The present invention relates to telecommunications networks and more particularly to monitoring the quality of performance of voice calls routed through a data packet network. If quality conditions are determined to be unacceptable, call routing is transferred through a voice telephone network without requiring termination of the call.
Implementation of voice telephone service over a worldwide data network, such as the Internet, offers advantages that are now being explored. The Internet had its genesis in U.S. Government (called ARPA—Advanced Research Projects Agency) funded research which made possible national internetworked communication systems. This work resulted in the development of network standards as well as a set of conventions and protocols for interconnecting networks and routing information. These protocols, commonly referred to as TCP/IP—Transport Control Protocol/Internet Protocol—have subsequently become widely used in the industry. TCP/IP is flexible and robust. In effect, TCP takes care of the integrity and IP moves the data. Internet provides two broad types of services: connectionless packet delivery service and reliable stream transport service. The Internet basically comprises several large computer networks joined together over high-speed data links ranging from ISDN to T1, T3, FDDI, SONET, SMDS, TO1, etc. The most prominent of these national nets are MILNET (Military Network), NSFNET (National Science Foundation NETwork), and CREN (Corporation for Research and Educational Networking). In 1995, the Government Accounting Office (GAO) reported that the Internet linked 59,000 networks, 2.2 million computers and 15 million users in 92 countries.
A simplified diagram of the Internet is depicted in
By way of current illustration, MCI is both an ISP and an IP, Sprint is an ISP, and MicroSoft (MSN) is an IP using UUNET as an ISP. Other information providers, such as universities, are indicated in exemplary fashion at 72 and are connected to the AS/ISPs via the same type connections, here illustrated as T1 lines 74. Corporate Local Area Networks (LANs), such as those illustrated at 76 and 78, are connected through routers 80 and 82 and links shown as T1 lines 84 and 86. Laptop or PC computers 88 and 90 are representative of computers connected to the Internet via the public switched telephone network (PSTN), shown connected to the AS/ISPs via dial up links 92 and 96.
The Information Providers (IPs) are end systems that collect and market the information through their own servers. Access providers are companies such as UUNET, PSI, MCI and SPRINT which transport the information. Such companies market the usage of their networks.
In simplified fashion the Internet may be viewed as a series of gateway routers connected together with computers connected to the routers. In the addressing scheme of the Internet an address comprises four numbers separated by dots. An example would be 164.109.211.237. Each machine on the Internet has a unique number that includes one of these four numbers. In the address, the leftmost number is the highest number. By analogy this would correspond to the ZIP code in a mailing address. The first two numbers that constitute this portion of the address may indicate a network or a locale. That network is connected to the last router in the transport path. In differentiating between two computers in the same destination network only the last number field changes. In such an example the next number field 211 identifies the destination router. When the packet bearing the destination address leaves the source router it examines the first two numbers in a matrix table to determine how many hops are the minimum to get to the destination. It then sends the packet to the next router as determined from that table and the procedure is repeated. Each router has a database table that finds the information automatically. This process continues until the packet arrives at the destination computer. The separate packets that constitute a message may not travel the same path, depending on traffic load. However, they all reach the same destination and are assembled in their original sequence order in a connectionless fashion. This is in contrast to connection oriented modes such as frame relay and ATM or voice.
Software has recently been developed for use on personal computers to permit two-way transfer of real-time voice information via an Internet data link between two personal computers. In one of the directions, the sending computer converts voice signals from analog to digital format. The software facilitates data compression down to a rate compatible with modem communication via a POTS telephone line. The software also facilitates encapsulation of the digitized and compressed voice data into the TCP/IP protocol, with appropriate addressing to permit communication via the Internet. At the receiving end, the computer and software reverse the process to recover the analog voice information for presentation to the other party. Such programs permit telephone-like communication between Internet users registered with Internet Phone Servers. The book “Mastering the Internet”, Glee Cady and Pat McGregor, SYBEX Inc., Alameda, Calif., 1994, ISBN 94-69309, very briefly describes three proprietary programs said to provide real-time video and voice communications via the Internet.
Palmer et al., U.S. Pat. No. 5,375,068, issued Dec. 20, 1994 for Video Teleconferencing for Networked Workstations discloses a video teleconferencing system for networked workstations. A master process executing on a local processor formats and transmits digital packetized voice and video data, over a digital network using TCP/IP protocol, to remote terminals.
Lewen et al., U.S. Pat. No. 5,341,374, issued Aug. 23, 1994 for Communication Network Integrating Voice Data and Video with Distributed Call Processing, discloses a local area network with distributed call processing for voice, data and video. Real-time voice packets are transmitted over the network, for example to and from a PBX or central office.
Hemmady et al., U.S. Pat. No. 4,958,341, issued Sep. 18, 1990 for Integrated Packetized Voice and Data Switching System, discloses an integrated packetized voice and data switching system for a metropolitan area network (MAN). Voice signals are converted into packets and transmitted on the network.
Tung et al., U.S. Pat. Nos. 5,434,913, issued Jul. 18, 1995, and 5,490,247, issued Feb. 6, 1996, for Video Subsystem for Computer Based Conferencing System, disclose an audio subsystem for computer-based conferencing. The system involves local audio compression and transmission of information over an ISDN network.
Hemmady et al., U.S. Pat. No. 4,872,160, issued Oct. 3, 1989, for Integrated Packetized Voice and Data Switching System, discloses an integrated packetized voice and data switching system for metropolitan area networks.
Sampat et al., U.S. Pat. No. 5,493,568, issued Feb. 20, 1996, for Media Dependent Module Interface for Computer Based Conferencing System, discloses a media dependent module interface for computer based conferencing system. An interface connects the upper-level data link manager with the communications driver.
Koltzbach et al., U.S. Pat. No. 5,410,754, issued Apr. 25, 1995, for Bi-Directional Wire Line to Local Area Network Interface and Method, discloses a bi-directional wire-line to local area network interface. The system incorporates means for packet switching and for using the internet protocol (IP).
The commonly assigned applications, Ser. Nos. 08/634,543 and 08/670,908, identified more particularly above, are concerned with providing telephone service via the Internet to users of the public telecommunications network who may not have access to a computer or separate telephone access-to the Internet. Such service would be economical, especially for long distance calls, compared with the toll rates charged by long distance interexchange carriers.
With increasing volume of use on the Internet and the bursty nature of data transmission, traffic patterns have become unstable and unpredictable. The minimum quality of service acceptable for voice communication is much higher than the level for data transport as transmission delays noticeably degrade conversation. With the Internet or other high volume data network, acceptable voice communication may be available between two end points at a given time, but often not at other times. A surge in data traffic may make the network unsuitable for voice communication for as much as twenty or thirty minutes. Bottlenecks may occur at different points in the network at different times. The locations of the participants of a voice call are factors in determining suitability of the data network. The degree to which degradation of a voice call remains acceptable is subjective with the user and can be a tradeoff between quality of service and reduction of cost.
A deficiency in earlier proposed voice Internet service systems is the inability to ensure an acceptable level of service quality. Voice communication by nature should be perceived as real time interaction in order to be acceptable to the parties of the call. The packet data network traffic in the connection paths of a voice call may render intolerable transmission delays. Current systems do not measure delays against user acceptable standards. A high level of congestion and delay in a data network often leads to lost or dropped data packets that would noticeably degrade reconstructed voice audio. The voice call user must either endure such deficiencies or terminate the call in favor of originating a new call through an alternative system.
The aforementioned commonly assigned application Ser. No. 08/821,097 filed Mar. 19, 1997 and entitled Voice Call Alternative Routing Through PSTN And Internet Networks, is concerned with determining routing of voice calls alternatively between the public switched telephone network (PSTN) and a data packet network, such as the Internet, in accordance with the quality of service existing in the data packet network at the times of call origination. Through use of the PSTN Advanced Intelligent Network (AIN), a caller may predefine an acceptable level of service, for example 2.4 or 4.8 kbs to be stored in the user's Call Processing Record (CPR) in the AIN Integrated Services Control Point (ISCP). On a per call basis, the caller linked to a first public switched network may indicate a preference to route through the Internet. This indication would be recognized by the AIN system, in response to which the quality of service currently present on the Internet for completion of the call is measured. If the result exceeds the stored threshold, the call is set up and routed through the Internet to the switched network link to the destination party. If the quality of service on the Internet is not satisfactory, the call would be alternatively routed through the PSTN, which may include an Interexchange Carrier link.
The last described arrangement is an improvement over prior voice data network schemes in the respect that determination of data network performance quality avoids set up of a call that would be known at the outset to be inadequate for voice communication. However, with relatively unstable and unpredictable traffic patterns in data networks such as the Internet, the alternative set up arrangement does not accommodate a change to poor data network performance conditions after a call has been placed and routed through the data network. Thus, parties to such a call still must either suffer the deficiencies in voice quality, perhaps in the hope that data traffic conditions improve, or terminate the call in favor of a new call manually placed through the switched telephone network.
