The present invention relates to network management, and, more particularly, to constructing network-wide views of the topology of a packet-switched network.
Packet-switched networks, such as networks based on the TCP/IP protocol suite, can be utilized by a network operator to provide a rich array of services. Networks of routers that store and forward Internet Protocol (IP) packets are becoming the single ubiquitous network for almost all communication needs. Within a single Autonomous System (AS) in an IP network, routing of packets is controlled by an interior gateway protocol, such as OSPF (Open Shortest Path Forwarding). See, e.g., J. Moy, “OSPF Version 2,” Request for Comments 2328, Internet Engineering Task Force (IETF), Network Working Group, April 1998, which is incorporated by reference herein. OSPF is a “link state” routing protocol, meaning that each router within the AS discovers and builds an entire view of the network topology. Every router running OSPF is responsible for describing a certain part of the network in a Link State Advertisements (LSA) which is flooded reliably to other routers in the network. The LSAs are utilized by each router to construct a weighted topological graph which the router uses to compute a shortest path tree. The router thereby builds a forwarding table that assures that packets are forwarded along the shortest paths in terms of link weights to their destination.
As users depend increasingly on a common packet-switched infrastructure for mission-critical needs, they require that the network provide increased reliability and support for new services. Systems for managing IP networks today, unfortunately, are targeted at element-level fault diagnosis and troubleshooting—and not to meet stringent needs of real-time resource tracking or provisioning for a given customer. For instance, to ensure reliability of the network it is important to ascertain customers who will be impacted by a particular interface failure. To provision capacity, e.g. for a given virtual leased line, it is critical to know the current topology of the network and thus know the path that the data for the line will follow. Current systems offer insufficient predictability in the network for a service provider to learn the paths that may be taken by some particular portion of the traffic coming into the network.
The present invention permits a network operator to maintain a timely view of changes to an operational packet-switched network. In accordance with an aspect of the invention, an architecture is provided enabling the tracking of intradomain topology by passively monitoring the existing reliable link state flooding mechanism of an intradomain routing protocol such as OSPF. It is preferable to divide the topology tracking mechanism into two functional components: “reflectors” which are responsible for passively receiving the link state information and an “aggregator” which collects the topology information to form an overall view of the entire domain, that is accessible to other network monitoring applications. The aggregator subscribes to one or more of the reflectors with regard to particular areas of the network. The reflectors can be incorporated functionally into network routers or preferably can be established in an adjacency with a pre-existing router. Where OSPF is the routing protocol utilized, the reflector can take advantage of an intermediate loading state in the protocol to establish an adjacency with the router without impacting the routing behavior of the rest of the network.
The present invention advantageously requires no changes to existing network routing or management protocols or systems. The present invention imposes no penalties on packet routing, forwarding, or network reliability. The view of topology maintained by the system is identical to that in the router databases. Following an event that changes the topology of the network, the aggregator's view should converge to the new view near the time that the routers themselves converge to the new view. Moreover, updates to the topology can be reliably and rapidly detected. These and other advantages of the invention will be apparent to those of ordinary skill in the art by reference to the following detailed description and the accompanying drawings.
In accordance with a preferred embodiment of an aspect of the invention, the task of collecting topology information and synthesizing a global view of the network topology is divided into two principal functional components: referred to by the inventors as an LSA “aggregator” (“LSAG”) 150 and one or more LSA “reflectors” (“LSAR”s) 161, 162, 163. The LSA reflectors 161, 162, 163 are responsible for collecting LSA information that a link state protocol such as OSPF naturally floods throughout each network area to ensure that the routers arrive at a common view of the network topology. Each LSA reflector forwards that information to the LSA aggregator which “aggregates” the topology view of each LSA reflector into a single view of the entire OSPF domain. Separating the LSAR and LSAG functions advantageously provides a degree of fault isolation; each function can be simplified and replicated independently to increase overall reliability. Another benefit is that the LSAG may subscribe to a subset of the LSAs, for example, just the router and network LSAs for a given OSPF area. Moreover, separating the LSAG from the LSAR function allows a network operator to conduct significant modifications to the LSAG, e.g. as new functionalities are added, without disturbing the operation of the LSARs.
