck Oct 2006 A1
20060251226 Hogan Nov 2006 A1
20060268806 Meier Nov 2006 A1
20060268807 Meier Nov 2006 A1
20060274732 Allen et al. Dec 2006 A1
20060274735 Allen et al. Dec 2006 A1
20060291752 Hacker Dec 2006 A1
20070001007 Koenck Jan 2007 A1
20070007353 Danielson Jan 2007 A1
20070065046 Hacker Mar 2007 A1
20070076687 Low et al. Apr 2007 A1
20070086445 Mattaway Apr 2007 A1
20070121529 Meier May 2007 A1
20070121591 Donovan May 2007 A1
20070201515 Lewis Aug 2007 A1
20070206576 Radulovic Sep 2007 A1
20070263644 Christie et al. Nov 2007 A1
20080013531 Elliott et al. Jan 2008 A1
20080063161 Joyce et al. Mar 2008 A1
20090022147 Farris et al. Jan 2009 A1
Foreign Referenced Citations (37)
Number Date Country
0235257 Feb 1987 EP
0235057 Sep 1987 EP
0335562 Oct 1989 EP
0365885 May 1990 EP
0381365 Aug 1990 EP
0559979 Sep 1993 EP
0729281 Feb 1995 EP
0767568 Oct 1995 EP
0802690 Apr 1996 EP
0722237 Jul 1996 EP
0781016 Jun 1997 EP
0812089 Dec 1997 EP
0823809 Feb 1998 EP
09-168051 Jun 1997 JP
09-168063 Jun 1997 JP
09-168064 Jun 1997 JP
09-168065 Jun 1997 JP
09-172459 Jun 1997 JP
09-172462 Jun 1997 JP
9107839 May 1991 WO
9411813 May 1994 WO
9522221 Aug 1995 WO
9529564 Nov 1995 WO
9620448 Jul 1996 WO
9620553 Jul 1996 WO
9632800 Oct 1996 WO
9634341 Oct 1996 WO
9638018 Nov 1996 WO
9714238 Apr 1997 WO
9720424 Jun 1997 WO
9722211 Jun 1997 WO
9723078 Jun 1997 WO
9728628 Aug 1997 WO
9733412 Sep 1997 WO
9812860 Mar 1998 WO
9823080 May 1998 WO
9834391 Aug 1998 WO
Related Publications (1)
Number Date Country
20030198218 A1 Oct 2003 US
Continuations (1)
Number Date Country
Parent 08815361 Mar 1997 US
Child 10442414 US