The present invention overcomes the above noted drawbacks of earlier proposed systems and provides additional advantages in part by monitoring the quality of service existing in a data packet network during the course of communication of a voice call through the data network. The user's acceptable level of service may be predefined with a threshold quality level stored in the user's Call Processing Record (CPR) in the AIN Integrated Services Control Point (ISCP) If the monitored quality is maintained in excess of the stored threshold, communication of the call continues through the established course of transmission. If the measured quality of service on the data network is not satisfactory, the routing of the call is changed to communication solely through a voice telephone network connection, which may include an Interexchange Carrier link, without terminating the call. Thus, the packet data network is bypassed to obtain voice grade quality while maintaining the call.
Monitoring of the data network, which may be the Internet, may be under control of a module that interfaces between the data network and the public switched telephone network. The caller's predefined acceptable level of quality, stored in the AIN ISCP may be obtained by the module for comparison with monitored levels. Upon failure of the comparison, the module can issue a signal to the calling station switch to automatically establish a connection for the call from the calling station switch through the PSTN to a second switch coupled to the called station. Such signal also can be generated by the module in response to a DTMF input by either user. Such input reflects the user's perceived dissatisfaction with quality of the call and acts as a command to automatically reroute the call to bypass the data network. Upon connection of the two switches through the voice telephone network, the voice call is bridged at each of the switches to the established connection. Communication of the call through the packet data network path is thereafter terminated.
Additional advantages of the present invention will become readily apparent to those skilled in this art from the following detailed description, wherein only the preferred embodiment of the invention is shown and described, simply by way of illustration of the test mode contemplated for carrying out the invention. As will be realized, the invention is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the invention. Accordingly, the drawings, throughout the various figures of which like elements are depicted by the same reference numerals, and description are to be regarded as illustrative in nature, and not as restrictive.
SSP capable central office switching systems typically contain a programmable digital switch with CCIS communications capabilities. One example of an SSP capable CO switch is a SESS type switch manufactured by AT&T. Other vendors, such as Northern Telecom and Seimens, manufacture comparable digital switches that may serve as the SSPs. A more detailed description of an exemplary SSP type CO is presented in the commonly assigned copending application, Ser. No. 08/248,980, filed May 25, 1994, hereby incorporated by reference herein.
The SSP type COs 11 and 13 are shown connected to a first local area STP 23, SSP-COs 15 and 17 being connected to a second local area STP 25. The connections to the STPs are for signaling purposes. The control part of SS7 protocol is known as Integrated Services Digital Network User Part (ISUP). ISUP determines the procedures for setting up, coordinating, and taking down trunk calls on the SS7 network.
Signaling between switching offices is required for transmitting routing and destination information, for transmitting alerting messages such as to indicate the arrival of an incoming call, and for transmitting supervisor information, e.g. relating to line status. Signaling between offices can use ‘in-band’ transport or ‘out-of-band’ transport.
In-band signaling utilizes the same channel that carries the communications of the parties. In a voice telephone system, for example, one of the common forms of in-band signaling between offices utilizes multi-frequency signaling over voice trunk circuits. The same voice trunk circuits also carry the actual voice traffic between switching offices. In-band signaling, however, tends to be relatively slow and ties up full voice channels during the signaling operations. In telephone call processing, a substantial percentage of all calls go unanswered because the destination station is busy. For in-band signaling, the trunk to the end office switching system serving the destination is set-up and maintained for the duration of signaling until that office informs the originating office of the busy line condition. Thus, in-band signaling greatly increases congestion on the voice traffic channels. In-band signaling also is highly susceptible to fraud by hackers who have developed devices that mimic in-band signaling.
Out-of-band signaling has evolved to mitigate the above-described problems. Out-of-band signaling utilizes separate channels, and in many cases separate switching elements. Congestion on the channels carrying the actual communication traffic is thereby considerably reduced. Unauthorized simulation of signaling messages which ride on an out-of-band channel or network is virtually impossible. As out-of-band signaling utilizes its own signal formats and protocols, unconstrained by protocols and formats used for the actual communication, out-of-band signaling typically is considerably faster than in-band signaling.
Out of-band-signaling networks typically include data links and one or more packet switching systems. Out-of-band signaling for telephone networks is often referred to as Common-Channel Signaling (CCS) or Common Channel Interoffice Signaling (CCIS). Most such signaling communications for telephone networks utilize signaling system 7 (SS7) protocol. An SS7 compliant CCIS network, such as illustrated in
Each local area STP can connect to a large number of the SSP-COs, as indicated for ease of illustration merely by the circles below STPs 23 and 25. The central office SSPs are interconnected to each other by trunk circuits for carrying telephone services. The overall network may contain end offices without SSP functionality. Such end offices will forward calls to one of the SSPs if such treatment is required. Also, certain switching offices within the network, whether SSPs or not, may function primarily as tandem type offices providing connections between trunk circuits only.
The local area STPs 23 and 25, and any number of other such local area STPs (not shown) communicate with a state or regional STP 31. The state or regional STP 31 in turn provides communications with the ISCP 40. The STP hierarchy can be expanded or contracted to as many levels as needed to serve any size area covered by the Advanced Intelligent Network (AIN) and to service any number of stations and central office switches. Also, certain switching offices within the network, whether SSPs or not, may function primarily as tandem type offices providing connections between trunk circuits only.
The links between the central office switching systems-and the local area STPs 23 and 25 are typically SS#7 type CCIS interoffice data communication channels. The local area STPs are in turn connected to each other and to the regional STP 31 via a packet switched network. The regional STP 31 also communicates with the ISCP 40 via a packet switched network.
Messages transmitted between the SSPs and the ISCP are formatted in accord with the Transaction Capabilities Applications Protocol (TCAP). The TCAP protocol provides standardized formats for various query and response messages. Each query and response includes data fields, for a variety of different pieces of information relating to the current call. For example, an initial TCAP query from the SSP includes, among other data, a “Service Key” which is the calling party's address. TCAP also specifies a standard message response format including routing information, such as primary carrier ID, alternate carrier ID and second alternate carrier ID and a routing number and a destination number The TCAP specifies a number of additional message formats, for example a format for a subsequent query from the SSP, and formats for “INVOKE” messages for instructing the SSP to play an announcement or to play an announcement and collect digits and a “SEND TO RESOURCES” message to instruct the SSP to route to another network node. Reference is made to the aforementioned copending application, Ser. No. 08/248,980, filed May 25, 1994, for a more detailed description of the AIN network.
The ISCP 40 is an integrated system that contains a data base. In the AIN network system, certain calls receive specialized AIN type processing under control of data files stored in the ISCP data base. Such files contain call processing-records (CPRs) associated with respective AIN subscribers. Information-contained in the CPRs relate to the AIN service or services to which the customer subscribes. The SSP type local offices of the public telephone network include appropriate data in their translation tables for customers subscribing to AIN services to define certain call processing events identified as AIN “triggers”. The SSP uses the translation table data to detect a triggering event during processing of calls to or from such AIN service subscribers. Upon detection of such event, the SSP suspends processing of a call and activates a query and response type AIN interaction with the ISCP. Completion of call processing ensues after sufficient information is exchanged between the SSP and the ISCP. For ordinary telephone service calls that are not subject to enhanced treatment, there would be no event to trigger AIN messaging. The local and toll office switches would function normally and process such calls without referring to the ISCP data base for instructions.
Each of the central office SSPs 13 and 17 is connected to Internet Module 92 and 94, respectively, by T1 trunks 96 and 98. Alternatively, the Internet Module hardware may be situated at the central office and associated with the switching system. The Internet Module will be described in further detail with respect to
The functional architecture of one embodiment of an Internet Module for use in the invention is shown diagrammatically in
While message and signaling communication with the common channel signaling network occurs through the GDI, communication of voice data is made through the Channel Serving Unit, Digital Serving Unit (CSU/DSU) 128. This unit, which may physically comprise a digital line card in the processor with standard 24 digital voice line inputs, packetizes voice data received from the telephone central office. The CSU/DSU coordinates with route determination unit 130 to identify packets, termination phone numbers and routes to the network termination gateway router. The route determination information is included in each packet for the data received from the originating central office SSP. The packetized data is compressed in accordance with stored algorithm 132, before being sent to the TCP/IP stack and physical transport layer for transmission to the far end gateway router. To complete transmission to the destination telephone, the termination router decompresses the received packets, depacketizes back to voice data which is then routed to the destination PSTN. Two way capability for each of the functions is provided for communication in both directions. While shown for illustrative purposes as separate blocks, the route determination and compression/decompression functions, as well as the quality test application, may be run, for example, by a UNIX-based computer.
At step 202, call processing for an Internet type call is temporarily suspended by SSP 13, which then transmits a TCAP query message to the ISCP through the STP 31. The ISCP will access the caller's CPR for information as to how to handle the call, including information as to alternate network routing and predefined acceptable data network performance level.