The structure and operation of the LSA aggregator 150 and the LSA reflectors 161, 162, 163 are explained in further detail herein.
LSA AGGREGATOR. The LSA aggregator 150 is responsible for handling all complex logic in tracking the network topology: e.g., storing and managing the topology updates, filling in an appropriate topology data model, and providing advantageous application programming interfaces to applications that require network topology views.
The session manager 242 performs the task of managing communication sessions with the various LSARs.
Accordingly, the session manager builds and updates the topology view using the messages received from each LSAR. The data structures underlying the topology view are accessible to various applications, preferably using an application programming interface.
The subscription manager 241 decides which LSAR to contact and what network areas to subscribe for. The subscription database 252 contains this subscription related information, for example in a database structure organized as shown in
As the session manager 242 receives various messages from the LSARs, it updates the subscription database 252. Any changes, for example in the attached or subscribed parameter, are communicated back to the subscription manager 241. In accordance with an embodiment of another aspect of the invention, the subscription manager 241 can then run a “decision” algorithm to select a course of action. For example and without limitation, consider an LSAG that has established a session with an LSAR and has subscribed for some given area A. At some point, the LSAR gets detached from area A and sends this information to the LSAG using the protocol described below. This message is received by the session manager 242 which then updates the subscription database 252 and informs the subscription manager 241 of this change. The subscription manager 241 can then ask the session manager 242 to establish a session with some other LSAR to subscribe for area A. The subscription manager 241 can consult the configuration database 253 to find what LSAR to contact for area A, or it can base its decision by looking at the topology view itself. More sophisticated decision algorithms may be readily implemented which advantageously require little to no intervention from a human operator.
LSA REFLECTOR. The LSA reflector 161, 162, 163 in
Such an embodiment may be readily constructed by modifying a conventional OSPF hardware router or OSPF routing software such as GateD or Zebra. Such modifications preferably include the following:
The main design goal for the LSAR is that it be passive. Though the LSAR “speaks” OSPF, it should not behave as a real router and it must not be involved in packet forwarding. No other router in the network should send data packets to the LSAR to be forwarded elsewhere. A natural line of defense against having the LSAR participate in normal forwarding is to use router configuration measures—assign effectively infinite OSPF weights to the links to the LSARs, and install on neighbor routers strict access control lists and route filters.
A more preferable method is to exploit standardized features of the OSPF protocol that permit links to the LSAR to carry LSAs from the routers, but do not permit neighbors to accept LSAs from the LSAR. This can be accomplished by keeping the LSAR-router adjacency in essentially a “hanging” state such that the two ends start the database synchronization but never finish it. One method to achieve this is to have the LSAR originate an LSA L and inform the router that it has this LSA during the synchronization process but never actually send it out to the router. This ensures that the database is never synchronized and hence the adjacency is never fully established from the router's perspective. As a result of this, the adjacent router never gets to advertise a link to the LSAR in its Router LSA although it sends all the LSAs it receives to the LSAR as part of the flooding procedure. A side benefit of this approach is that any instability in the LSAR does not impact other routers in the network. Based on practical experience with various commercial router implementations, the inventors have not seen any alarms generated by this procedure; the only side effect of this hanging adjacency appears to be repeated link state request packets sent by the router to acquire the LSA L from the LSAR.
The above LSAR architecture advantageously does not require any modifications to existing conventional routers in a pre-existing packet-switched network. It should be noted however that the function of the LSAR can be readily incorporated into that of a conventional router. The router need only by enhanced to implement the LSAG-LSAR protocol described below.
LSAG-LSAR PROTOCOL. The communication between an LSAG and an LSAR can utilize any underlying transport mechanism and advantageous communication protocol.