Before continuing routing of the call from the SSP 13, it is determined at step 204 whether the current performance quality through the Internet network is to be compared with the prestored threshold level of acceptability. Checking of these conditions for the purpose of initially routing the call between central office SSPs 13 and 17 alternatively through the Internet or the PSTN network is the subject of disclosure of the aforementioned application Ser. No. 08/821,027 filed Mar. 19, 1997 and entitled Voice Call Alternative Routing Through PSTN And Internet Networks, incorporated herein by reference. As more fully described therein, if an initial quality check is to be performed, the Internet module 92 will receive a prompt message from the ISCP, through the GDI, with the appropriate information. A quality test application in the processor is then initiated for determining whether a call is to be routed through the Internet, at step 206. Performance level monitoring may be performed in a variety of ways. For example, a service test may comprise the sending of a rudimentary signal, known in the art as a “ping” signal, from the local router to the destination router and measuring the response time. The test signal generated by the quality test application is formatted for transport through physical layer 126 and the Internet to the destination end gateway router. If the monitored performance level is found to be unsatisfactory in step 208, the Internet module will issue a signal to the SSP 13 to route the call in routine fashion through the PSTN at step 210.
If it is determined at step 204 that no initial quality check is to be made, or if successful performance quality has been determined at step 208, then routing of the call through the Internet is set up at step 212. The call processing set up continues at SSP 13, which may first determine, either through the SS7 network or through the Internet, whether the call destination station is busy. If the destination station is available, router 110 in Internet module 92 will transmit a message to the destination router in Internet module 94 to initiate a call through SSP 17 in the destination PSTN to the destination station. The path for transmission of the voice data through the data network will have been determined by the CSU/DSU unit 128, in conjunction with route destination unit 130. The call is connected to appropriate CSU/DSU ports in the routers of each of the Internet modules. Quality level criteria, obtained by access of the caller's CPR in the ISCP, will have been downloaded to the GDI at Internet module 92 for use with the quality test application functionality.
While the call is in progress performance quality of the data network is continually monitored under control of the quality test application in Internet module 92. Monitoring of data network performance may be undertaken in step 214 in several alternative ways. During silent intervals in transmission of a call, ping request packets may be transmitted from Internet module 92 and the round trip time duration for receiving response packets measured. The number of voice data packet pulses received per unit time period from the Internet by module 92 is a measure of data flow rate. The time variance between voice data packets received from the Internet at the module 92 is a further indication of performance. The sequence of voice data packets received at module 92 can be checked, the frequency of missed or dropped packets determined. All of these monitored variables can be correlated to a corresponding data rate that can be compared with the predefined acceptable rate for the call received by the module 92 from the ISCP CPR of the calling subscriber. All of these measurements are within the inherent capability of a gateway router, many of which are performed during normal data transmission for other purposes. The quality test application thus can apply a plurality of repetitive test criteria to determine acceptable quality during the course of the call.
As long as the data network performance quality remains acceptable, as monitored repetitively at step 214, transmission will continue through the Internet. If the performance level is found to be unsatisfactory at step 214, the module 92 transmits a control signal to SSP 13 at step 216. At step 218 a connection for the call is established through the PSTN network between SSP 13 and SSP 17. The physical connection to the SSPs may be 3-way or so-called “no-trunk” paths, that are commonly used for conference calls or testing. Set up of this connection preferably is made through the SS7 network if such functionality is available. Alternatively, in-band signaling, either through PSTN or through the Internet from SSP 13 to SSP 17 may take place. Effectively, the call is regenerated between the SSPs 13 and 17, while transmission concurrently takes place through the established Internet route.
At step 220, the lines from stations 11 and 15 are bridged to the respective SSPs 13 and 17 in a seamless manner, without application of audible ringing or ringback signals. Transmission through the Internet is then terminated and communication of the call continues through the established PSTN connection.
As a result of the operation of this invention, quality of communication can be assured during the course of a phone call, while the need to terminate an existing call and thereafter redial a new call through an alternative rout, with the accompanying annoyance, are avoided. It can be appreciated that this invention will ensure quality of voice communication while taking advantage of available network economies. Only the preferred embodiments of the invention and but a few examples of its versatility are shown and described in the present disclosure. It is to be understood that the invention is capable of use in various other combinations and environments and is capable of changes or modifications within the scope of the inventive concept as expressed herein. For example, while rerouting of a call has been disclosed to be a dynamic process automatically responsive to monitored conditions, the AIN network of the invention can be implemented to be responsive to user input, for example DTMF, during the call. A caller at telephone 11, if desirous of improving the perceived communication quality, can depress the “*” or the like to effect rerouting through the PSTN network. The DTMF input would be recognized by the module 92, which would then generate a signal to the SSP 13 in the same manner as if quality were to be found deficient in step 214. Module 92 can also be made responsive to such DTMF input from station 15, thereby permitting either party to upgrade the call quality. As a further modification, several data rates may be stored in a subscriber's CPR, for example 2.4 kps., 4.8 kps., and 9.6 kps., with one of the rates as a default. Various DTMF signals can be allocated respectively to each of the stored rates. Input of one of the DTMF choices during a call can effect a change in the level with which the performance monitored level is compared. Internet module 92 may obtain the necessary correlating information between DTMF signal and performance level for the quality test application from the ISCP either during the initial access in step 202, or can access the ISCP in response to recognition of receipt of the DTMF input.
This application is a continuation of U.S. patent application Ser. No. 08/815,361 filed on Mar. 11, 1997 now U.S. Pat. No. 6,574,216. This application is related to application Ser. No. 08/821,027, filed Mar. 19, 1997 and entitled Voice Call Alternative Routing Through PSTN And Internet Networks, application Ser. No. 08/634,544, entitled Universal Access Multimedia Network, filed Apr. 18, 1996, application Ser. No. 08/634,543, entitled Internet Telephone Service, filed Apr. 18, 1996 and application Ser. No. 08/670,908, entitled Internet Telephone System, filed Jun. 28, 1996. The specifications of those applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4054756 | Comella et al. | Oct 1977 | A |
4100377 | Flanagan | Jul 1978 | A |
4191860 | Weber | Mar 1980 | A |
4201891 | Lawrence et al. | May 1980 | A |
4313036 | Jabara et al. | Jan 1982 | A |
4375097 | Ulug | Feb 1983 | A |
4630262 | Callens | Dec 1986 | A |
4652700 | Matthews et al. | Mar 1987 | A |
4653045 | Stanley et al. | Mar 1987 | A |
4679190 | Dias et al. | Jul 1987 | A |
4685125 | Zave | Aug 1987 | A |
4713806 | Oberlander et al. | Dec 1987 | A |
4718005 | Feigenbaum et al. | Jan 1988 | A |
4730071 | Schoenthal | Mar 1988 | A |
4741820 | Coughlin | May 1988 | A |
4747130 | Ho | May 1988 | A |
4765924 | Inoue | Aug 1988 | A |
4782485 | Gollub | Nov 1988 | A |
4821034 | Anderson et al. | Apr 1989 | A |
4827500 | Binkerd et al. | May 1989 | A |
4865763 | Inoue | Sep 1989 | A |
4866763 | Cooper et al. | Sep 1989 | A |
4872157 | Hemmady | Oct 1989 | A |
4872159 | Hemmady | Oct 1989 | A |
4872160 | Hemmady et al. | Oct 1989 | A |
4875206 | Nichols | Oct 1989 | A |
4877949 | Danielson | Oct 1989 | A |
4882476 | White | Nov 1989 | A |
4893302 | Hemmady et al. | Jan 1990 | A |
4894824 | Hemmady | Jan 1990 | A |
4899333 | Roediger | Feb 1990 | A |
4910794 | Mahany | Mar 1990 | A |
4922486 | Lidinsky | May 1990 | A |
4933931 | Kokubo | Jun 1990 | A |
4942574 | Zelle | Jul 1990 | A |
4958341 | Hemmady et al. | Sep 1990 | A |
4979206 | Padden et al. | Dec 1990 | A |
4996707 | O'Malley et al. | Feb 1991 | A |
D315573 | Schultz | Mar 1991 | S |
5008926 | Misholi | Apr 1991 | A |
5009337 | Bimbi | Apr 1991 | A |
5012511 | Hanle et al. | Apr 1991 | A |
5019699 | Koenck | May 1991 | A |
5023868 | Davidson | Jun 1991 | A |
5025254 | Hess | Jun 1991 | A |
5029196 | Morganstein | Jul 1991 | A |
5029199 | Jones et al. | Jul 1991 | A |
5031098 | Miller | Jul 1991 | A |
5052020 | Koenck | Sep 1991 | A |
5052943 | Davis | Oct 1991 | A |
5065393 | Sibbitt et al. | Nov 1991 | A |
5068888 | Scherk et al. | Nov 1991 | A |
5070536 | Mahany | Dec 1991 | A |
5098877 | Coughlin | Mar 1992 | A |
5107492 | Roux et al. | Apr 1992 | A |
5113499 | Ankney et al. | May 1992 | A |
5115431 | Williams | May 1992 | A |
5115495 | Tsuchiya et al. | May 1992 | A |
5123064 | Hacker | Jun 1992 | A |
5144282 | Sutterlin | Sep 1992 | A |
5146488 | Okada et al. | Sep 1992 | A |
5157390 | Yoshie et al. | Oct 1992 | A |
5157662 | Tadamura et al. | Oct 1992 | A |
5159592 | Perkins | Oct 1992 | A |
5159624 | Makita | Oct 1992 | A |
5164938 | Jurkevich et al. | Nov 1992 | A |
5180232 | Chadima | Jan 1993 | A |
5193110 | Jones et al. | Mar 1993 | A |
5195085 | Bertsch et al. | Mar 1993 | A |
5195086 | Baumgartner et al. | Mar 1993 | A |
5195128 | Knitl | Mar 1993 | A |
5195183 | Miller | Mar 1993 | A |
5199062 | Von Meister et al. | Mar 1993 | A |
5200993 | Wheeler et al. | Apr 1993 | A |
5202817 | Koenck | Apr 1993 | A |
5202825 | Miller | Apr 1993 | A |
5204894 | Darden | Apr 1993 | A |
5206901 | Harlow et al. | Apr 1993 | A |
5208848 | Pula | May 1993 | A |
5215011 | Monney | Jun 1993 | A |
5216233 | Main | Jun 1993 | A |
5218187 | Koenck | Jun 1993 | A |
5218188 | Hanson | Jun 1993 | A |
5223699 | Flynn et al. | Jun 1993 | A |
5223820 | Sutterlin | Jun 1993 | A |
5225071 | Coughlin | Jul 1993 | A |
5226075 | Funk et al. | Jul 1993 | A |
5227614 | Danielson | Jul 1993 | A |
5231492 | Dangi et al. | Jul 1993 | A |
5235317 | Sutterlin | Aug 1993 | A |
5237604 | Ryan | Aug 1993 | A |
5241588 | Babso et al. | Aug 1993 | A |
5243645 | Bissell et al. | Sep 1993 | A |
5243654 | Hunter | Sep 1993 | A |
5247571 | Key et al. | Sep 1993 | A |
5254971 | Sutterlin | Oct 1993 | A |
5260986 | Pershan | Nov 1993 | A |
5263080 | Jones et al. | Nov 1993 | A |
5265155 | Castro | Nov 1993 | A |
5272749 | Masek | Dec 1993 | A |
5274696 | Perelman | Dec 1993 | A |
5280159 | Schultz | Jan 1994 | A |
5287199 | Zoccolillo | Feb 1994 | A |
5289378 | Miller | Feb 1994 | A |
5289468 | Yoshida | Feb 1994 | A |
5295154 | Meier | Mar 1994 | A |
5303297 | Durrell et al. | Apr 1994 | A |
5305181 | Schultz | Apr 1994 | A |
5308966 | Danielson | May 1994 | A |
5309437 | Perlman et al. | May 1994 | A |
5311583 | Friedes et al. | May 1994 | A |
5313053 | Koenck | May 1994 | A |
5317566 | Joshi | May 1994 | A |
5317691 | Traeger | May 1994 | A |
5318719 | Hughes | Jun 1994 | A |
5322991 | Hanson | Jun 1994 | A |
5325421 | Hou et al. | Jun 1994 | A |
5327421 | Hiller et al. | Jul 1994 | A |
5327486 | Wolff et al. | Jul 1994 | A |
5329520 | Richardson | Jul 1994 | A |
5329578 | Brennan et al. | Jul 1994 | A |
5331580 | Miller | Jul 1994 | A |
5333266 | Boaz | Jul 1994 | A |
5341374 | Lewen et al. | Aug 1994 | A |
5345446 | Hiller et al. | Sep 1994 | A |
5346611 | Coughlin | Sep 1994 | A |
5347633 | Ashfield et al. | Sep 1994 | A |
5349497 | Hanson | Sep 1994 | A |
5349678 | Morris | Sep 1994 | A |
5351286 | Nici | Sep 1994 | A |
5353331 | Emery et al. | Oct 1994 | A |
5359185 | Hanson | Oct 1994 | A |
5361256 | Doeringer et al. | Nov 1994 | A |
5365524 | Hiller et al. | Nov 1994 | A |
5365546 | Koenck | Nov 1994 | A |
5367566 | Moe et al. | Nov 1994 | A |
5371858 | Miller | Dec 1994 | A |
5375068 | Palmer et al. | Dec 1994 | A |
5375159 | Williams | Dec 1994 | A |
5377186 | Wegner et al. | Dec 1994 | A |
5381465 | Carter et al. | Jan 1995 | A |
5384831 | Creswell et al. | Jan 1995 | A |
5384840 | Blatchford et al. | Jan 1995 | A |
5386467 | Ahmad | Jan 1995 | A |
5390175 | Hiller et al. | Feb 1995 | A |
5390335 | Stephan et al. | Feb 1995 | A |
5392344 | Ash et al. | Feb 1995 | A |
5392402 | Robrock | Feb 1995 | A |
5394436 | Meier | Feb 1995 | A |
5396542 | Alger et al. | Mar 1995 | A |
5400393 | Knuth | Mar 1995 | A |