A session is initiated by an LSAG: the LSAG acts as a client and the LSAR acts as a server in the session. The HoldTime object 701 is useful for managing sessions between an LSAG and the LSARs. Once a session has been established, each end can ensure that it sends at least one message within a “keep alive” period. At the end of the period if a node does not have an object to send, it sends an empty message. If a node does not receive any message from the other end with a value specified in a HoldTime object, it assumes that the other end is dead and terminates the session. Once the session is established, the LSAG can subscribe or unsubscribe to the LSAR for any area at any time using the Subscribe object 702 and the Unsubscribe object 703 respectively. The area ID can be represented the same way it is in OSPF. A special wild-card can be used when the LSAG wants to subscribe for all the areas the LSAR is attached. As described above, the LSAR keeps track of all the areas the LSAG is currently subscribing for in a subscription list. The LSAR may not be attached to all of the areas that the LSAG is subscribing for. If that is the case, the LSAR sends back a message with a Detached-area object 704. Similarly, if the LSAR gets attached to an area at some point, it sends an Attached-area object 705 to the LSAG. As mentioned above, the LSAR sends every LSA that it accepts into an area's link state database where the area is in the subscription list associated with an LSAG. These LSAs are sent out in TopologyInfo objects 706.
The foregoing Detailed Description is to be understood as being in every respect illustrative and exemplary, but not restrictive, and the scope of the invention disclosed herein is not to be determined from the Detailed Description, but rather from the claims as interpreted according to the full breadth permitted by the patent laws. It is to be understood that the embodiments shown and described herein are only illustrative of the principles of the present invention and that various modifications may be implemented by those skilled in the art without departing from the scope and spirit of the invention. For example, the detailed description describes an embodiment of the invention with particular reference to OSPF and IP packet routing. However, the principles of the present invention could be readily extended to other protocols. For example and without limitation, the present invention can be readily extended to MPLS and variations on MPLS (such as MPLambdaS or GMPLS) which employ interior gateway protocols such as OSPF for topology discovery. Such an extension could be readily implemented by one of ordinary skill in the art given the above disclosure.
This application is a continuation of U.S. Ser. No. 10/063,867 filed May 21, 2002, now U.S. Pat. No. 7,200,120 which claims priority to U.S. Provisional Application Ser. No. 60/292,415, filed on May 21, 2001, the contents of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5331637 | Francis et al. | Jul 1994 | A |
5546540 | White | Aug 1996 | A |
5926463 | Ahearn et al. | Jul 1999 | A |
6094682 | Nagasawa | Jul 2000 | A |
6363319 | Hsu | Mar 2002 | B1 |
6574663 | Bakshi et al. | Jun 2003 | B1 |
6600724 | Cheng | Jul 2003 | B1 |
6650626 | Cain | Nov 2003 | B1 |
6728214 | Hao et al. | Apr 2004 | B1 |
6744739 | Martin | Jun 2004 | B2 |
6751660 | Mansingh et al. | Jun 2004 | B1 |
6820134 | Zinin et al. | Nov 2004 | B1 |
6823395 | Adolfsson | Nov 2004 | B1 |
6871235 | Cain | Mar 2005 | B1 |
6944159 | Fotedar et al. | Sep 2005 | B1 |
6944675 | Fujita | Sep 2005 | B2 |
6980537 | Liu | Dec 2005 | B1 |
6985959 | Lee | Jan 2006 | B1 |
7002917 | Saleh | Feb 2006 | B1 |
7200120 | Greenberg et al. | Apr 2007 | B1 |
7437476 | Zinin et al. | Oct 2008 | B2 |
20010053149 | Mo et al. | Dec 2001 | A1 |
20020141378 | Bays et al. | Oct 2002 | A1 |
20020163884 | Peles et al. | Nov 2002 | A1 |
20020176359 | Durinovic-Johri et al. | Nov 2002 | A1 |
20020196802 | Sakov et al. | Dec 2002 | A1 |
20030026212 | Martin | Feb 2003 | A1 |
20030026268 | Navas | Feb 2003 | A1 |
20030058804 | Saleh et al. | Mar 2003 | A1 |
20040233859 | Martin | Nov 2004 | A1 |
20050099958 | Freedman | May 2005 | A1 |
20050198250 | Wang | Sep 2005 | A1 |
20060069779 | Sundqvist et al. | Mar 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20070165546 A1 | Jul 2007 | US |
Number | Date | Country | |
---|---|---|---|
60292415 | May 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10063867 | May 2002 | US |
Child | 11695352 | US |