5402478 | Hluchyj et al. | Mar 1995 | A |
5406557 | Baudoin | Apr 1995 | A |
5408237 | Patterson | Apr 1995 | A |
5408382 | Schultz | Apr 1995 | A |
5410141 | Koenck | Apr 1995 | A |
5410754 | Klotzbach et al. | Apr 1995 | A |
5416842 | Aziz | May 1995 | A |
5418844 | Morrisey et al. | May 1995 | A |
5420211 | Hughes | May 1995 | A |
5420916 | Sekiguchi | May 1995 | A |
5422882 | Hiller et al. | Jun 1995 | A |
5422940 | Endo et al. | Jun 1995 | A |
5422941 | Hasenauer et al. | Jun 1995 | A |
5425028 | Britton et al. | Jun 1995 | A |
5425051 | Mahany | Jun 1995 | A |
5425085 | Weinberger et al. | Jun 1995 | A |
5425090 | Orriss | Jun 1995 | A |
5425091 | Josephs | Jun 1995 | A |
5425780 | Flatt et al. | Jun 1995 | A |
5426636 | Hiller et al. | Jun 1995 | A |
5428608 | Freeman et al. | Jun 1995 | A |
5428636 | Meier | Jun 1995 | A |
5430719 | Weisser et al. | Jul 1995 | A |
5430727 | Callon | Jul 1995 | A |
5434852 | La Porta et al. | Jul 1995 | A |
5434913 | Tung et al. | Jul 1995 | A |
5436957 | McConnell | Jul 1995 | A |
5436963 | Fitzpatrick et al. | Jul 1995 | A |
5440563 | Isidoro et al. | Aug 1995 | A |
5440620 | Slusky | Aug 1995 | A |
5440621 | Castro | Aug 1995 | A |
5442690 | Nazif et al. | Aug 1995 | A |
5444709 | Riddle | Aug 1995 | A |
5448633 | Jamaleddin et al. | Sep 1995 | A |
5450411 | Heil | Sep 1995 | A |
5452289 | Sharma et al. | Sep 1995 | A |
5452297 | Hiller et al. | Sep 1995 | A |
5452350 | Reynolds et al. | Sep 1995 | A |
5455821 | Schaeffer et al. | Oct 1995 | A |
5457629 | Miller | Oct 1995 | A |
5459775 | Isono et al. | Oct 1995 | A |
5461611 | Drak et al. | Oct 1995 | A |
5463677 | Bash et al. | Oct 1995 | A |
5465207 | Boatwright | Nov 1995 | A |
5466170 | Pavek | Nov 1995 | A |
5468947 | Danielson | Nov 1995 | A |
5468950 | Hanson | Nov 1995 | A |
5469496 | Emery et al. | Nov 1995 | A |
5469497 | Pierce et al. | Nov 1995 | A |
5469500 | Satter et al. | Nov 1995 | A |
5473608 | Gagne et al. | Dec 1995 | A |
5473677 | D'Amato et al. | Dec 1995 | A |
5475732 | Pester, III | Dec 1995 | A |
5475737 | Gamer et al. | Dec 1995 | A |
5475748 | Jones | Dec 1995 | A |
5475817 | Waldo et al. | Dec 1995 | A |
5477531 | McKee et al. | Dec 1995 | A |
5479494 | Clitherow | Dec 1995 | A |
5481603 | Gutierrez et al. | Jan 1996 | A |
5483527 | Doshi et al. | Jan 1996 | A |
5483549 | Weinberg et al. | Jan 1996 | A |
5483586 | Sussman | Jan 1996 | A |
5483587 | Hogan et al. | Jan 1996 | A |
5483676 | Mahany | Jan 1996 | A |
5487111 | Slusky | Jan 1996 | A |
5488575 | Danielson | Jan 1996 | A |
5490247 | Tung et al. | Feb 1996 | A |
5493568 | Sampat et al. | Feb 1996 | A |
5493573 | Kobayashi et al. | Feb 1996 | A |
5495521 | Rangachar | Feb 1996 | A |
5500859 | Sharma et al. | Mar 1996 | A |
5500889 | Baker et al. | Mar 1996 | A |
5504746 | Meier | Apr 1996 | A |
5506887 | Emery et al. | Apr 1996 | A |
5506893 | Buscher et al. | Apr 1996 | A |
5511111 | Serbetcioglu et al. | Apr 1996 | A |
5513127 | Gard et al. | Apr 1996 | A |
5515303 | Cargin, Jr. | May 1996 | A |
5517434 | Hanson | May 1996 | A |
5517560 | Greenspan | May 1996 | A |
5520796 | Chen et al. | May 1996 | A |
5521370 | Hanson | May 1996 | A |
5521719 | Yamada | May 1996 | A |
5521924 | Kakuma et al. | May 1996 | A |
5524137 | Rhee | Jun 1996 | A |
5524145 | Parker | Jun 1996 | A |
5526353 | Henley et al. | Jun 1996 | A |
5526416 | Dezonno et al. | Jun 1996 | A |
5526489 | Nilakantan et al. | Jun 1996 | A |
5528539 | Ong | Jun 1996 | A |
5530744 | Charalambous et al. | Jun 1996 | A |
5530852 | Mesk et al. | Jun 1996 | A |
5537470 | Lee | Jul 1996 | A |
5539193 | Gibbs | Jul 1996 | A |
5539194 | Miller | Jul 1996 | A |
5539884 | Robrock, II | Jul 1996 | A |
5539886 | Aldred et al. | Jul 1996 | A |
5541398 | Hanson | Jul 1996 | A |
5541917 | Farris | Jul 1996 | A |
5541927 | Kristol et al. | Jul 1996 | A |
5541930 | Klingman | Jul 1996 | A |
5544010 | Schultz | Aug 1996 | A |
5551025 | O'Reilly et al. | Aug 1996 | A |
5551035 | Arnold et al. | Aug 1996 | A |
5555276 | Koenck | Sep 1996 | A |
5559068 | Chen | Sep 1996 | A |
5559721 | Ishii | Sep 1996 | A |
5559871 | Smith | Sep 1996 | A |
5561670 | Hoffert et al. | Oct 1996 | A |
5563882 | Bruno et al. | Oct 1996 | A |
5568645 | Morris | Oct 1996 | A |
5572583 | Wheeler, Jr. et al. | Nov 1996 | A |
5575961 | Smyk | Nov 1996 | A |
5576529 | Koenck | Nov 1996 | A |
5579472 | Keyworth et al. | Nov 1996 | A |
5583564 | Rao | Dec 1996 | A |
5583920 | Wheeler, Jr. | Dec 1996 | A |
5583926 | Venier et al. | Dec 1996 | A |
5583929 | Ardon | Dec 1996 | A |
5586175 | Hogan | Dec 1996 | A |
5586177 | Farris et al. | Dec 1996 | A |
5587577 | Schultz | Dec 1996 | A |
5590127 | Bales et al. | Dec 1996 | A |
5590133 | Billstrom et al. | Dec 1996 | A |
5590181 | Hogan | Dec 1996 | A |
5590346 | West | Dec 1996 | A |
5594717 | Watanabe et al. | Jan 1997 | A |
5594769 | Pellegrino et al. | Jan 1997 | A |
5594784 | Velius | Jan 1997 | A |
5594789 | Seazholtz et al. | Jan 1997 | A |
5598464 | Hess et al. | Jan 1997 | A |
5598487 | Hacker | Jan 1997 | A |
5602456 | Cargin | Feb 1997 | A |
5602854 | Luse | Feb 1997 | A |
5603085 | Shedlo | Feb 1997 | A |
5604682 | McLaughlin et al. | Feb 1997 | A |
5604737 | Iwami et al. | Feb 1997 | A |
5608446 | Carr et al. | Mar 1997 | A |
5608447 | Farry et al. | Mar 1997 | A |
5608706 | Gordon | Mar 1997 | A |
5608786 | Gordon | Mar 1997 | A |
5610910 | Focsaneanu et al. | Mar 1997 | A |
5610972 | Emery et al. | Mar 1997 | A |
5610976 | Uota et al. | Mar 1997 | A |
5610977 | Williams et al. | Mar 1997 | A |
5615251 | Hogan | Mar 1997 | A |
5617343 | Danielson | Apr 1997 | A |
5617422 | Litzenberger et al. | Apr 1997 | A |
5617540 | Civanlar et al. | Apr 1997 | A |
5619555 | Fenton et al. | Apr 1997 | A |
5619557 | Van Berkum | Apr 1997 | A |
5619562 | Maurer et al. | Apr 1997 | A |
5621787 | McKoy et al. | Apr 1997 | A |
5623601 | Vu | Apr 1997 | A |
5625180 | Hanson | Apr 1997 | A |
5625404 | Grady et al. | Apr 1997 | A |
5625407 | Biggs et al. | Apr 1997 | A |
5625555 | Davis | Apr 1997 | A |
5625675 | Katsumaru et al. | Apr 1997 | A |
5625677 | Feiertag et al. | Apr 1997 | A |
5625681 | Butler, II | Apr 1997 | A |
5625682 | Gray et al. | Apr 1997 | A |
5626682 | Kobari et al. | May 1997 | A |
5627886 | Bowman | May 1997 | A |
5633916 | Goldhagen et al. | May 1997 | A |
5633919 | Hogan | May 1997 | A |
5636216 | Fox et al. | Jun 1997 | A |
5638430 | Hogan | Jun 1997 | A |
5640001 | Danielson | Jun 1997 | A |
5644471 | Schultz | Jul 1997 | A |
5646982 | Hogan et al. | Jul 1997 | A |
5651006 | Fujino et al. | Jul 1997 | A |
5652787 | O'Kelly | Jul 1997 | A |
5654957 | Koyama | Aug 1997 | A |
5657250 | Park et al. | Aug 1997 | A |
5657317 | Mahany | Aug 1997 | A |
5661197 | Villiger et al. | Aug 1997 | A |
5661782 | Bartholomew et al. | Aug 1997 | A |
5661790 | Hsu | Aug 1997 | A |
5661792 | Akinpelu et al. | Aug 1997 | A |
5663208 | Martin | Sep 1997 | A |
5664005 | Emery et al. | Sep 1997 | A |
5664102 | Faynberg | Sep 1997 | A |
5668857 | McHale | Sep 1997 | A |
5669062 | Olds et al. | Sep 1997 | A |
5671436 | Morrison | Sep 1997 | A |
5672860 | Miller | Sep 1997 | A |
5673031 | Meier | Sep 1997 | A |
5673263 | Basso et al. | Sep 1997 | A |
5675507 | Bobo, II | Oct 1997 | A |
5675741 | Aggarwal et al. | Oct 1997 | A |
5679943 | Schultz et al. | Oct 1997 | A |
5680392 | Semaan | Oct 1997 | A |
5680442 | Bartholomew et al. | Oct 1997 | A |
5680446 | Fleischer et al. | Oct 1997 | A |
5680633 | Koenck | Oct 1997 | A |
5682379 | Mahany | Oct 1997 | A |
5687167 | Bertin et al. | Nov 1997 | A |
5689550 | Garson et al. | Nov 1997 | A |
5689553 | Ahuja et al. | Nov 1997 | A |
5692039 | Brankley et al. | Nov 1997 | A |
5694318 | Miller | Dec 1997 | A |
5694463 | Christie et al. | Dec 1997 | A |
5696903 | Mahany | Dec 1997 | A |
5699089 | Murray | Dec 1997 | A |
5699352 | Kriete et al. | Dec 1997 | A |
5699528 | Hogan | Dec 1997 | A |
5701295 | Bales et al. | Dec 1997 | A |
5701465 | Baugher et al. | Dec 1997 | A |
5703935 | Raissyan et al. | Dec 1997 | A |
5703942 | Pinard et al. | Dec 1997 | A |
5706286 | Reiman et al. | Jan 1998 | A |
5708680 | Gollnick | Jan 1998 | A |
5708833 | Kinney | Jan 1998 | A |
5710728 | Danielson | Jan 1998 | A |
5710884 | Dedrick | Jan 1998 | A |
5712903 | Bartholomew et al. | Jan 1998 | A |
5712906 | Grady et al. | Jan 1998 | A |
5712907 | Wegner et al. | Jan 1998 | A |
5712908 | Brinkman et al. | Jan 1998 | A |
5719854 | Choudhury et al. | Feb 1998 | A |
5722067 | Fougnies | Feb 1998 | A |
5724355 | Bruno et al. | Mar 1998 | A |
5724406 | Juster | Mar 1998 | A |
5724412 | Srinivasan | Mar 1998 | A |
5726984 | Kubler et al. | Mar 1998 | A |
5727002 | Miller et al. | Mar 1998 | A |
5727129 | Barrett et al. | Mar 1998 | A |
5729544 | Lev et al. | Mar 1998 | A |
5729599 | Plomondon et al. | Mar 1998 | A |
5732078 | Arango | Mar 1998 | A |
5732213 | Gessel et al. | Mar 1998 | A |
5737333 | Civanlar et al. | Apr 1998 | A |
5737395 | Irribarren | Apr 1998 | A |
5737404 | Segal | Apr 1998 | A |
5737414 | Walker et al. | Apr 1998 | A |
5740164 | Liron | Apr 1998 | A |
5740366 | Mahany | Apr 1998 | A |
5742596 | Baratz et al. | Apr 1998 | A |
5742668 | Pepe et al. | Apr 1998 | A |
5742670 | Bennett | Apr 1998 | A |
5742675 | Kilander et al. | Apr 1998 | A |
5742905 | Pepe et al. | Apr 1998 | A |
5744533 | Iwamoto et al. | Apr 1998 | A |
5747785 | Miller | May 1998 | A |
5747786 | Cargin, Jr. | May 1998 | A |
5748468 | Notenboom et al. | May 1998 | A |
5748619 | Meier | May 1998 | A |
5751706 | Land et al. | May 1998 | A |
5751707 | Voit et al. | May 1998 | A |
5751961 | Smyk | May 1998 | A |
5754639 | Flockhart et al. | May 1998 | A |
5754641 | Voit et al. | May 1998 | A |
5757784 | Liebowitz et al. | May 1998 | A |
5758281 | Emery et al. | May 1998 | A |
5761294 | Shaffer et al. | Jun 1998 | A |
5763867 | Main | Jun 1998 | A |
5764741 | Barak | Jun 1998 | A |
5768513 | Kuthyar et al. | Jun 1998 | A |
5774530 | Montgomery et al. | Jun 1998 | A |
5774533 | Patel | Jun 1998 | A |
5774535 | Castro | Jun 1998 | A |
5774660 | Brendel et al. | Jun 1998 | A |
5774695 | Autrey et al. | Jun 1998 | A |
5778313 | Fougnies | Jul 1998 | A |
5781550 | Templin et al. | Jul 1998 | A |
5781620 | Montgomery et al. | Jul 1998 | A |
5781624 | Mitra et al. | Jul 1998 | A |
5784617 | Greenstein et al. | Jul 1998 | A |
5787160 | Chaney et al. | Jul 1998 | A |
5790172 | Imanaka | Aug 1998 | A |
5790536 | Mahany | Aug 1998 | A |
5790548 | Sistani zadeh et al. | Aug 1998 | A |
5790806 | Koperda | Aug 1998 | A |
5793762 | Penners et al. | Aug 1998 | A |
5793763 | Mayes et al. | Aug 1998 | A |
5793771 | Darland et al. | Aug 1998 | A |
5794043 | Kolb | Aug 1998 | A |
5796790 | Brunner | Aug 1998 | A |
5799072 | Vulcan et al. | Aug 1998 | A |
5799156 | Hogan | Aug 1998 | A |
5802502 | Gell et al. | Sep 1998 | A |
5802510 | Jones | Sep 1998 | A |
5802513 | Bowie, III | Sep 1998 | A |
5804805 | Koenck | Sep 1998 | A |
5805474 | Danielson | Sep 1998 | A |
5805587 | Norris | Sep 1998 | A |
5805682 | Voit et al. | Sep 1998 | A |
5805807 | Hanson | Sep 1998 | A |
5809128 | McMullin | Sep 1998 | A |
5812534 | Davis et al. | Sep 1998 | A |
5812639 | Bartholomew et al. | Sep 1998 | A |
5812795 | Horovitz et al. | Sep 1998 | A |
5812834 | Suzuki | Sep 1998 | A |
5812865 | Theimer et al. | Sep 1998 | A |
5818836 | DuVal | Oct 1998 | A |
5818921 | Vander Meiden et al. | Oct 1998 | A |
5825780 | Christie | Oct 1998 | A |
5825862 | Voit et al. | Oct 1998 | A |
5825863 | Walker | Oct 1998 | A |
5825869 | Brooks et al. | Oct 1998 | A |
5826268 | Schaefer et al. | Oct 1998 | A |
5828737 | Sawyer | Oct 1998 | A |
5828740 | Khuc et al. | Oct 1998 | A |
5828844 | Civanlar et al. | Oct 1998 | A |
5832197 | Houji | Nov 1998 | A |
5834753 | Danielson | Nov 1998 | A |
5835723 | Andrews et al. | Nov 1998 | A |
5838665 | Kahn et al. | Nov 1998 | A |
5838682 | Dekelbaum et al. | Nov 1998 | A |
5838686 | Ozkan | Nov 1998 | A |
5838970 | Thomas | Nov 1998 | A |
5841764 | Roderique et al. | Nov 1998 | A |
5844893 | Gollnick | Dec 1998 | A |
5844896 | Marks et al. | Dec 1998 | A |
5845267 | Ronen | Dec 1998 | A |
5848143 | Andrews et al. | Dec 1998 | A |
5850358 | Danielson | Dec 1998 | A |
5850433 | Rondeau | Dec 1998 | A |
5854833 | Hogan | Dec 1998 | A |
5854975 | Fougnies | Dec 1998 | A |
5856364 | Martin | Jan 1999 | A |
5862171 | Mahany | Jan 1999 | A |
5864604 | Moen et al. | Jan 1999 | A |
5864610 | Ronen | Jan 1999 | A |
5867495 | Elliot et al. | Feb 1999 | A |
5867562 | Scherer | Feb 1999 | A |
5867566 | Hogan | Feb 1999 | A |
5870565 | Glitho | Feb 1999 | A |
5873099 | Hogan | Feb 1999 | A |
5878126 | Velamuri et al. | Mar 1999 | A |
5878130 | Andrews et al. | Mar 1999 | A |
5878212 | Civanlar et al. | Mar 1999 | A |
5881134 | Foster et al. | Mar 1999 | A |
5883891 | Williams et al. | Mar 1999 | A |
5884032 | Bateman et al. | Mar 1999 | A |
5888087 | Hanson | Mar 1999 | A |
5889774 | Mirashrafi et al. | Mar 1999 | A |
5892754 | Kompella et al. | Apr 1999 | A |
5892822 | Gottlieb et al. | Apr 1999 | A |
5892971 | Danielson | Apr 1999 | A |
5895431 | Miller | Apr 1999 | A |
5895906 | Danielson | Apr 1999 | A |
5898668 | Shaffer | Apr 1999 | A |
5898673 | Riggan et al. | Apr 1999 | A |
5901140 | Van As et al. | May 1999 | A |
5903558 | Jones et al. | May 1999 | A |
5905736 | Ronen et al. | May 1999 | A |
5907547 | Foladare et al. | May 1999 | A |
5910946 | Csapo | Jun 1999 | A |
5912887 | Sehgal | Jun 1999 | A |
5914481 | Danielson | Jun 1999 | A |
5915001 | Uppaluru | Jun 1999 | A |
5915005 | He | Jun 1999 | A |
5915008 | Dulman | Jun 1999 | A |
5915012 | Miloslavsky | Jun 1999 | A |
5917175 | Miller | Jun 1999 | A |
5917424 | Goldman et al. | Jun 1999 | A |
5918179 | Foladare et al. | Jun 1999 | A |
5923659 | Curry et al. | Jul 1999 | A |
5926482 | Christie | Jul 1999 | A |
5928292 | Miller | Jul 1999 | A |
5930343 | Vasquez | Jul 1999 | A |
5930700 | Pepper | Jul 1999 | A |
5933425 | Iwata | Aug 1999 | A |
5936958 | Soumiya et al. | Aug 1999 | A |
5937045 | Yaoya et al. | Aug 1999 | A |
5940479 | Guy et al. | Aug 1999 | A |
5940598 | Strauss et al. | Aug 1999 | A |
5940616 | Wang | Aug 1999 | A |
5940771 | Gollnick | Aug 1999 | A |
5944795 | Civanlar | Aug 1999 | A |
5946299 | Blonder | Aug 1999 | A |
5946386 | Rogers et al. | Aug 1999 | A |
5949056 | White | Sep 1999 | A |
5949776 | Mahany | Sep 1999 | A |
5949869 | Sink | Sep 1999 | A |
5953322 | Kimball | Sep 1999 | A |
5953338 | Ma et al. | Sep 1999 | A |
5953504 | Sokal et al. | Sep 1999 | A |
5953651 | Lu et al. | Sep 1999 | A |
5956391 | Melen et al. | Sep 1999 | A |
5956482 | Agraharam et al. | Sep 1999 | A |
5956697 | Usui | Sep 1999 | A |
5958016 | Chang et al. | Sep 1999 | A |
5958052 | Bellovin et al. | Sep 1999 | A |
5959998 | Takahashi et al. | Sep 1999 | A |
5962837 | Main et al. | Oct 1999 | A |
5966431 | Reiman et al. | Oct 1999 | A |
5966434 | Schafer et al. | Oct 1999 | A |
5969321 | Danielson | Oct 1999 | A |
5970065 | Miloslavsky | Oct 1999 | A |
5970477 | Roden | Oct 1999 | A |
5974043 | Solomon | Oct 1999 | A |
5974052 | Johnson et al. | Oct 1999 | A |
5978569 | Traeger | Nov 1999 | A |
5978840 | Nguyen et al. | Nov 1999 | A |
5979768 | Koenck | Nov 1999 | A |
5982774 | Foladare et al. | Nov 1999 | A |
5987108 | Jagadish et al. | Nov 1999 | A |
5987499 | Morris | Nov 1999 | A |
5991291 | Asai et al. | Nov 1999 | A |
5991292 | Focsaneanu et al. | Nov 1999 | A |
5991301 | Christie | Nov 1999 | A |
5991308 | Fuhrmann et al. | Nov 1999 | A |
5991864 | Kinney | Nov 1999 | A |
5995503 | Crawley et al. | Nov 1999 | A |
5995606 | Civanlar et al. | Nov 1999 | A |
5995608 | Civanlar et al. | Nov 1999 | A |
5999524 | Corbalis et al. | Dec 1999 | A |
5999525 | Krishnaswamy | Dec 1999 | A |
6005926 | Mashinsky | Dec 1999 | A |
6006100 | Koenck | Dec 1999 | A |
6006253 | Kumar et al. | Dec 1999 | A |
6011975 | Emery et al. | Jan 2000 | A |
6012088 | Li et al. | Jan 2000 | A |
6014379 | White et al. | Jan 2000 | A |
6014687 | Watanabe et al. | Jan 2000 | A |
6016307 | Kaplan et al. | Jan 2000 | A |
6016343 | Hogan | Jan 2000 | A |
6018360 | Stewart et al. | Jan 2000 | A |
6018567 | Dulman | Jan 2000 | A |
6021126 | White et al. | Feb 2000 | A |
6021263 | Kujoory et al. | Feb 2000 | A |
6023147 | Cargin | Feb 2000 | A |
6023474 | Christie | Feb 2000 | A |
6026087 | Mirashrafi et al. | Feb 2000 | A |
6026091 | Christie | Feb 2000 | A |
6028858 | Rivers et al. | Feb 2000 | A |
6029062 | Hanson | Feb 2000 | A |
6029261 | Christie | Feb 2000 | A |
6031840 | Christie | Feb 2000 | A |
6035028 | Ward et al. | Mar 2000 | A |
6036093 | Schultz | Mar 2000 | A |
6041109 | Cardy et al. | Mar 2000 | A |
6041117 | Androski et al. | Mar 2000 | A |
6044081 | Bell et al. | Mar 2000 | A |
6046992 | Meier | Apr 2000 | A |
6047051 | Ginzboorg et al. | Apr 2000 | A |
6049545 | Stephenson et al. | Apr 2000 | A |
6049813 | Danielson | Apr 2000 | A |
6052450 | Allison et al. | Apr 2000 | A |
6058000 | Koenck | May 2000 | A |
6064653 | Farris | May 2000 | A |
6081525 | Christie | Jun 2000 | A |
6084867 | Meier | Jul 2000 | A |
6084953 | Bardenheuer et al. | Jul 2000 | A |
6097804 | Gilbert et al. | Aug 2000 | A |
6098094 | Barnhouse et al. | Aug 2000 | A |
6101182 | Sistanizadeh et al. | Aug 2000 | A |
6104645 | Ong | Aug 2000 | A |
6104711 | Voit | Aug 2000 | A |
6108341 | Christie | Aug 2000 | A |
6108704 | Hutton | Aug 2000 | A |
6112206 | Morris | Aug 2000 | A |
6115458 | Tasket | Sep 2000 | A |
6118936 | Lauer et al. | Sep 2000 | A |
6125126 | Hallenstal | Sep 2000 | A |
6128304 | Gardell et al. | Oct 2000 | A |
6131121 | Mattaway | Oct 2000 | A |
6134235 | Goldman et al. | Oct 2000 | A |
6134433 | Joong et al. | Oct 2000 | A |
6137792 | Jonas et al. | Oct 2000 | A |
6137869 | Voit et al. | Oct 2000 | A |
6144647 | Lopez-Torres | Nov 2000 | A |
6144661 | Katsube et al. | Nov 2000 | A |
6144667 | Doshi et al. | Nov 2000 | A |
6144976 | Silva | Nov 2000 | A |
6149062 | Danielson | Nov 2000 | A |
6154445 | Farris et al. | Nov 2000 | A |
6154777 | Ebrahim | Nov 2000 | A |
6157621 | Brown et al. | Dec 2000 | A |
6157823 | Fougnies | Dec 2000 | A |
6169735 | Alle et al. | Jan 2001 | B1 |
6175618 | Shah et al. | Jan 2001 | B1 |
6181690 | Civanlar | Jan 2001 | B1 |
6181703 | Christie | Jan 2001 | B1 |
6185184 | Mattaway | Feb 2001 | B1 |
6185198 | LaDue | Feb 2001 | B1 |
6188677 | Oyama et al. | Feb 2001 | B1 |
6192050 | Stovall | Feb 2001 | B1 |
6192400 | Hanson | Feb 2001 | B1 |
6198738 | Chang et al. | Mar 2001 | B1 |
6201812 | Christie | Mar 2001 | B1 |
6212162 | Horlin | Apr 2001 | B1 |
6212193 | Christie | Apr 2001 | B1 |
6222919 | Hollatz et al. | Apr 2001 | B1 |
6226287 | Farris et al. | May 2001 | B1 |
6226678 | Mattaway | May 2001 | B1 |
6230203 | Koperda et al. | May 2001 | B1 |
6233318 | Picard et al. | May 2001 | B1 |
6233604 | Van Horne et al. | May 2001 | B1 |
6236851 | Fougnies | May 2001 | B1 |
6240091 | Ginzboorg et al. | May 2001 | B1 |
6252869 | Silverman | Jun 2001 | B1 |
6260067 | Barnhouse et al. | Jul 2001 | B1 |
6263372 | Hogan | Jul 2001 | B1 |
6266685 | Danielson | Jul 2001 | B1 |
6278693 | Aldred et al. | Aug 2001 | B1 |
6278704 | Creamer et al. | Aug 2001 | B1 |
6279038 | Hogan | Aug 2001 | B1 |
6282192 | Murphy et al. | Aug 2001 | B1 |
6282281 | Low | Aug 2001 | B1 |
6282284 | Dezonno et al. | Aug 2001 | B1 |
6282574 | Voit et al. | Aug 2001 | B1 |
6285745 | Bartholomew et al. | Sep 2001 | B1 |
6289010 | Voit et al. | Sep 2001 | B1 |
6298057 | Guy | Oct 2001 | B1 |
6298062 | Gardell et al. | Oct 2001 | B1 |
6298064 | Christie | Oct 2001 | B1 |
6298120 | Civanlar et al. | Oct 2001 | B1 |
6301609 | Aravamudan et al. | Oct 2001 | B1 |
6304567 | Rosenberg | Oct 2001 | B1 |
6310873 | Rainis et al. | Oct 2001 | B1 |
6310941 | Crutcher et al. | Oct 2001 | B1 |
6314103 | Christie | Nov 2001 | B1 |
6324264 | Wiener et al. | Nov 2001 | B1 |
6332023 | Porter et al. | Dec 2001 | B1 |
6343115 | Foladare et al. | Jan 2002 | B1 |
6347084 | Kelly | Feb 2002 | B1 |
6347085 | Kelly | Feb 2002 | B2 |
6359880 | Curry | Mar 2002 | B1 |
6363065 | Thornton et al. | Mar 2002 | B1 |
6373929 | Johnson et al. | Apr 2002 | B1 |
6374302 | Galasso et al. | Apr 2002 | B1 |
6375344 | Hanson | Apr 2002 | B1 |
6381321 | Brown et al. | Apr 2002 | B1 |
6385191 | Coffman et al. | May 2002 | B1 |
6385193 | Civanlar et al. | May 2002 | B1 |
6400702 | Meier | Jun 2002 | B1 |
6407991 | Meier | Jun 2002 | B1 |
6430195 | Christie | Aug 2002 | B1 |
6449259 | Allain et al. | Sep 2002 | B1 |
6449356 | Dezonno | Sep 2002 | B1 |
6456617 | Oda et al. | Sep 2002 | B1 |
6480588 | Donovan | Nov 2002 | B1 |
6493353 | Kelly et al. | Dec 2002 | B2 |
6498788 | Emilsson et al. | Dec 2002 | B1 |
6513066 | Hutton | Jan 2003 | B1 |
6529516 | Parzych | Mar 2003 | B1 |
6539015 | Voit | Mar 2003 | B2 |
6539077 | Ranalli et al. | Mar 2003 | B1 |
6542497 | Curry | Apr 2003 | B1 |
6546003 | Farris | Apr 2003 | B1 |
6574216 | Farris et al. | Jun 2003 | B1 |
6574681 | White | Jun 2003 | B1 |
6584093 | Salama et al. | Jun 2003 | B1 |
6594254 | Kelly | Jul 2003 | B1 |
6600733 | Deng | Jul 2003 | B2 |
6600735 | Iwama et al. | Jul 2003 | B1 |
6614768 | Mahany | Sep 2003 | B1 |
6614781 | Elliott | Sep 2003 | B1 |
6621942 | Hacker | Sep 2003 | B1 |
6625170 | Curry et al. | Sep 2003 | B1 |
6633846 | Bennett et al. | Oct 2003 | B1 |
6643362 | Hogan | Nov 2003 | B2 |
6654357 | Wiedeman | Nov 2003 | B1 |
6671285 | Kirkby et al. | Dec 2003 | B1 |
6678718 | Khouri et al. | Jan 2004 | B1 |
6681994 | Koenck | Jan 2004 | B1 |
6687738 | Hutton | Feb 2004 | B1 |
6688523 | Koenck | Feb 2004 | B1 |
6690788 | Bauer et al. | Feb 2004 | B1 |
6694359 | Morris | Feb 2004 | B1 |
6701365 | Hutton | Mar 2004 | B1 |
6704287 | Moharram | Mar 2004 | B1 |
6711241 | White et al. | Mar 2004 | B1 |
6714559 | Meier | Mar 2004 | B1 |
6714983 | Koenck | Mar 2004 | B1 |
6754181 | Elliott et al. | Jun 2004 | B1 |
6760429 | Hung et al. | Jul 2004 | B1 |
6775519 | Wiedeman et al. | Aug 2004 | B1 |
6792256 | Kinney | Sep 2004 | B1 |
6810033 | Derks | Oct 2004 | B2 |
6823384 | Wilson et al. | Nov 2004 | B1 |
6826165 | Meier | Nov 2004 | B1 |
6829645 | Hutton | Dec 2004 | B1 |
6839340 | Voit et al. | Jan 2005 | B1 |
6870827 | Voit et al. | Mar 2005 | B1 |
6885678 | Curry et al. | Apr 2005 | B2 |
6895419 | Cargin | May 2005 | B1 |
6910632 | Koerck | Jun 2005 | B2 |
6925054 | Atterton et al. | Aug 2005 | B1 |
6990090 | Meier | Jan 2006 | B2 |
7012898 | Farris et al. | Mar 2006 | B1 |
7013001 | Felger et al. | Mar 2006 | B1 |
7079534 | Medhat | Jul 2006 | B1 |
7085362 | Christie | Aug 2006 | B1 |
7088705 | Curry | Aug 2006 | B2 |
7092379 | Singh et al. | Aug 2006 | B1 |
7120319 | Danielson | Oct 2006 | B2 |
7149208 | Mattaway | Dec 2006 | B2 |
7170887 | Rosenberg | Jan 2007 | B2 |
7206592 | Gollnick | Apr 2007 | B1 |
7236575 | Kim et al. | Jun 2007 | B2 |
7274662 | Kalmanek et al. | Sep 2007 | B1 |
7286562 | Vargo et al. | Oct 2007 | B1 |
7295830 | Gilbert et al. | Nov 2007 | B2 |
7359972 | Jorgensen | Apr 2008 | B2 |
7492886 | Kalmanek | Feb 2009 | B1 |
7502339 | Pirkola et al. | Mar 2009 | B1 |
20020064149 | Elliott | May 2002 | A1 |
20020067739 | Wilkes et al. | Jun 2002 | A1 |
20020083166 | Dugan et al. | Jun 2002 | A1 |
20020114324 | Low et al. | Aug 2002 | A1 |
20020159461 | Hamamoto et al. | Oct 2002 | A1 |
20030078006 | Mahany | Apr 2003 | A1 |
20030169767 | Christie | May 2003 | A1 |
20030112767 | Meier | Jun 2003 | A1 |
20030189941 | Christie | Oct 2003 | A1 |
20030193933 | Jones | Oct 2003 | A1 |
20030198218 | Farris | Oct 2003 | A1 |
20030198335 | Porter et al. | Oct 2003 | A1 |
20040005046 | Deo et al. | Jan 2004 | A1 |
20040018851 | Koenck | Jan 2004 | A1 |
20040023651 | Gollnick | Feb 2004 | A1 |
20040038717 | Mahany | Feb 2004 | A1 |
20040039846 | Goss et al. | Feb 2004 | A1 |
20040044667 | Mahany | Mar 2004 | A1 |
20040073933 | Gollnick | Apr 2004 | A1 |
20040090952 | Kubler | May 2004 | A1 |
20040093363 | Cargin | May 2004 | A1 |
20040114567 | Kubler | Jun 2004 | A1 |
20040125753 | Mahany | Jul 2004 | A1 |
20040131018 | Johnson et al. | Jul 2004 | A1 |
20040145775 | Kubler | Jul 2004 | A1 |
20040146020 | Kubler | Jul 2004 | A1 |
20040146037 | Kubler | Jul 2004 | A1 |
20040151150 | Kubler | Aug 2004 | A1 |
20040151151 | Kubler | Aug 2004 | A1 |
20040151164 | Kubler | Aug 2004 | A1 |
20040160912 | Kubler | Aug 2004 | A1 |
20040160913 | Kubler | Aug 2004 | A1 |
20040162889 | Morris | Aug 2004 | A1 |
20040165573 | Kubler | Aug 2004 | A1 |
20040165793 | Hacker | Aug 2004 | A1 |
20040166895 | Koenck | Aug 2004 | A1 |
20040169583 | Meier | Sep 2004 | A1 |
20040174841 | Kubler | Sep 2004 | A1 |
20040174842 | Kubler | Sep 2004 | A1 |
20040174843 | Kubler | Sep 2004 | A1 |
20040203834 | Mahany | Oct 2004 | A1 |
20040246940 | Kubler | Dec 2004 | A1 |
20040264442 | Kubler | Dec 2004 | A1 |
20050008002 | Kubler | Jan 2005 | A1 |
20050013266 | Kubler | Jan 2005 | A1 |
20050021713 | Dugan et al. | Jan 2005 | A1 |
20050036467 | Kubler | Feb 2005 | A1 |
20050078647 | Meier | Apr 2005 | A1 |
20050083872 | Kubler | Apr 2005 | A1 |
20050087603 | Koenck | Apr 2005 | A1 |
20050191989 | Plush et al. | Sep 2005 | A1 |
20050195859 | Mahany | Sep 2005 | A1 |
20050232213 | Meier | Oct 2005 | A1 |
20050242192 | Koenck | Nov 2005 | A1 |
20050254475 | Kubler | Nov 2005 | A1 |
20060007951 | Meier | Jan 2006 | A1 |
20060062240 | Meier | Mar 2006 | A1 |
20060131420 | Koenck | Jun 2006 | A1 |
20060233161 | Koenck | Oct 2006 | A1 |
20060251226 | Hogan | Nov 2006 | A1 |
20060268806 | Meier | Nov 2006 | A1 |
20060268807 | Meier | Nov 2006 | A1 |
20060274732 | Allen et al. | Dec 2006 | A1 |
20060274735 | Allen et al. | Dec 2006 | A1 |
20060291752 | Hacker | Dec 2006 | A1 |
20070001007 | Koenck | Jan 2007 | A1 |
20070007353 | Danielson | Jan 2007 | A1 |
20070065046 | Hacker | Mar 2007 | A1 |
20070076687 | Low et al. | Apr 2007 | A1 |
20070086445 | Mattaway | Apr 2007 | A1 |
20070121529 | Meier | May 2007 | A1 |
20070121591 | Donovan | May 2007 | A1 |
20070201515 | Lewis | Aug 2007 | A1 |
20070206576 | Radulovic | Sep 2007 | A1 |
20070263644 | Christie et al. | Nov 2007 | A1 |
20080013531 | Elliott et al. | Jan 2008 | A1 |
20080063161 | Joyce et al. | Mar 2008 | A1 |
20090022147 | Farris et al. | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
0235257 | Feb 1987 | EP |
0235057 | Sep 1987 | EP |
0335562 | Oct 1989 | EP |
0365885 | May 1990 | EP |
0381365 | Aug 1990 | EP |
0559979 | Sep 1993 | EP |
0729281 | Feb 1995 | EP |
0767568 | Oct 1995 | EP |
0802690 | Apr 1996 | EP |
0722237 | Jul 1996 | EP |
0781016 | Jun 1997 | EP |
0812089 | Dec 1997 | EP |
0823809 | Feb 1998 | EP |
09-168051 | Jun 1997 | JP |
09-168063 | Jun 1997 | JP |
09-168064 | Jun 1997 | JP |
09-168065 | Jun 1997 | JP |
09-172459 | Jun 1997 | JP |
09-172462 | Jun 1997 | JP |
9107839 | May 1991 | WO |
9411813 | May 1994 | WO |
9522221 | Aug 1995 | WO |
9529564 | Nov 1995 | WO |
9620448 | Jul 1996 | WO |
9620553 | Jul 1996 | WO |
9632800 | Oct 1996 | WO |
9634341 | Oct 1996 | WO |
9638018 | Nov 1996 | WO |
9714238 | Apr 1997 | WO |
9720424 | Jun 1997 | WO |
9722211 | Jun 1997 | WO |
9723078 | Jun 1997 | WO |
9728628 | Aug 1997 | WO |
9733412 | Sep 1997 | WO |
9812860 | Mar 1998 | WO |
9823080 | May 1998 | WO |
9834391 | Aug 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20030198218 A1 | Oct 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08815361 | Mar 1997 | US |
Child | 10442414 | US |